用户名: 密码: 验证码:
利用ASγ实验TibetⅢ阵列数据研究宇宙线各向异性及其周期性调制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
宇宙线是来自宇宙深处的高能粒子,其起源、加速及传播机制是宇宙线研究中的基本问题。宇宙线成分中大多是带电粒子,所以宇宙线在传播时会受到空间磁场的偏转调制,其方向偏离源的方向而呈现出各向同性。但是近几年的实验结果显示不同能量段的宇宙线存在量级不等的大尺度各向异性。宇宙线各向异性与宇宙线的起源、加速以及传播有着密不可分的关系,所以对宇宙线各向异性的观测有着重要的意义。
     关于各向异性的起因到目前尚无确切的定论,一些理论和实验工作结果表明宇宙线各向异性的产生可能有下列原因:宇宙线源的空间分布不均匀性会导致宇宙线的各向异性;宇宙线在传播时受到大尺度磁场结构的调制也可能会导致宇宙线各向异性;能量<几百GeV的宇宙线有明显受太阳磁场和行星际磁场(IMF)调制的各向异性;地球的自转和围绕太阳公转导致宇宙线与探测器之间产生相对运动,这会引起地球上的探测器在不同的时间所观测到宇宙线的流强的变化,这种类似于多普勒效应所引起的太阳时各向异性称为Compton-Getting效应。
     宇宙线的能量从MeV到10~(20)eV跨越十几个量级,其能谱呈现负幂率形式,所以在不同的能区对宇宙线的观测采用不同的手段。在低能区(<30GeV)宇宙线的流强高,可利用航天器或高空气球所搭载的探测器对原初宇宙线进行直接的观测。在几百GeV以上能区,由于宇宙线的流强较低,空间探测器因为其有效观测面积小的原因已经不满足这个能量段的观测,只能通过位于地面的探测器阵列进行间接的测量。当高能宇宙线进入大气层时,与大气发生核作用,产生广延大气簇射,地面实验对高能宇宙线的观测正是通过观测其在大气中引起的广延大气簇射来实现的。地面观测主要包括地面切伦可夫(Cherenkov)望远镜阵列、广延大气簇射(EAS)阵列、大气荧光实验等等。
     西藏羊八井ASγ实验是利用EAS阵列技术的地面实验,该实验位于东经90.52~0北纬30.102~0,海拔高度为4300米,对应的大气深度为606g/cm~(-2)。ASγ实验的视场在赤纬-10°到70°之间,可以对此天区进行全天候观测,探测阈能是3.0TeV。ASγ实验凭借着全天候、宽视场、高海拔、低阈能等多项得天独厚的优势,可以对TeV能区的宇宙线各向异性进行有效的观测。
     本文主要工作是:基于ASγ实验TibetⅢ阵列数据,利用东-西的方法研究宇宙线太阳时和恒星时各向异性,在此基础上进一步利用Lomb Scargle Fourier变换分析宇宙线各向异性的周期调制。
     为了消除事例率年变化和日变化对原初宇宙线的影响,本文采用东-西方法研究原初宇宙线强度微分变化。东-西方法原理如下:在地平坐标系里面,把天区分为东西两个半球,因为地球自西向东旋转,所以宇宙线微分强度变化可以利用东、西两边的宇宙线事例相减然后除以它们相隔的时间得到。通过对TibetⅢ阵列数据样本的分析,本文给出了东-西方法测量得到的宇宙线太阳时、恒星时、反恒星时以及延长恒星时各向异性结果。结果显示:在12.0TeV太阳时调制幅度为0.04%,位相在当地6小时处,与预期的CG效应一致,但在低能量4.0TeV时宇宙线调制幅度比CG调制幅度效应大,位相也有所变大,这可能是太阳磁场调制低能宇宙线的原因,随着能量的增加,太阳时调制幅度逐渐减小;恒星日的调制幅度大约为0.12%,在当地恒星时5小时出宇宙线超出,在18小时处有宇宙线缺失,恒星日调制幅度约为和位相随能量几乎没有变化。
     在东-西方法的基础上,本文利用Lomb Scargle Fourier变换方法来分析宇宙线各向异性的周期调制,Lomb Scargle Fourier变换方法优势在于减除不连续的实验数据导致的虚假信号、快速有效地给出各个频率信号出现的概率和显著性。本文利用东-西方法建立宇宙线强度微分变化时间序列,将此序列进行LombScargle Fourier变换可得到宇宙线强度微分变化的功率谱,并且给出了5σ显著性水平线。本工作还利用MC模拟给出功率谱1小时到2年的95%的下限。分析结果表明:功率谱95%的下限显示1小时到90天的范围内还是比较平缓的,在大于90天或者小于1小时开始上升,从1小时到90天周期范围内宇宙线除了太阳日、恒星日、半恒星日周期调制外,没有其它周期的调制。恒星日必须用一阶和二阶函数联合描述,在低能段(4.0TeV),我们没有发现与太阳活动相关的宇宙线各向异性周期调制。
     本文的创新之处在于:利用ASγ实验TibetⅢ阵列1999.11到2003.11最新数据通过东-西方法分析原初宇宙线各向异性,更新了ASγ,实验组以前发表的结果;基于东-西方法,首次利用Lomb Sargle Fourier变化研究宇宙线各向异性的周期调制,该方法的优点是可以减除分布不均匀实验数据的时间序列引起的虚假信号,快速有效地给出各个频率信号的显著性;本论文通过快速MC模拟ASγ实验数据,给出了Lomb功率谱95%的下限。本文的不足之处:因为ASγ实验数据少于一个太阳活动周期,宇宙线与太阳活动相关的长周期调制需要更长时间实验数据的积累,目前无法研究大于90天周期调制。
Cosmic rays(CRs)are high energy particles from distant universe.The origin, acceleration and propagation of CRs are fundamental problem in research of CRs. The most of CRs are charged particles,thus cosmic ray(CR)particles lose their original direction and present isotropic because they can be deflected by galactic magnetic field(GMF).CR anisotropy in different energy region has been discovered by some experiments yet.The research of CR anisotropy plays an important role because it has close relationship with the origin,acceleration and propagation of CRs.
     No reliable theory can interpret the origin of CR anisotropy until now.The below several reasons may result in CR anisotropy:The uneven distribution of CR sources could lead to CR anisotropy;Large scale GMF may also cause the CR anisotropy;CR anisotropy less than GeV energy result from solar magnetic field and interplanetary magnetic field(IMF);An expected CR anisotropy is caused by the relative motion between the observer and the CR plasma.Such anisotropy like Doppler Effect is called Compton-Getting(CG)effect,caused by Earth's orbital motion around sun.
     Since CR energy spectrum present negative power law from 1 MeV to 10~20eV, different techniques should be applied to detect CRs in different energy regions.In the energy region less than 30GeV,CR flux are higher,space detector play an important role,for instance,satellite and balloon experiment.Higher energy primary cosmic rays produce extensive air showers(EAS),through the indirect methods with the ground-based detectors.Above several hundred GeV space detector's effective area is too small to observe the high energy CRs because of their lower flux.Ground-based experiments are adopted,including Cherenkov Telescope and Air Shower Array and atmospheric fluorescence experiment.
     Yang Ba Jing ASγexperiment is one of EAS array.ASγexperiment has been located at Yang Ba Jing town,Tibet,China(90.522°E,30.102°N,and 4300 m above sea level)which atmospheric depth are 606g/cm~2.Owing to high altitude,wide viewing field,long effective time and lower energy threshold advantages,ASγexperiment specialize in detecting the CR anisotropy.
     This work is to study the CR anisotropy research based on the east-west method and the periodic variation of CR anisotropy research using Lomb Scargle Fourier transformation with the TibetⅢarray data.
     To eliminate meteorological effect and possible instrumental effect we adopted the East-West subtraction method to study primary CR periodic variation.The theory of East-West subtraction method is:The CR events are divieded into two parts(east and west)according to their arrival direction in Horizontal Coordinate.Because earth rotates from west to east,we subtract east and west event rates and normalize the difference by their sum to form the relative intensity difference,and we further divide this relative difference by the hour angle separation to obtain the CR differential intensity.The results of solar and sidereal anisotropy were given in this thesis.The amplitude of solar anisotropy at the 12.0 TeV is about 0.04%.The phase of solar modulation locates at local 6 hour.The results were consistent with expected Compton-Getting(CG)effect.While at lower energy the amplitude and phase of solar modulation deviate from the expected CG effect.The measurement indicates an additional anisotropy superposed on the CG anisotropy.It may be ascribed to solar magnetic modulation.The amplitude of solar modulation decrease with the increasing energy.The amplitude of sidereal anisotropy is about 0.12%.The CRs increase at local 5 hour and the decrease at local 18 hour.The amplitude and phase of sidereal anisotropy show little energy dependence.
     We further study the periodic variation of CR anisotropy using Lomb Scargle Fourier transformation based on east-west method.Lomb Scargle Fourier transformafion's superiority are subtracting the illusive signal due to uneven data and giving effective probability of different frequency signal,we build up CR differential intensity time series according to east-west method.The Lomb power of CR differential intensity can be obtained by Lomb Scargle Fourier and 50 was given by formula.95%lower limit of Lomb power were given from 1 hour to 2 year by MC simulation.The results show the 95%lower limit is smooth between 1 hour and 90days.But the 95%lower limit which was less than 1hour and more than 90 days began to ascend.Besides solar,sidereal,semi-sidereal diurnal variation,there are no other periodic modulation between 1 hour and 90 days.Sidereal variation can be characterized by the first and second harmonics,while solar variation can be alone described by the first harmonics.There is no periodic variation according to solar activity in lower energy range(4.0TeV).
     There are three innovative points in our thesis.1):CR anisotropy was analyzed using East-West method with CR events recorded by TibetⅢASγarray during the period from November 1999 to November 2005.The former published results were updated.2):Lomb Scargle Fourier transformation based on east-west method was applied to study periodic variation of CR anisotropy.The method can eliminate the fake signals due to uneven time series and give different frequency probability.3): The thesis gave the 95%lower limit of Lomb power by quick MC simulation.And the deficiency of this thesis is:ASγexperiment data is less than one solar activity period. So periodic modulation of CRs more than 90 days have not been reaserached by now. Long periodic modulation of CRs according to solar activity will be verified by more data.
引文
[1]徐春娴,朱清棋译,宇宙线入门,科学出版社,(1987)
    [2]M.,Nagano,A.A.,Watoson,ReV.of Mod.Phys.72 689(2000)
    [3]T.K.Gaisser and T.Stanev,Phys.Rev.D,182-188(2002)
    [4]M.Aemnomori et al.,APJ,461,408(1996)
    [5]J.R,Horandel,Astropart.Phys,19 193(2003)
    [6]G.V.Kulikov et al.,J.ExP.Theor.Phys.35 636(1958)
    [7]N.Hayshida et al.,Phys.,19 193(2003)
    [8]S.Yishida et al.,Astropart.Phys,3,105(1995)
    [9]M.Takeda et al.,Phys.Rev.Lett,81,1163(1998)
    [10]http://icrsun.icrr.u-tokyo.ac.jp/as/project/asgsa.html
    [11]S.C.Corbato et al.Nucl.Phys.B.(Proc.Suppl.,)28B,36(1992)
    [12]D.J.Bird,et al.,Proc.24th ICRC,Vol.2 504(1995)
    [13]M.,Al-Seady et al.,Proc.of International Symposium on Extremely High Energy Cosmic Ray:Astrophysics and Future Observatroies 191(1996)
    [14]T.Abu-Zayyad et al.,ApJ.,557 686(2001)
    [15]http://hires.physics.utah.edu
    [16]K.Greisen,Phys.Rev.Lett.,16 748-750(1966)
    [17]G.T.Zatsepin and V.A.,Kuzmin,JETP.Lett.4 78(1966)
    [18]H.Y.Dai,et al.,Cambridge University press,1998
    [19]Hess.V.F.Phys.Z.13,1084-1091(1912)
    [20]Carl D.Anderson,Phys.Rev.41,405-421(1932)
    [21]Seth H.Neddermeyer and Carl D.Anderson,Phys.Rev.51,884-886(1937)
    [22]C.F.Powell et al.Nature.160,486.492(1947)
    [23]H.Martirosyan,et al.,Report to COSPAR Congress,Houston,(2002)
    [24]A.T.Filippov,et al.,Proc.of 22nd ICRC,Dublin,vol.3,113(1991)
    [25]E.Fermi,Phys Rev,vol.75,Issue 8,1169-1174(1949)
    [26]E.G.Berezhko,ASTROPARTICLE PHYSICS.5,367-378(1996)
    [27]Heinrich J.Voelk,et al.,Astrophysical Journal,Part 2 -Letters(ISSN 0004-637X),vol.333,L65-L68(1988)
    [28]M.L.Duding,Australian Antarctic Division,Channel Highway,Kingston,Australia,7050 marc.duldig@utas.edu.au
    [29]P.A.Isenberg &&J.R.Jokipii,APJ 234,746(1979)
    [30)崔树旺,博士论文。中国科学院高能物理所,(2004)
    [31]E.J.Schneid,Astron And Astrophys.255 L13(1995)
    [32]K.Hurley et al.,Nature,372,652(1994)
    [33]M.Sommer et al.,Astrophys.J.Latt.,422,L63(1994)
    [34]C.Winkler et al.,Astron.&Astrophys.,255,Lg(1992)
    [35]H.U.Huges et al.,IEEE Trans.NUcl.Sci.Workshop Proc.,NS-27,364
    [36]G.Kanbach et al.,Gamma-Ray Obs.Sci.Workshop Proc.,2-1-2-10
    [37]P.L.Nolan et al.,IEEE Trans.NUcl.Sci.Workshop Proc.,3,993(1992)
    [38]D.J.Thompson et at.,APJ.Suppl.,86,629(1993)
    [39]J.E.Carson arXiv:astro-ph/0610960v1 31 Oct 2006
    [40]Y.Ajima,et,al.Nuclear Instrumerats and Methods in Physics Research A 44371-100(2000)
    [41]arXiv:0801.4957v1[astro-ph]31 Jan(2008)
    [42]M.Aenmomori et al.,Science VOL 314,439(2006)
    [43]祝凤荣,博士论文,中国科学院高能物理所,(2007)
    [44]T.Antoni et al.,Astrophysical Journal,604:687-692,April 1(2004)
    [45]M.Teshima,et al.,Proceedings of ICRC 2001:337 c Copernicus Gesellschaft (2001)
    [46]G.Guillian et al.,Phys.Rev.D 75,062003(17 pages)(2007)
    [47]M.Aglietta et al.,1990ICRC 10,316A(1990)
    [48]B.L.Dingus et al.,AIP Conf.Proc.Volume 510,pp.642-645 April 12(2000)THE FIFTH COMPTON SYMPOSIUM;DOI:10.1063/1.1303280
    [49]E.Parizot for the Auger Collaboration.arXiv:0709.2500v1[astro-ph]16 sep 2007
    [50]E.Costa et al.,Nuovo Cimento C,Vol.13,No.2,p.497 - 504(1990)
    [51]吴含荣,博士论文,中国科学院高能物理所,(2006)
    [52]W.Hofmann,for the H.E.S.S.Collaboration.Proceedings of ICRC 2001:2785Copernicus Gesellschaft 2001
    [53]M.F.Cawley et al.,1990ICRC....4..224C(1990)
    [54]P.Sokolsky && G.B.Thomson.arXiv:0706.1248v1[astro-ph]
    [55]http://www.southcn.com/news/community/dqsj/200206102635.htm
    [56]李宗伟、肖兴华,《天体物理学》,高等教育出版社
    [57]www.oursci.org/magazine/200505/0519-04.jpg
    [58]D.L.HALL&&M.L.DULDIG&&J.E.HUMBLE.Space Science Reviews 78:401-442(1996)
    [59]Dulding,M.L.Publications of the Astronomical Society of Australia,Volume 18,Issue 1,pp.12-40.
    [60]章公亮、韦宝锷,http://baikc7.con/baike/,宇宙线太阳调制
    [61]2A.H.Compton&&I.A.Getting,Phys.Rev.47,817(1935).
    [62]Takashi Sako http://isvhecri2006.ihep.ae.cn/isvhecri2006/ppt
    [63]D.J.Cutler,D.E.Groom,Nature 322,L434(1986)
    [64]M.Amenomori et al.,phys.Rev.Lett.93,061101(2004).
    [65]A.D.Erlykin,A.W.Wolfendale,Astropart.Phys.25,183(2006)
    [66]The Pierre Auger Collaboration.Preprint submitted to Elsevier(2007.10.22)
    [67]K.Nagashima &&K.Fujimoto.&&R.M Jacklyn,R.M.Journal of Geophysical Research,Volume 103,Issue A8,p.17429-17440(1998)
    [68]D.L.Hall.Journal of Geophysical Research,vol.10,p.367(1998)
    [69]M.Aemnomori et al.,The ASROPHYSICAL JOURNAL 626:L29-123(2005)
    [70]Roland M.Crocker et al.,The Astrophysical Journal,622:892-909,April 1(2005)
    [71]The EAS-TOP COLLABORATION,28th International Cosmic Ray Conference.pp.183-186(2003)
    [72]薛良,博士论文,山东大学物理与微电子学院(2001)
    [73]M.Aemnomori et al.,28~(th)ICRC,Vol.7.3917-3920(2003)
    [74]G.W.Clark,Phys.Rev.,108,450(1987)
    [75]凌姚芬,毛昌鉴译,计算球面天文学,科学出版社(1992)
    [76]刘珺&&周德文,《郑州大学学报:理学版》,1671-6841(2007)01-0075-04
    [77]M.Amenomori et al.,Astrophys.J.598,242(2003).
    [78]M.R.Attolini et al.,Planet Space Sci.23.1603(1975).
    [79]N.R.Lomb,Astrophys,Space Sci 39.447(1976).
    [80]J.D.Scargle,Ap.J.263.835(1982).
    [81]Press WH,Rybicki G B.Astrophysical J,338:277-280,(1989).
    [82]Press W H,Teujkolsky S A,vetterling WT et al.,Numerical Recipes in C:the Art of Scienctific Computing[M].Second edition.Cambridge Univ Press,575-584(1992).

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700