用户名: 密码: 验证码:
同井回灌地下水源热泵源汇井运行特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
同井回灌地下水源热泵的源汇井现在有两种型式:抽灌同井和单井循环系统,它们均能在一口井内完成抽水和回灌。对于抽灌同井,其井内通过隔板把井分成三部分,井的下部是低压吸水区,上部是高压回水区,中间为隔断区。潜水泵运行时,地下水从低压吸水区被抽至井口换热器中,与热泵低温水换热,再由同井返回到高压回水区。单井循环系统是土壤耦合热泵套管换热器的一种变形,在强岩层之下取消了套管外管,水直接在井孔内循环与井壁岩土进行热交换。高峰负荷期间,为了满足负荷要求,单井循环系统通过排放一定比例的循环水来引入一定量的地下原水。
     本文系统地研究了这两种型式源汇井的运行特性,主要研究内容和取得的成果如下:
     (1)开展了抽灌同井的现场试验研究工作,提供了近两年的测试数据。通过现场试验,将热贯通分为瞬变热贯通和缓变热贯通。系统存在瞬变热贯通时,会使抽水温度随着回水温度变化。为了缓解抽水温度的变化和减轻回灌压力,将排放引入到抽灌同井系统中,组成单、双井混合系统。同时测试结果也表明抽灌同井冬夏均运行时,季节性储能是抽灌同井低位热量来源的一个重要组成部分。
     (2)受测试结果的启发,根据源汇井的建造工艺,将抽灌同井分为无回填抽灌同井和砾石回填抽灌同井。分别建立了无回填抽灌同井、砾石回填抽灌同井和单井循环系统的地下水流动和换热数学模型,并给出了数值求解方法。通过收集到的丹麦技术大学无回填抽灌同井的试验数据、美国宾夕法尼亚州立大学无排放单井循环系统的试验数据以及笔者开展的北京某砾石回填抽灌同井的现场试验数据,较全面地验证了本文建立的数学模型。
     (3)在Hantush非完整井抽水降深理论解的基础上,利用叠加原理推导了单一介质承压含水层中无回填抽灌同井的地下水降深理论解,并得出了稳态降深方程、稳态渗流速度方程、准稳态时间方程和理想井间距方程。源汇井特性分析表明,抽灌同井运行时会发生热贯通现象,但由于热影响范围较大,能承担较大的负荷。砾石回填抽灌同井较无回填抽灌同井能够减小抽水和回灌的压力,热贯通也更严重。对于单井循环系统,原水交换承担了很大一部分负荷,使得单井循环系统较套管换热器能够承担更大的负荷;同时由于含水层中地下水流速小,热影响范围小,其承担负荷的能力又比抽灌同井小。此外还对热贯通现象进行了定量研究。
     (4)进行了参数研究。研究结果表明,对抽灌同井,渗透系数是抽水和回灌难易程度的关键;渗透系数比是抽水温度变化的关键影响因素;小流量、大温差对于抽灌同井是可行的。对于单井循环系统,其没有回灌困难的问题。渗透系数亦是一个关键性参数;渗透性能较好的含水层极大地提高了系统承担负荷的能力;增加孔深是提高系统承担负荷的能力的有效方法。排放减轻和延缓了抽水温度的变化,但排放的比例和起到的效果并不对等,因而排放应该作为一种紧急措施,来缓解回灌压力和抽水温度的急剧变化。
     (5)在同井回灌地下水源热泵常年运行工况分析的基础上,对运行过程中的季节性储能现象进行了定量地研究。计算表明,抽灌同井常年运行时,出现了明显的季节性储能现象,季节性储能提供了很大一部分热源或热汇。当累积负荷不平衡时,长期运行抽灌同井的抽水温度会出现明显地年度升高或降低,严重时使源汇井失效。然而单井循环系统并没有出现明显的季节性储能现象,储能比近似等于0。单井循环系统前期的运行对后期的抽水温度基本没有影响,因而对于单井循环系统不用考虑负荷不平衡的问题。
     本文的研究工作对深入认识同井回灌地下水源热泵的源汇井提供了理论参考,为辨析抽灌同井和单井循环系统的混淆提供了依据。
The heat source / sink wells (HSSW) of groundwater heat pump with pumping and recharging in the same well (GWHPPRSW) have two types now, one is pumping & recharging well (PRW), the other is standing column well (SCW). They both can finish the operations of pumping and recharging in only one well. For PRW, the well is divided into three parts by clapboards: low pressure (production) space in the low part of the well, seal section in the middle part and high pressure (injection) space in the top part. When the submersible pump is running, groundwater is sent to heat exchanger at the wellhead, where it releases heat, and then is sent back to the injection space through the same well. SCW can be regarded as a transfiguration of the coaxial heat exchanger of ground-coupled heat pump (GCHP). It cuts down the outside pipe of the coaxial pipe in competent bedrock, and lets fluid circulate directly in the borehole to exchange heat with rock of the borehole. During peak load periods, SCW can bleed some circulation water from the borehole to induce original groundwater flow.
     In this work, the operation performance of these two types of HSSW was studied in detail and systematically. The main works and results of this dissertation are listed as following:
     (1) The in-situ experiment of PRW was performed, and nearly two years’experimental data were obtained. Based on in-situ test, the phenomenon of thermal transfixion was delimited as the slow-response thermal transfixion and the fast-response thermal transfixion. When the fast-response thermal transfixion was existence in the system, the pumping temperature would vary along with the recharging temperature. The bleed tragedy was introduced to PRW, and the HSSW was called single-double wells mixed GWHP system. At the same time, the test results showed that for full-year-operation PRW the seasonal thermal energy storage (STES) played an important role in the heat source for PRW.
     (2) The PRW were sorted as non-backfill PRW and gravel-backfill PRW according to the technology of well construction and the instruction of the in-situ test results. The models of groundwater flow and heat transfer for non-backfill PRW, gravel-backfill PRW and SCW were established, respectively. The methods of numerical solution were provided. The mathematic models were validated more completely through the experimental data collected from Technical University of Denmark for non-backfill PRW and from Pennsylvania State University for SCW as well as conducted by us for gravel-backfill PRW.
     (3) The analytic drawdown equation for non-backfill PRW in a unitary homogenous confined aquifer was acquired through the principle of superposition based on the analytic drawdown equation for partially penetrating well presented by Hantush. Equations of steady drawdown, seepage velocity, quasi steady time and ideal well distance were gained through the analytic drawdown equation. The characteristic analyses results showed that the phenomena of thermal transfixion would happen when PRW kept running. Even though the existence of thermal transfixion the PRW could burden big load because of the large thermal effective radius. Compared with the non-backfill PRW, the gravel-backfill PRW could reduce the pressure of pumping and recharging and had more serious thermal transfixion, too. For SCW, the original groundwater exchange burdened much large part of load, which made SCW can undertake larger load than the coaxial heat exchanger. Meanwhile, the load ability of SCW was smaller than that of PRW for the smallness of groundwater velocity in aquifer and the thermal effective radius. In addition, the phenomena of thermal transfixion were studied quantitatively.
     (4) The parametric study was presented. For PRW, the results showed that the coefficient of permeability was critical for pumping and recharging and the ratio of permeability coefficient (horizontal / vertical) was the key factor for the variation of pumping temperature. The operation strategy of small flow rate and large temperature difference was feasible to PRW. SCW didn’t have the trouble of recharging. The coefficient of permeability was also the key parameter to SCW. The load ability of SCW could be promoted greatly if SCW was in the aquifer with good permeability. The increase of borehole length was an effective method for SCW to enhance the ability of load. The bleed strategy could alleviate and postpone the change of pumping temperature. But there was unbalance between the rate of bleed and its impact. Therefore, the bleed strategy should be adopted as an emergency method to delay the sharp change of recharging pressure and pumping temperature.
     (5) The phenomena of seasonal thermal energy storage (STES) in the operation period were discussed on the basis of the analyses of perennial behavior of GWHPPRSW. The calculation results showed that when PRW ran perennially the phenomena of STES appeared apparently and the STES provided much large part of heat source or sink to PRW. When the accumulated load kept unbalance, for perennial-operation PRW the pumping temperature could increase or reduce much annually, which even made PRW not work. However, for SCW the phenomena of STES didn’t occur and the thermal energy storage ratio was nearly zero. There was little effect to the later pumping temperature of SCW due to its previous operation. Thus, the problem of load unbalance didn’t need to be considered at all for SCW.
     The works of this dissertation provided the theroical references to comprehensively understand the HSSW of GWHPPRSW and offered the evidences to distinguish the confusion of PRW with SCW.
引文
1 殷平. 地源热泵在中国. 现代空调—空调热泵设计方法专辑. 2001, (3): 1-8
    2 S. N. Sorensen, J. Reffstrup. Prediction of Long-Term Operational Conditions for Single-Well Groundwater Heat Pump Plants. Proceedings of the 27th Intersociety Energy Conversion Engineering Conference, San Diego, CA, USA, 1992. 4.109-4.114
    3 徐生恒. 井式液体冷热源系统. 中华人民共和国国家知识产权局: (00123494.3), 2002
    4 李志浩. 全国暖通空调制冷 2004 年学术年会综述. 暖通空调. 2004, 34 (10): 5-12
    5 S. Xu, L. Rybach. Utilization of Shallow Resources Performance of Direct Use System in Beijng. Geothermal Resource Council Transactions. 2003, 27: 115-118
    6 杨自强, 曲满洪. 单井抽灌技术在我国的应用与发展. 暖通空调. 2006, 36 (增刊): 208-210
    7 J. D. Spitler, X. Liu, S. J. Rees, et al. Simulation and Design of Ground Source Heat Pump Systems. 山东建筑工程学院学报. 2003, 18 (1): 1-10
    8 S. J. Rees, J. D. Spitler, Z. Deng, et al. A Study of Geothermal Heat Pump and Standing Column Well Performance. ASHRAE Transactions. 2004, 110 (1): 3-13
    9 吕金扬, 陈显余. 深井蓄热型地下水热泵系统. 全国暖通空调制冷学术年会资料集, 1994. 497-501
    10 王芳, 范晓伟, 周光辉, et al. 我国水源热泵研究现状. 流体机械. 2003, 31 (4): 57-59
    11 林学钰, 廖资生. 地下水资源的基本属性和我国水文地质科学的发展. 地学前缘. 2002, 9 (3): 96-94
    12 Office of Geothermal Technologies. Environmental and Energy Benefits of Geothermal Heat Pumps. Produced for the US Department of Energy (DOE) by the National Renewable Energy Laboratory, a DOE national laboratory. 1999, DOE/GO-10098-653: 1-4
    13 M. T. Sulatisky, G. v. d. Kamp. Ground-Source Heat Pump in the Canadian Prairies. ASHRAE Transactions. 1991, 97 (1): 374-385
    14 G. M. Freedman, R. S. Dougall. Monitoring of Residential Groundwater-Source Heat Pumps in the Northeast. ASHRAE Transactions. 1988, 94 (1A): 839-862
    15 D. Cane, A. Morrison, C. J. Ireland. Operating Experiences with Commercial Ground-Source Heat Pumps-Part 2. ASHRAE Transactions. 1998, 104 (2A): 677-686
    16 R. L. D. Cane, S. B. Clemes, A. Morrison. Operating Experiences with Commercial Ground-Source Heat Pumps-Part 1. ASHRAE Transactions. 1996, 102 (1): 911-916
    17 P. J. Lienau, T. L. Boyd, R. L. Rogers. Ground-Source Heat Pump Case Studies and Utility Programs. Prepared For: US Department of Energy Geothermal Division. 1995: 1-5
    18 K. Raffery. A Capital Cost Comparison of Commercial Ground-Source Heat Pump System. ASHRAE Transactions. 1995, 101 (2): 1095-1100
    19 D. Cane, A. Morrison, C. J. Ireland. Maintenance and Service Costs of Commercial Building Ground-Source Heat Pump Systems. ASHRAE Transactions. 1998, 104 (2A): 699-706
    20 王景刚, 张万平, 王侃宏. 资源环境可持续发展的热泵应用技术研究. 全国热泵和空调技术交流会议论文集, 宁波, 2001. 155-164
    21 张寿全. 中国的水环境与水资源可持续利用若干问题. 工程地质学报. 1999, 7 (3): 250-256
    22 林英. 地下水资源保护亟待加强. 光明日报. 2003,11,11: 第一版
    23 ASHRAE. 地源热泵工程技术指南. 徐伟. 北京: 中国建筑工业出版社. 2001
    24 K. R. DenBraven. Regulations for Open-Loop Ground-Source Heat Pumps in the United States. ASHRAE Transactions. 2002, 108 (1): 962-967
    25 李琴云, 刁乃仁, 方肇洪. 美国开式回路地源热泵利用地下水的若干规定. 节能与环保. 2003, (2): 40-42
    26 贺宝峰. 地(水)源热泵系统及其工程应用. 天津大学 硕士学位论文. 2002
    27 傅允准, 林豹, 张旭. 变频技术在地下水源热泵系统中的应用. 沈阳建筑大学学报(自然科学版). 2005, 21 (3): 250-252
    28 傅允准, 林豹, 张旭. 深井水源热泵系统供热特性分析. 暖通空调. 2006, 36 (2): 92-96
    29 赵新颖, 万曼影, 马捷. 地下含水层储能及其对环境影响的评估. 能源研究与利用. 2004, (1): 51-54
    30 龙翔, 万曼影, 马捷. 含水层储能技术的应用及储能条件的分析. 能源工程. 2005, (1): 42-44
    31 方向性预测情报的综合分析研究—供热及空调系统的蓄能. 中国建筑科学研究院建筑情报研究所. 1981 年度研究成果: 10-15
    32 C. F. Meyer, D. K. Todd. Heat-Storage Wells. Journal of Water Well. 1973, 27 (10): 35-41
    33 S. H. Hall, J. R. Raymond. Geohydrologic Characterization for Aquifer Thermal Energy Storage. 27th Intersociety Energy Conversion Engineering Conference Proceedings, San Diego, CA, USA, 1992. 101-107
    34 王明育, 马捷, 郝振良. 地下含水层热储井位置选择和布置. 成都理工大学学报(自然科学版). 2005, 32 (1): 12-16
    35 王明育, 马捷, 万曼影. 地下含水层人工储能耦合模型分析计算. 能源技术. 2004, 25 (1): 1-4
    36 何满潮, 乾增珍, 朱家岭. 深部地层储能技术与水源热泵联合应用工程实例. 太阳能学报. 2005, 26 (1): 23-27
    37 王锦程, 万曼影, 马捷. 地下含水层储能技术的应用条件及其关键科学问题. 能源研究与信息. 2003, 19 (4): 229-235
    38 W. J. Schaetzle, C. E. Brett, D. M. Grubbs. A Heat Pump Integrated Community Energy System Using Annual Aquifer Energy Storage. ASHRAE Transactions. 1980, 86 (1): 955-966
    39 W. J. Schaetzle, C. E. Brett, D. M. Grubbs. Direct Cooling Utilizing Aquifer Thermal Energy Storage. ASHRAE Transactions. 1980, 86 (2): 609-621
    40 Y. Hamada, K. Marutani, M. Nakamura, et al. Study on Underground Thermal Characteristics by Using Digital National Land Information and Its Application for Energy Utilization. Applied Energy. 2002, 72 (3-4): 659-675
    41 B. Qvale, J. Hagelskjaer, L. J. Andersen, et al. Aquifer Thermal Energy Storage, Technolgy, Systems, Economics. ASHRAE Transactions. 1984, 90 (2B): 137-156
    42 刘毅. 上海市地面沉降防治措施及其效果. 火山地质与矿产. 2000, 21 (2): 107-111
    43 刘锦章. 地下含水层蓄冷及其在纺织空调上的有效利用. 全国暖通空调制冷学术年会论文集, 武汉, 1982. 211-214
    44 邬小波, 马捷. 中国地下含水层储能技术及其发展. 能源研究与信息. 1999, 15 (4): 8-12
    45 付峥嵘. 利用地下水的住宅中央空调系统的研究. 湖南大学 硕士学位论文. 2002
    46 邬小波. 地下含水层储能和地下水源热泵系统中地下水回路与回灌技术现状. 暖通空调. 2004, 34 (1): 19-22
    47 C. E. Brett, W. J. Schaetzle. Experiences with Unconfied Aquifer ChilledWater Storage. ASHRAE Transactions. 1984, 90 (2B): 169-180
    48 K. C. Midkiff, C. E. Brett, K. Balaji, et al. Long-Term Performance of an Air-Conditioning System Based on Seasonal Aquifer Chill Energy Storage. 27th Intersociety Energy Conversion Engineering Conference Proceedings, San Diego, CA, USA, 1992. 49-54
    49 赵新颖, 万曼影, 施锡钜. 利用含水层储能的水源热泵工程及其对环境影响的评估. 能源工程. 2004, (2): 20-24
    50 F. Kabus, P. Seibt. Aquifer Thermal Energy Storage for the Berlin Reichstag Building New Seat of the German Parliament. Proceedings World Geothermal Congress 2000, Kyushu-Tohoku, Japan, 2000. 3611-3615
    51 F. Kabus, G. M?llmann, F. Hoffmann, et al. Thermal Energy Store Based on Surplus Heat Arising from a Gas and Steam Cogeneration Plant at Neubrandenburg / Ne Germany. Proceedings of the 10th International Conference on Thermal Energy Storage - ECOSTOCK, New Jersey, 2006. (CD-ROM)
    52 H. O. Paksoy, O. Andersson, S. Abaci, et al. Heating and Cooling of a Hospital Using Solar Energy Coupled with Seasonal Thermal Energy Storage in an Aquifer. Renewable Energy. 2000, 19 (1-2): 177-122
    53 H. O. Paksoy, Z. Gurbuz, B. Turgut, et al. Aquifer Thermal Storage (ATES) for Air-Conditioning of a Supermarket in Turkey. Renewable Energy. 2004, 19 (12): 1991-1996
    54 H. Hoes, J. Desmedt, N. Robeyn, et al. Experiences with ATES Applications in Flanders : Operational Results and Energy Savings. Proceedings of the 10th International Conference on Thermal Energy Storage - ECOSTOCK, New Jersey, 2006. (CD-ROM)
    55 D. W. Bridger, D. M. Allen. Designing Aquifer Thermal Energy Storage Systems. ASHRAE Journal. 2005, 47 (9): S32-S38
    56 何耀东. 深井回灌技术初探. 空调制冷技术文集(3)论文集, 天津市制冷学会天海冷气技术成套工程公司: 105-111
    57 何耀东. 关于深井回灌的试验研究. 空调制冷技术文集(3)论文集, 天津市制冷学会天海冷气技术成套工程公司: 112-118
    58 何耀东. 地下水回灌是获取工业冷源最有效的办法. 空调制冷技术文集(3)论文集, 天津市制冷学会天海冷气技术成套工程公司: 119-120
    59 Y. Xue, C. Xie, Q. Li. Aquifer Thermal Energy Storage: A Numerical Simulation of Field Experiments in China. Water Resources Research. 1990, 26 (10): 2365-2375
    60 薛顺金. 申昆毛纺厂深井回灌试验. 水文地质工程地质. 1995, (2): 20-22
    61 张建栋, 马捷, 戴斌. 地下含水层储能的实验分析与模拟. 能源技术. 2005, 26 (5): 231-236
    62 D. Werner, W. Kley. Problems of Heat Storage in Aquifers. Journal of Hydrology. 1977, 34 (1-2): 35-43
    63 B. Mathey. Development and Resorption of a Thermal Disturbance in a Phreatic Aquifer with Natural Convection. Journal of Hydrology. 1977, 34 (5-6): 315-333
    64 J. P. Sauty, A. C. Gringarten, H. Fabri, et al. Sensible Energy Storage in Aquifers 2. Field Experiments and Comparison with Theoretical Results. Water Resource Research. 1982, 18 (2): 253-265
    65 F. J. Molz, J. G. Melville, O. Guven, et al. Aquifer Thermal Energy Storage: an Attempt to Counter Free Thermal Convection. Water Resources Research. 1983, 19 (4): 922-930
    66 F. J. Molz, J. G. Melville, A. D. Parr, et al. Aquifer Thermal Energy Storage: a Well Doublet Experiment at Increased Temperature. Water Resource Research. 1983, 19 (1): 149-160
    67 F. J. Molz, A. D. Parr, P. F. Andersen. Thermal Energy Storage in a Confined Aquifer: Second Cycle. Water Resource Research. 1981, 17 (3): 641-645
    68 F. J. Molz, A. D. Parr, P. F. Andersen, et al. Thermal Energy Storage in a Confined Aquifer: Experimental Results. Water Resource Research. 1979, 15 (6): 1509-1514
    69 F. J. Molz, J. C. Warman, T. E. Jones. Aquifer Storage of Heated Water: Part I-A Field Experiment. Ground Water. 1978, 16 (4): 234-241
    70 倪龙, 荣莉, 马最良. 含水层储能的研究历史及未来. 建筑热能通风空调. 2007, 26 (1): 18-24
    71 T. R. Holm, S. J. Eisenreich, H. L. Roseberg, et al. Groundwater Geochemistry of Short-Term Aquifer Thermal Energy Storage Test Cycles. Water Resource Research. 1987, 23 (6): 1005-1019
    72 R. T. Miller. Anisotropy in the Ironton and Galesville Sandstone Nears a Thermal-Energy-Storage Well, St. Paul, Minnesota. Ground Water. 1984, 22 (5): 532-537
    73 R. T. Miller, C. I. Voss. Finite-Difference Grid for a Doublet Well in an Anisotropic Aquifer. Ground Water. 1986, 24 (4): 490-496
    74 J. A. Perlinger, J. E. Almendinger, N. R. Urban, et al. Groundwater Geochemistry of Aquifer Thermal Energy Storage: Long-Term Test Cycle. Water Resources Research. 1987, 23 (12): 2215-2226
    75 C. D. Palmer, D. W. Blowes, E. O. Frind, et al. Thermal Energy storage inan Unconfined Aquifer 1. Field Injection Experiment. Water Resource Research. 1992, 28 (10): 2845-2856
    76 薛禹群, 谢春红, 李勤奋. 含水层储热能研究—上海储能试验数值模拟. 地质学报. 1989, 83 (1): 73-75
    77 薛禹群, 谢春红, 张志辉, et al. 三维非稳定流含水层储能的数值模拟研究. 地质评论. 1994, 40 (1): 74-81
    78 张勇. 非标准状态下 Darcy 定律研究. 南京大学 博士学位论文. 1998
    79 张勇, 薛禹群, 谢春红. 高温差条件下达西定律的理论推导. 水科学进展. 1999, 10 (4): 362-367
    80 张勇, 薛禹群, 谢春红, et al. 考虑温度变化的地下水运动方程及其在储能模型中的应用. 地质评论. 1999, 45 (2): 209-217
    81 张志辉. 含水层储能数值模拟的研究及应用. 南京大学 博士学位论文. 1993
    82 张志辉, 吴吉春, 薛禹群, et al. 含水层热量输运中自然热对流和水-岩热交换作用的研究. 工程地质学报. 1997, 5 (3): 269-275
    83 张志辉, 薛禹群, 吴吉春. 地下热水运移中自然对流的研究. 水文地质工程地质. 1995, (4): 16-18
    84 张志辉, 薛禹群, 谢春红, et al. 含水层热量运移中自然对流作用的数值模拟. 水科学进展. 1996, 7 (2): 99-10
    85 龙翔, 万曼影, 马捷. 地下水含水层储能的数学模型及其流动条件的研究. 能源研究与利用. 2005, (1): 14-18
    86 马捷, 王明育, 戴斌. 地下含水层的储能和过程特性的分析. 华北电力大学学报. 2004, 31 (6): 58-60
    87 王明育, 马捷, 万曼影. 地下含水层储能两阶段热量运移数值模型研究. 吉林大学学报(地球科学版). 2004, 34 (4): 576-580
    88 王明育, 马捷, 万曼影, et al. 地下含水层同层储能应用中储能井布置方法研究. 工程勘察. 2005, (1): 15-21
    89 夏民, 王明育, 万曼影, et al. 储能地下含水层两阶段流动换热模型分析. 水动力学研究与进展 A 辑. 2005, 20 (3): 363-367
    90 付峥嵘, 李念平, 汤广发, et al. 季节性含水层储能系统在住宅中的应用. 暖通空调. 2004, 34 (9): 84-86
    91 J. P. Sauty, A. C. Gringarten, A. Menjoz, et al. Sensible Energy Storage in Aquifers 1. Theoretical Study. Water Resource Research. 1982, 18 (2): 245-252
    92 T. A. Buscheck, C. Doughty, C. F. Tsang. Prediction and Analysis of a Field Experiment on a Multilayered Aquifer Thermal Energy Storage System with Strong Buoyancy Flow. Water Resources Research. 1983, 19 (5): 1307-1315
    93 C. Doughty, G. Hellstrom, C. F. Tsang, et al. A Dimensionless Parameter Approach to the Thermal Behavior of an Aquifer Thermal Energy Storage System. Water Resource Research. 1982, 18 (3): 571-587
    94 S. S. Papadopulos, S. P. Larson. Aquifer Storage of Heated Water: Part II-Numerical Simulation of Field Results. Ground Water. 1978, 16 (4): 242-248
    95 J. F. Sykes, R. B. Lantz, S. B. Pahwa, et al. Numerical Simulation of Thermal Energy Storage Experiment Conducted by Auburn University. Ground Water. 1982, 20 (5): 569-576
    96 C. F. Tsang, T. Buscheck, C. Doughty. Aquifer Thermal Energy Storage: A Numerical Simulation of Auburn University Field Experiments. Water Resource Research. 1981, 17 (3): 647-658
    97 A. D. Parr, F. J. Molz, J. G. Melville. Field Determination of Aquifer Thermal Energy Storage Parameters. Ground Water. 1983, 21 (1): 22-35
    98 J. W. Molson, E. O. Frind, C. D. Palmer. Thermal Energy storage in an Unconfined Aquifer 2. Model Development, Validation and Application. Water Resource Research. 1992, 28 (10): 2857-2867
    99 T. E. Dwyer, Y. Eckstein. Finite-Element Simulation of Low-Temperature, Heat-Pump-Coupled, Aquifer Thermal Energy Storage. Journal of Hydrology. 1987, 95 (1-2): 19-38
    100 K. Nagano, T. Mochida, K. Ochifuji. Influence of Natural Convection on Forced Horizontal Flow in Saturated Porous Media for Aquifer Thermal Energy Storage. Applied Thermal Engineering. 2002, 22 (12): 1299-1311
    101 C. S. Chen, D. L. Reddell. Temperature Distribution around a Well during Thermal Injection and a Graphical Technique for Evaluating Aquifer Thermal Properties. Water Resource Research. 1983, 19 (2): 351-363
    102 O. Guven, J. G. Melville, F. J. Molz. An Analysis of the Effect of Surface Heat Exchange on the Thermal Behavior of an Idealized Aquifer Thermal Energy Storage System. Water Resource Research. 1983, 19 (3): 860-864
    103 M. J. Lippmann, C. F. Tsang. Ground-Water Use for Cooling: Associated Aquifer Temperature Changes. Ground Water. 1980, 18 (5): 452-458
    104 G. J. M. Uffink. Dampening of Fluctuations in Groundwater Temperature by Heat Exchange between the Aquifer and the Adjacent Layer. Journal of Hydrology. 1983, 60 (1-4): 311-328
    105 H. D. Voigt, F. Haefner. Heat Transfer in Aquifers with Finite Caprok Thickness during a Thermal Injection Process. Water Resource Research. 1987, 23 (12): 2286-2292
    106 S. Chevalier, O. Banton. Modeling of Heat Transfer with the Random Walk Method. Part 2. Application to Thermal Energy Storage in Fractured Aquifers. Journal of Hydrology. 1999, 222 (1-4): 140-151
    107 S. Chevalier, O. Banton. Modeling of Heat Transfer with the Random Walk Method. Part 1. Application to Thermal Energy Storage in Porous Aquifers. Journal of Hydrology. 1999, 222 (1-4): 129-139
    108 M. J. Hatten. Groundwater Heat Pumping: Lessons Learned in 43 Years at One Building. ASHRAE Transactions. 1992, 98 (1): 1031-1037
    109 M. J. Hatten, W. B. Morrison. The Commonwealth Building: Groundbreaking History with a Groundwater Heat Pump. ASHRAE Journal. 1995, 37 (7): 45-48
    110 龚宇烈, 赵军, 李新国, et al. 地源热泵在美国工程应用及其发展. 全国热泵和空调技术交流会议论文集, 2001. 北京:中国建筑工业出版社: 249-253
    111 E. C. Knipe, K. D. Raffery. Corrosion in Low Temperature Geothermal Application. ASHRAE Transactions. 1985, 91 (2B-1): 81-91
    112 J. D. Kroeker, R. C. Chewing. Heat Pump in an Office Building. ASHVE Transactions. 1948, 54: 221-238
    113 J. D. Kroeker, R. C. Chewing. Costs of Operating the Heat Pump in the Equitable Building. ASHVE Transactions. 1954, 60: 157-176
    114 张群力, 王晋. 地源热泵和地下水源热泵的研发现状及应用过程中的问题分析. 流体机械. 2003, (5): 50-54
    115 P. J. Hughes. Survey of Water-Source Heat Pump System Configurations in Current Practice. ASHRAE Transactions. 1990, 96 (1): 1021-1028
    116 D. V. Mathen. Performance Monitoring of Select Groundwater Heat Pump Installations in North Dakota. ASHRAE Transactions. 1984, 90 (1B): 290-303
    117 J. B. Singh, G. Foster, A. W. Hunt. Representative Operating Problems of Commercial Ground-Source and Groundwater-Source Heat Pumps. ASHRAE Transactions. 2000, 106 (2): 561-568
    118 P. Holihan. Analysis of Geothermal Heat Pump Manufacturers Survey Data. Renewable Energy. 1998, Issues and Trends: 59-66
    119 J. W. Lund. International Course on Geothermal Heat Pumps, Chapter 24-Design of Closed-Loop Geothermal Heat Exchangers in the US International Summer School On Direct Implication Geothermal Energy. 134-146
    120 J. W. Lund. Direct Heat Utilization of Geothermal Resources. Renewable Energy. 1997, 10 (2-3): 403-408
    121 J. W. Lund. Direct-Use of Geothermal Energy in the USA. Applied Energy. 2003, 74 (1-2): 33-42
    122 B. Sanner. Ground Heat Sources for Heat Pumps (Classification, Characteristics, Advantages). International Summer School on Direct Implication Geothermal Energy. 1-8
    123 L. Rybach, B. Sanner. Ground-Source Heat Pump Systems the European Experience. Geo-Heat Center Quaryterly Bulletin. 2000, 13 (3): 16-26
    124 高青, 于鸣. 效率高、环保效能好的供热制冷装置—地源热泵的开发与利用. 吉林工业大学自然科学学报. 2001, 31 (2): 96-102
    125 L. Rybach, T. Kohl. The Geothermal Heat Pump Boom in Switzerland and Its Background. International Geothermal Conference, Reykjavik, 2003. Session #3 Paper 108: 47-52
    126 C. Clauser. Geothermal Energy Use in Germany - Status and Potential. Geothermics. 1997, 26 (2): 203-220
    127 孙友宏, 胡克. 岩土钻掘工程应用的又一新领域—地源热泵技术. 探矿工程(岩土钻掘工程). 2002, (增刊): 7-11
    128 王理许, 方红卫. 水源热泵空调系统应用对地下水环境影响研究. 北京市水利科学研究院,清华大学 2004
    129 C. Chen, F. L. Sun, L. Feng, et al. Underground Water-Source Loop Heat-Pump Air-Conditioning System Applied in a Residential Building in Beijing. Applied Energy. 2005, 82 (4): 331-344
    130 陈超, 倪真, 李小宁, et al. 住宅建筑中闭式水源热泵空调系统的应用研究. 暖通空调. 2004, 34 (6): 72-77
    131 陈超, 孙凤岭, 冯磊. 地下水源水环热泵空调系统的节能运行研究. 暖通空调. 2005, 35 (12): 84-88
    132 冬宇辉. 深井水源系统在住宅设计中的应用. 给水排水. 2004, 30 (8): 73-75
    133 倪真, 贾学斌. 水源热泵深井水循环系统的分析与研究. 安装. 2003, (5): 16-18
    134 孙凤岭, 陈超, 冯磊. 地下水源热泵空调系统及其工程设计. 建筑热能通风空调. 2005, 24 (4): 58-62
    135 何咏梅, 孙东喜, 黄晶. 地源热泵空调应用的几点建议. 节能. 2005, (9): 38-40
    136 徐伟. 地源热泵、太阳能热泵的发展及相关问题的思考. 工程质量. 2005, (12): 32-34
    137 孙颖, 苗礼文. 北京市深井人工回灌现状调查与前景分析. 水文地质工程地质. 2001, (1): 21-23
    138 H. M. Sachs, D. R. Dinse. Geology and the Ground Heat Exchanger: What Engineers Need to Know. ASHRAE Transactions. 2000, 106 (2): 421-433
    139 武晓峰, 唐杰. 地下水人工回灌与再利用. 工程勘察. 1998, (4): 37-39
    140 K. Rafferty. Ground Water Issues in Geothermal Heat Pump Systems. Ground Water. 2003, 41 (4): 408-410
    141 云桂春, 成徐州. 人工地下水回灌. 北京: 中国建筑工业出版社. 2004
    142 N. A. Buik, A. L. Snijders. Clogging Rate of Recharge Wells In Porous Media. Proceedings of the 10th International Conference on Thermal Energy Storage - ECOSTOCK, New Jersey, 2006. (CD-ROM)
    143 何满潮, 刘斌, 姚磊华, et al. 地下热水回灌过程中渗透系数研究. 吉林大学学报(地球科学版). 2002, 32 (4): 374-377
    144 刘久荣. 地热回灌井堵塞的原因和防治. 宾德智. 全国油区城镇地热开发利用经验交流会论文集, 2003. 冶金工业出版社: 204-208
    145 K. D. Rafferty. Water Chemistry Issues in Geothermal Heat Pump System. ASHRAE Transactions. 2004, 110 (1): 550-555
    146 陈矣人, 周春风, 叶瑞芳. 关于地源水环热泵中央空调系统设计的讨论. 建筑热能通风空调. 2002, (3): 64-70
    147 刘久荣. 地热回灌的发展现状. 水文地质工程地质. 2003, (3): 100-104
    148 赵忠仁. 回灌井暂时性堵塞物的形成及其排除过程变化机制分析. 水文地质工程地质. 1988, (5 ): 39-42
    149 薛玉伟, 李新国, 赵军, et al. 地下水水源热泵的水源问题研究. 能源工程. 2003, (2): 10-13
    150 曲云霞, 张林华, 方肇洪, et al. 地下水源热泵及其设计方法. 可再生能源. 2002, 106 (6): 11-14
    151 王卫平. 水源热泵相关的水源问题. 现代空调. 2001, 3: 112-117
    152 K. D. Rafferty. Large Tonnage Groundwater Heat Pumps-Experience with Two Systems. ASHRAE Transactions. 1992, 96 (2): 587-592
    153 D. Cane, J. Garnet. Commercial / Institutional Heat Pump Systems in Cold Climates. CADDET Analyses. 2000: No. 27
    154 刘雪玲, 李宁. 低温地热水源热泵供暖技术. 煤气与热力. 2004, 24 (10): 567-569
    155 刘雪玲, 朱家玲. 水源热泵在冬季供暖中的应用. 太阳能学报. 2005, 26 (2): 262-265
    156 刘雪玲, 朱家玲, 雷海燕. 地下水地源热泵夏季运行的测试与分析. 暖通空调. 2006, 36 (7): 110-111
    157 D. L. Warner, U. Algan. Thermal Impact of Residential Ground-Water Heat Pumps. Ground Water. 1984, 22 (1): 6-12
    158 P. A. Collins, C. Orio, S. Smiriglio. Geothermal Heat Pump Manual. New York City Department of Design and Construction (DDC). 2002
    159 K. Rafferty. Groundwater Heat Pump Systems: Experience at Two High Schools. ASHRAE Transactions. 1996, 102 (1): 922-928
    160 李玉云. 武汉地区地下水地源热泵的应用与分析. 暖通空调. 2006, 36 (6): 111-114
    161 G. B. Rackliff, K. B. Schabel. Groundwater Heat Pump Demonstration Results for Residential Applications in New York State. ASHRAE Transactions. 1986, 92 (2A): 3-17
    162 戴晓丽. 地源热泵空调系统的特性研究. 湖南大学 硕士学位论文. 2005
    163 S. Kavanaugh. Design Considerations for Ground and Water Source Heat Pumps in Southern Climater. ASHRAE Transactions. 1989, 95 (1): 1139-1149
    164 C. B. Andrew. The Impact of the Use of Heat Pumps on Ground-Water Temperatures. Ground Water. 1978, 16 (6): 437-443
    165 G. M. Relstad, W. R. McMahon. Heat Pump Design for Aquifer Seasonal Heating-Only Thermal Energy Storage Systems. ASHRAE Transactions. 1984, 90 (2B): 119-136
    166 郭建辉, 韩玲. 地下水源热泵系统性能的试验与模拟研究. 制冷空调与电力机械. 2005, 26 (4): 8-11
    167 辛长征, 朱颖心. 深井回灌式水源热泵井群运行的地下含水层传、蓄热性能模拟研究. 全国暖通空调制冷学术文集, 珠海, 2002. 北京:中国建筑工业出版社: 263-270
    168 郑凯, 方红卫, 王理许. 地下水水源热泵系统中的细菌生长. 清华大学学报(自然科学版). 2005, 45 (12): 1608-1612
    169 刘立才, 王金生, 张霓, et al. 北京城市规划区水源热泵系统应用适宜性分区. 水文地质工程地质. 2006, (6): 15-17
    170 张远东. 单(多)井抽灌对浅部地温场的影响研究. 中国科学院研究生院 博士学位论文. 2004
    171 张远东, 魏加华, 李宇, et al. 地下水源热泵采能的水-热耦合数值模拟. 天津大学学报. 2006, 39 (8): 907-912
    172 张远东, 魏加华, 汪集旸. 井对间距与含水层采能区温度场的演化关系. 太阳能学报. 2006, 27 (11): 1163-1167
    173 张远东, 魏加华, 王光谦. 区域流场对含水层采能区地温场的影响. 清华大学学报(自然科学版). 2006, 46 (9): 1518-1521
    174 张毅. 水源热泵系统中抽灌两用井的应用研究. 吉林大学 硕士学位论文. 2003
    175 Z. Zhao, S. Zhang, X. Li. Cost-Effective Optimal Design of Groundwater Source Heat Pumps. Applied Thermal Engineering. 2003, 23 (13): 1595-1603
    176 杨昭, 张世钢, 孙政, et al. 地下水源热泵的最优化研究. 太阳能学报. 2002, 23 (6): 687-691
    177 王芳. 地下水源热泵系统的实验与模拟研究. 西安建筑科技大学 硕士学位论文. 2003
    178 郭建辉. 地下水源热泵系统匹配的实验与模拟研究. 西安建筑科技大学 硕士学位论文. 2004
    179 张震, 张超, 周光辉, et al. 地下水源热泵系统换热器匹配性研究. 低温与超导. 2006, 34 (3): 220-223
    180 K. D. Rafferty. Dual Set Point Control of Open-Loop Heat Pump Systems. ASHRAE Transactions. 2001, 107 (1): 600-604
    181 S. Xu, L. Rybach. Development and Application of a New, Powerful Groundwater Heat Pump System for Space Heating and Cooling. Proceedings World Geothermal Congress, Antalya, Turkey, 2005. (CD-ROM)
    182 C. Yavuzturk, A. D. Chiasson. Performance Analysis of U-tube, Concentric Tube, and Standing Column Well Ground Heat Exchangers Using a System Simulation Approach. ASHRAE Transactions. 2002, 108 (1): 925-938
    183 C. D. Orio, C. N. Johnson, S. J. Rees, et al. A Survey of Standing Column Well Installations in North America. ASHRAE Transactions. 2005, 111 (2): 109-121
    184 C. D. Orio. Geothermal Heat Pump Applications Industrial / Commercial. Energy Engineering. 1999, 96 (3): 58-79
    185 G. K. Yuill, V. Mikler. Analysis of the Effect of Induced Groundwater Flow on Heat Transfer from a Vertical Open-Hole Concentric-Tube Thermal Well. ASHRAE Transactions. 1995, 101 (1): 173-185
    186 Z. D. O’Neill, J. D. Spitler, S. J. Rees. Modeling of Standing Column Wells in Ground Source Heat Pump Systems. Proceedings of the 10th International Conference on Thermal Energy Storage - ECOSTOCK, New Jersey, 2006. (CD-ROM)
    187 Z. D. O’Neill, J. D. Spitler, S. J. Rees. Performance Analysis of Standing Column Well Ground Heat Exchanger Systems. ASHRAE Transactions. 2006, 112 (2): 633-643
    188 G. W. Huttrer. Geothermal Heat Pumps: an Increasingly Successful Technology. Renewable Energy. 1997, 10 (2-3): 481-488
    189 S. Xu, Z. Yang. Development and Application of an Innovative ShallowGroundwater Heat Pump System. 8th International Energy Agency Heat Pump Conference, Las Vegas, Nevada, USA, 2005. p4-13 (CD-ROM)
    190 J. W. Lund. Foundation House, New York, Heat Pump System. Geo-Heat Center Quaryterly Bulletin. 2005, 18 (3): 5
    191 C. D. Orio, C. N. Johnson, K. D. Poor. Geothermal Standing Column Wells: Ten Years in a New England School. ASHRAE Transactions. 2006, 112 (2): 57-64
    192 http://www.cdhenergy.com/ghp/haverhill/haverhill_main.htm.
    193 Z. Deng. Modeling of Standing Column Wells in Ground Source Heat Pump Systems. Oklahoma State University Doctor Thesis. 2004
    194 V. Mikler. A Theoretical and Experimental Study of the "Energy Well" Performance. Pennsylvania State University Master thesis. 1993
    195 C. D. Orio. Geothermal Heat Pumps and Standing Column Wells. Geothermal Resources Council Transactions. 1994, 18: 375-379
    196 Z. Deng, S. J. Rees, J. D. Spitler. A Model for Annual Simulation of Standing Column Well Ground Heat Exchangers. HVAC&R Research. 2005, 11 (4): 637-655
    197 李旻, 刁乃仁, 方肇洪. 单井回灌地源热泵承压含水层渗流解析解. 山东建筑工程学院院报. 2006, 21 (1): 1-5
    198 王新娟, 谢振华, 周训. 北京西郊地区大口井人工回灌的模拟研究. 水文地质工程地质. 2005, (1): 70-72
    199 刘家祥, 蔡巧生. 北京西郊地下水库研究. 北京: 地质出版社. 1988
    200 李照州, 郑小兵, 吴浩宇, et al. 新型智能温度传感器在辅亮度标准探测器温控系统中的应用. 量子电子学报. 2005, 22 (5): 806-809
    201 倪龙, 马最良, 孙丽颖. 同井回灌地下水源热泵热力特性分析. 哈尔滨工程大学学报. 2006, 27 (2): 195-199
    202 朱保泉. 对单井回灌纳入某建筑标准设计的质疑. 中国建设信息供热制冷. 2004, (3): 74-75
    203 薛禹群, 谢春红, 吴吉春. 地下水数值模拟和电模拟中存在的问题. 水文地质工程地质. 1996, (6): 49-51
    204 张昆峰, 马芳梅, 金六一. 井水热泵系统冬季工况运行的数值模拟分析. 华中理工大学学报. 1998, 26 (增刊 I): 1-4
    205 雅? 贝尔. 地下水水力学. 许涓铭. 北京: 中国地质出版社. 1985
    206 薛禹群. 地下水动力学. 第二版. 北京: 中国地质出版社. 1997
    207 陈崇希, 林敏. 地下水动力学. 武汉: 中国地质大学出版社. 1999
    208 C. Chen, J. J. Jiao. Numerical Simulation of Pumping Tests in Multilayer Wells with Non-Darcian Flow in the Wellbore. Ground Water. 1999, 37 (3):465-474
    209 黎明, 刘文波, 陈崇希. MODFLOW 能模拟地下水混合井流吗. 水文地质工程地质. 2003, (5): 116-117
    210 A. Testu, S. Didierjean, D. Maillet, et al. Thermal Dispersion for Water or Air Flow through a Bed of Glass Beads. International Journal of Heat and Mass Transfer. 2007, 50 (7-8): 1469-1484
    211 T. Metzger, S. Didierjean, D. Maillet. Optimal Experimental Estimation of Thermal Dispersion Coefficients in Porous Media. International Journal of Heat and Mass Transfer. 2004, 47 (14-16): 3341-3353
    212 C. Moyne, S. Didierjean, H. P. A. Souto, et al. Thermal Dispersion in Porous Media: One-Equation Model. International Journal of Heat and Mass Transfer. 2000, 43 (20): 3853-3867
    213 M. Deleglise, P. Simacek, C. Binetruy, et al. Determination of the Thermal Dispersion Coefficient during Radial Filling of a Porous Medium. Journal of Heat Transfer. 2003, 125 (10): 875-880
    214 姜培学, 王补宣, 罗棣庵. 单相流体流过饱和多孔介质的流动与换热. 工程热物理学报. 1996, 17 (增刊): 90-94
    215 司广树, 姜培学, 李勐. 单相流体在多孔介质中的流动和换热研究. 承德石油高等专科学校学报. 2000, 2 (4): 4-9
    216 杜建华, 胡雪蛟, 吴伟, et al. 多孔介质单相渗流的热弥散模型. 机械工程学报. 2001, 37 (7): 9-11
    217 B. Alazmi, K. Vafai. Analysis of Variable Porosity, Thermal Dispersion, and Local Thermal Nonequilibrium on Free Surface Flows through Porous Media. Journal of Heat Transfer. 2004, 126 (6): 389-399
    218 V. C. Mei, C. J. Emerson. New Approach for Analysis of Ground-Coil Design for Applied Heat Pump Systems. ASHRAE Transactions. 1985, 91 (2B-2): 1216-1224
    219 V. C. Mei, S. K. Fischer. Vertical Concentric Tube Ground-Coupled Heat Exchangers. ASHRAE Transactions. 1983, 89 (2B): 391-406
    220 顾中煊, 吴玉庭, 唐志伟, et al. U 型管地下换热系统非稳态传热数值模拟. 工程热物理学报. 2006, 27 (2): 313-315
    221 王欣, 俞亚南, 高庆丰. 地源热泵垂直套管式换热器传热研究. 暖通空调. 2005, 35 (6): 16-19
    222 魏唐棣, 胡鸣明, 丁勇, et al. 地源热泵冬季供暖测试及传热模型. 暖通空调. 2000, 30 (1): 12-14
    223 范蕊, 马最良. 热渗耦合作用下地下埋管换热器的传热分析. 暖通空调. 2006, 36 (2): 6-10
    224 孙纯武, 张素云, 刘宪英. 水平埋管换热器地热源热泵实验研究及传热模型 重庆建筑大学学报. 2001, 23 (6): 49-55
    225 余延顺, 马最良, 姚杨. 土壤蓄冷与土壤耦合热泵集成系统的模拟研究. 暖通空调. 2005, 35 (6): 1-5
    226 陈崇希, 林敏, 叶善士, et al. 地下水混合井流的理论及应用. 武汉: 中国地质大学出版社. 1998
    227 张明江, 门国发, 陈崇希. 渭干河流域三维地下水流数值模拟. 新疆地质. 2004, 22 (3): 238-243
    228 陈崇希. 岩溶管道-裂隙-孔隙三重孔隙介质地下水流模型及模拟方法研究. 地球科学—中国地质大学学报. 1995, 20 (4): 361-366
    229 成建梅, 陈崇希. 广西北山岩溶管道-裂隙-孔隙地下水流数值模拟初探. 水文地质工程地质. 1998, (4): 50-54
    230 C. Chen, J. Wan, H. Zhan. Theoretical and Experimental studies of Coupled Seepage-Pipe Flow to a Horizontal Well. Journal of Hydrology. 2003, 281 (1-2): 159-171
    231 陈崇希, 万军伟. 地下水水平井流的模型及数值模拟方法—考虑井管内不同流态. 地球科学—中国地质大学学报. 2002, 27 (2): 135-140
    232 陈崇希, 万军伟, 詹红兵, et al. “渗流-管流耦合模型”的物理模拟及其数值模拟. 水文地质工程地质. 2004, (1): 1-8
    233 陈崇希. 三维地下水流中常规观测孔水位的形成机理及确定方法. 地球科学—中国地质大学学报. 2003, 28 (5): 483-491
    234 魏唐棣. 地源热泵地下套管式埋管换热器性能研究. 重庆大学 博士学位论文. 2001
    235 郁伯铭. 多孔介质输运性质的分形分析研究进展. 力学进展. 2003, 33 (3): 333-346
    236 P. Cheng, C. T. Hsu. Application of Van Driest's Mixing Length Theory to Transverse Thermal Dispersion in a Packed Bed with Bounding Walls. International Communications in Heat and Mass Transfer. 1986, 13 (6): 613-625
    237 M. L. Hunt, C. L. Tien. Effects of Thermal Dispersion on Forced Convection in Fibrous Media. International Journal of Heat and Mass Transfer. 1988, 31 (3): 301-309
    238 F. Kuwahara, A. Nakayama, H. Koyama. A Numerical Study of Thermal Dispersion in Porous Meadia. ASME Journal Heat Transfer. 1996, 118 (10): 765-771
    239 C. T. Hsu, P. Cheng. Thermal Dispersion in a Porous Medium. Interantional Journal Heat Mass Transfer. 1990, 33 (8): 1587-1597
    240 郁伯铭. 分形介质的传热与传质分析. 工程热物理学报. 2003, 24 (3): 481-483
    241 F. C. Chou, J. H. Su, S. S. Lien. A Reevaluation of Non-Darcian Forced Convection in Cylindrical Packed Tubes. ASME, Heat Transfer Division. 1992, 193 (Fundamentals of Heat Transfer in Porous Media -1992): 57-66
    242 W. C. Walton. Practical Aspects of Groundwater Modeling-Flow, Mass and Heat Transport and Subsidence and Computer Models. 2nd Edition. New Jersey, USA: McGraw-Hill Book Company. 1985
    243 G. Manadili. Replace Implicit Equations with Signomial Functions. Chemical Engineering - New York. 1997, 104 (8): 129
    244 E. Romeo, C. Royo, A. Monzón. Improved Explicit Equations for Estimation of the Friction Factor in Rough and Smooth Pipes. Chemical Engineering Journal. 2002, 86 (3): 369-374
    245 W. M. 罗森诺. 传热学手册(上册). 李荫亭. 北京: 科学出版社. 1985
    246 陶文铨. 数值传热学. 第二版. 西安: 西安交通大学出版社. 2001
    247 X. Chen, P. Han. A Note on the Solution of Conjugate Heat Transfer Problems Using SIMPLE-like Algorithms. International Journal of Heat and Fluid Flow. 2000, 21 (4): 463-467
    248 杨茉, 李学恒, 陶文铨, et al. QUICK 与多种差分方案的比较和计算. 工程热物理学报. 1999, 20 (5): 593-597
    249 王竹溪, 郭敦仁. 特殊函数概论. 北京: 北京大学出版社. 2000
    250 清华大学 DeST 开发组. 建筑环境系统模拟分析方法—DeST. 北京: 中国建筑工业出版社. 2005
    251 G. A. G. Ferguson. Groundwater and Heat Flow in Southeastern Manitoba: Implications to Water Supply and Thermal Energy. University of Manitoba Doctor Thesis. 2004
    252 陈崇希. “防止模拟失真,提高仿真性”是数值模拟的核心. 水文地质工程地质. 2003, (2): 1-5
    253 陈崇希, 唐仲华. 地下水流动问题数值方法. 武汉: 中国地质大学出版社. 1990
    254 张奇. 数值模型在地下水管理中的应用. 水文地质工程地质. 2003, (6): 72-79
    255 倪龙, 马最良, 徐生恒, et al. 北京某同井回灌地下水地源热泵工程的测试分析. 暖通空调. 2006, 36 (10): 86-92
    256 汪训昌. 关于发展地源热泵系统的若干思考. 暖通空调. 2007, 37 (3): 38-43

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700