用户名: 密码: 验证码:
基因序列多态性对易感基因的功能作用及其对病毒抵抗RNAi的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着人类基因组计划的进展,基因序列多态性在复杂性状疾病的发病机制、药物敏感性的个体差异、病毒的生存与耐受等方面具有广阔前景。本课题通过研究人基因5'UTR启动子区SNP多态性位点对基因转录影响、3'UTR区插入/缺失多态性位点对基因表达的影响以及RNA病毒基因组序列的变异对RNAi抑制转录作用的影响这三个角度,验证了基因序列多态性对不同层面基因表达调控的功能作用,从而为复杂性状疾病的发病机制以及病毒对基因治疗产生耐受机制做出有益的探索。
     第一部分:位于人基因5'UTR区SNP对TNF-α基因表达的影响
     研究目的:肿瘤坏死因子-alpha(TNF-α)作为促炎细胞因子参与自身免疫性疾病和感染性疾病的致病过程,最近的研究发现TNF-α基因上游启动子区-857T等位基因与自发性急性前葡萄膜炎、成人重症腹膜炎、子宫内膜异位症、类风湿性关节炎等多种疾病相关。而且,本教研室前期对汉族人群强直性脊柱炎与TNF-α单核苷酸多态性及单倍型的关联分析表明,在TNF-α启动子区-857C→T是TNF-α独立于HLA-B27而与强直性脊柱炎相关的最有可能的SNP位点。以上的多种报道,很可能是由于TNF-α的-857SNP参与了TNF-α的表达过程,从而使其与多种疾病相关。本课题旨在检测次等位基因-857T,与主等位基因-857C相比,是否对人TNF-α表达产生影响。研究方法:在RAW264.7与HeLa细胞中,运用报告基因方法检测其对转录的影响;运用实时定量反转录聚合酶链法和酶联免疫吸附法,分别从mRNA和蛋白水平,对健康对照个体(基因型为-857C/C)与强直性脊柱炎病人(基因型为-857C/T)外周血单个核细胞中TNF-α表达水平进行了比较。结果:报告基因检测结果表明,与主等位基因-857C比较,次等位基因-857T对TNF-α启动子具有更强的转录激活作用;在基因型为-857C/C的健康人以及-857C/T的强直性脊柱炎病人PBMCs之间,TNF-α在mRNA和蛋白水平未发现明显差异。结论:我们的研究表明TNF-α启动子-857T次等位基因可能直接对TNF-α具有调控作用,且可能以组织特异性方式进行;在解释TNF-α与AS相关时,除TNF-α启动子-857SNP之外,也可能存在其它确切影响TNF-α表达的因素。
     第二部分:位于人基因3'UTR区ins/del插入缺失多态性对IGF-2R基因表达的影响
     研究目的:microRNAs(miRNAs)主要通过转录后翻译水平的抑制作用调控人内源性基因的表达并参与重要的生理、病理过程,最新研究表明位于靶基因3'非翻译区(3'UTR)的DNA序列多态性(DSPs)可能参与这些过程。Villuendas et al.等研究发现2型糖尿病与胰岛素样生长因子2受体(IGF2R)基因3'UTR的ACAA-插入/缺失多态性有关,但机制未明。本课题旨在检测ACAA-插入/缺失多态性是否存在miRNA介导的多态性调控模式。研究方法:本研究中,使用网络预测工具microInspector和miRanda预测能与IGF2R基因的DNA序列多态性ACAA-插入/缺失位点结合的miRNAs分子;荧光素酶报告基因实验检测候选miRNAs对IGF2R的3'UTR作用以及ACAA-插入/缺失变异对此作用的影响;用RT-qPCR及ELISA方法分别检测HepG2细胞中转染候选miRNAs后IGF2R的mRNA与蛋白质水平变化。结果:生物信息学预测表明IGF2R基因的ACAA-插入/缺失位点位于hsa-miR-657和hsa-miR-453的结合位点内;报告基因实验表明,hsa-miR-657通过多态性模式调控IGF2R基因的表达,即与ACAA插入相比,ACAA缺失对转录活性产生了更高的抑制作用;mRNA与蛋白质水平定量分析表明,hsa-miR-657对IGF2R的mRNA水平无影响,而减少可溶性IGF2R水平。结论:本实验证实,ACAA-插入/缺失多态性,至少可能通过hsa-miR-657介导调控方式,引起IGF2R表达水平的变化。这可能在机制上部分的解释了2型糖尿病的发病,并提示miRNAs或与功能性DNA序列多态性协同,在2型糖尿病的防治中具有一定的应用价值。
     第三部分:位于FMDV的VP1基因区的序列变异位点对siRNAs抑制病毒复制作用的影响
     研究目的:自从在植物与脉孢菌中发现了双链RNA诱导的基因沉默,以及在蠕虫秀丽隐杆线虫中对RNA干扰现象的机制做出决定性的阐释以来,RNA干扰不仅是研究内源性基因功能的重要工具,而且已被作为实验室强大的抗病毒工具,并对病毒感染提供了一种新的治疗手段。本课题旨在筛选能有效抑制口蹄疫病毒的siRNAs分子并检测FMDV病毒基因组序列的变异对RNAi效果的影响。研究方法:本课题运用体外重组报告基因实验和流式细胞术,以及对攻毒BHK-21细胞进行FMDV含量、上清病毒滴度、细胞病理效应等检测手段,筛选对FMDV的VP1基因起明显抑制作用的siRNAs分子;同时,用定点突变重组报告基因方法检测FMDV基因序列变异对siRNAs抑制作用的影响。结果:筛选到3个能短暂抑制FMDV的有效siRNAs分子;对FMDV基因组序列分析发现口蹄疫病毒的VP1基因序列中第410位点变异,且经报告基因实验证实其可减弱siRNA对VP1基因的抑制作用。结论:FMDV基因组内siRNA结合区的变异可导致siRNA抑制效果的减弱;提示对抗病毒的复制应使用新一代识别突变位点的siRNAs分子。
     总之,通过本课题的研究,分别验证了三种不同形式的基因序列多态性对基因表达的功能影响,并揭示出其在致病过程及病毒耐受中的机制模型;TNF-α基因启动子区顺式作用元件内的-857的单核苷酸多态性改变了基因启动子的转录活性而可能参与易感基因TNF-α对强直性脊柱炎的致病作用;IGF2R的3'UTR的插入/缺失多态性改变了miRNA对IGF2R基因翻译水平的抑制作用机制而可能参与2型糖尿病的发病;口蹄疫病毒的VP1基因序列中第410位点变异可能减弱siRNA抑制病毒复制的效力,提示新一代识别突变位点的siRNAs应用于对抗病毒的复制。
With the development of human genome project, gene sequence polymorphism increasingly shows comprehensive promise in pathogenesis of complex disease, individual difference in drug susceptibility, existence and resistance of virus, and other aspects in biomedicine. In this study, the effect of a single nucleotide polymorphism within 5'UTR of TNF-αgene on the expression of AS susceptible gene TNF-α, the effect of an insertion/deletion polymorphism site within 3'UTR of IGF2R gene on the expression of type 2 diabetes susceptible gene IGF2R and the effect of a variation site within FMDV RNA genome on the resistance of FMDV for siRNA targeting were explored, separately. The verification of functional effects of gene sequence polymorphism/variation from different control layer will contribute to the elucidation for those issues, such as the mechanism underlying the susceptibility to specific complex disease, resistance of virus for antiviral gene therapeutics, and so on.
     PartⅠ: Effects of a single nucleotide polymorphism within gene 5'UTR region on the expression of human TNF-α
     Tumor necrosis factorα(TNFα) plays a prominent role in inflammation and is a proinflammatory cytokine that has been implicated in the pathogenesis of autoimmune and infectious disease. Recent association studies have found that the TNFα-857T allele was associated with several disorders. Here we demonstrate, with reporter genes under the control of the two allelic TNFαpromoters, that the minor allele -857T is a much stronger transcriptional activator than the major allele -857C in RAW264.7 cell line in response to lipopolysaccharide (LPS) stimulation. However, the result was not consistent in HeLa cell line. Furthermore, for the quantitative analysis of TNFαsynthesis between the -857C/C genotype from healthy subjects and the -857C/T genotype from AS patients, the quantitative reverse transcription-PCR (RT-PCR) and enzyme-linked immunosorbent assay (ELISA) were performed, separately. There was no significant difference between the two groups at the level of mRNA and protein. These results show that this polymorphism may have a direct effect on TNFαregulation in a tissue-specific manner, and aside from the polymorphism at -857 in the TNFαpromoter, there may be other factors affecting the expression of TNFα.
     PartⅡ: Effects of an insertion/deletion polymorphism within gene 3'UTR region on the expression of human insulin-like growth factor 2 receptor
     The biological mechanism of a recent discovered association of type 2 diabetes with the ACAA-insertion/deletion polymorphism at the 3'UTR of the IGF2R gene has remained unclear. A very recently emerging novel polymorphic control layer by microRNAs (miRNAs) makes it possible to elucidate this issue. In this study, a prediction from web tools microInspector and miRanda demonstrated that DNA sequence polymorphism (DSPs) ACAA-insertion/deletion in IGF2R 3'UTR is located within hsa-miR-657 and hsa-miR-453 binding sites. And luciferase reporter assay revealed that hsa-miR-657 acts directly at the 3'-UTR of the IGF2R. Furthermore, ACAA-deletion exerted a further repression compared with ACAA-insertion, indicating that hsa-miR-657 regulates IGF2R gene expression in a polymorphic control manner. Importantly, we also demonstrated that hsa-miR-657 can translationally regulate the IGF2R expression levels in HepG2 cells. Thus, our findings testify the possibility that the ACAA-insertion/deletion polymorphism may result in the change of IGF2R expression levels at least in part by hsa-miR-657-mediated regulation, contributing to the elucidation for the pathogenesis of type 2 diabetes and raise the possibility that miRNAs or in combination with functional DNA sequence polymorphism may be valuable in the treatment of human type 2 diabetes.
     PartⅢ: Effects of a variation within VP1 gene on the resistance of FMDV to RNAi
     Foot-and-mouth disease virus (FMDV) is the causative agent of foot-and-mouth disease, a severe, clinically acute, vesicular disease of cloven-hoofed animals. RNA interference (RNAi) is a mechanism for silencing gene expression posttranscriptionally that is being exploited as a rapid antiviral strategy. To identify efficacious small interfering RNAs (siRNAs) to inhibit the replication of FMDV, candidate siRNAs corresponding to FMDV VP1 gene were designed and synthesized in vitro using T7 RNA polymerase. In reporter assays, five siRNAs showed significant sequence-specific silencing effects on the expression of VP1-EGFP fusion protein from plasmid pVP1-EGFP-N1, which was cotransfected with siRNA into 293T cells. Furthermore, using RT-qPCR, viral titration and viability assay, we identified VP1-siRNA517, VP1-siRNA113 and VP1-siRNA519 that transiently acted as potent inhibitors of FMDV replication when BHK-21 cells were infected with FMDV. In addition, variations within multiple regions of the quasispecies of FMDV were retrospectively revealed by sequencing of FMDV genes, and a single nucleotide substitution was identified as the main factor in resistance to RNAi. Our data demonstrated that the three siRNA molecules synthesized with T7 RNA polymerase could have transient inhibitory effects on the replication of FMDV, and that FMDV may escape the antiviral activity of siRNA by a specific single nucleotide variation in targeted sequence. Second generation siRNAs that recognize the variatioin may be recommended to prevent the emergence of resistant FMDV.
     In conclusion, our results demonstrate that -857SNP within TNF-α5'UTR promoter region could change the promoter transcription activity, contributing to the susceptibility to AS, that ACAA-insertion/deletion polymorphism could stabilize the interaction between hsa-miR-657 and IGF2R, contributing to the susceptibility to type 2 diabetes, and that the 410nt variation within VP1 gene region could decrease the inhibition of a specific siRNA targeting FMDV, indicating the need for a new generation of siRNAs corresponding to virus genome variation. Therefore, the verified effects of three different type of gene sequence polymorphism/variation on related gene expression show novel molecular models for pathogenesis of complex disease and virus escape from antiviral therapeutics.
引文
1.Beutler,B.A.,The role of tumor necrosis factor in health and disease.J Rheumatol Suppl,1999.57:p.16-21.
    2.Uglialoro,A.M.,et al.,Identification of three new single nucleotide polymorphisms in the human tumor necrosis factor-alpha gene promoter.Tissue Antigens,1998.52(4):p.359-67.
    3.Teramoto,M.,et al.,Genetic contribution of tumor necrosis factor(TNF)-alpha gene promoter(-1031,-863 and -857) and TNF receptor 2 gene poIymorphisms in endometriosis susceptibility.Am J Reprod Immunol,2004.51(5):p.352-7.
    4.Kuo,N.W.,et al.,TNF-857T,a genetic risk marker for acute anterior uveitis.Invest Ophthalmol Vis Sci,2005.46(5):p.1565-71.
    5.Soga,Y.,et al.,Tumor necrosis factor-alpha gene(TNF-alpha) -1031/-863,-857single-nucleotide polymorphisms(SNPs) are associated with severe adult periodontitis in Japanese.J Clin Periodontol,2003.30(6):p.524-31.
    6.Wu,M.S.,et al.,Promoter polymorphisms of tumor necrosis factor-alpha are associated with risk of gastric mucosa-associated lymphoid tissue lymphoma.Int J Cancer,2004.110(5):p.695-700.
    7.Grutters,J.C.,et al.,Increased frequency of the uncommon tumor necrosis factor -857T allele in British and Dutch patients with sarcoidosis.Am J Respir Crit Care Med,2002.165(8):p.1119-24.
    8.Kamizono,S.,et al.,Susceptible locus for obese type 2 diabetes mellitus in the 5'-flanking region of the tumor necrosis factor-alpha gene.Tissue Antigens,2000.55(5):p.449-52.
    9.Waldron-Lynch,E,et al.,Tumour necrosis factor 5' promoter single nucleotide polymorphisms influence susceptibility to rheumatoid arthritis(RA) in immunogenetically defined multiplex RA families.Genes Immun,2001.2(2):p.82-7.
    10.Simpson,D.A.,et al.,Retinal VEGF mRNA measured by SYBR green Ⅰ fluorescence:A versatile approach to quantitative PCR.Mol Vis,2000.6:p.178-83.
    11.Blaschke,V.,et al.,Rapid quantitation of proinflammatory and chemoattractant cytokine expression in small tissue samples and monocyte-derived dendritic cells:validation of a new real-time RT-PCR technology.J Immunol Methods,2000.246(1-2):p.79-90.
    12.Livak,K.J.and T.D.Schmittgen,Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method.Methods,2001.25(4):p.402-8.
    13.Molvig,J.,et al.,Endotoxin-stimulated human monocyte secretion of interleukin 1,turnout necrosis factor alpha,and prostaglandin E2 shows stable interindividual differences.Scand J Immunol,1988.27(6):p.705-16.
    14.Sallakci,N.,et al.,TNF-alpha G-308A polymorphism is associated with rheumatic fever and correlates with increased TNF-alpha production.J Autoimmun,2005.25(2):p.150-4.
    15.Jongeneel,C.V.,Transcriptional regulation of the tumor necrosis factor alpha gene.Immunobiology,1995.193(2-4):p.210-6.
    16.Pauli,U.,Control of tumor necrosis factor gene expression.Crit Rev Eukaryot Gene Expr,1994.4(2-3):p.323-44.
    17.Keffer,J.,et al.,Transgenic mice expressing human tumour necrosis factor:a predictive genetic model of arthritis.Embo J,1991.10(13):p.4025-31.
    18.Rothe,J.,et al.,Mice lacking the tumour necrosis factor receptor 1 are resistant to TNF-mediated toxicity but highly susceptible to infection by Listeria monocytogenes.Nature,1993.364(6440):p.798-802.
    19.Jacob,C.O.,Tumor necrosis factor alpha in autoimmunity:pretty girl or old witch?Immunol Today,1992.13(4):p.122-5.
    20.Di Giovine,ES.,G.Nuki,and G.W.Duff,Tumout necrosis factor in synovial exudates.Ann Rheum Dis,1988.47(9):p.768-72.
    21.Higuchi,T.,et al.,Polymorphism of the 5'-flanking region of the human tumor necrosis factor(TNF)-aIpha gene in Japanese.Tissue Antigens,1998.51(6):p.605-12.
    22.Hohjoh,H.and K.Tokunaga,Allele-specific binding of the ubiquitous transcription factor OCT-1 to the functional single nucleotide polymorphism(SNP) sites in the tumor necrosis factor-alpha gene(TNFA) promoter.Genes Immun,2001.2(2):p.105-9.
    23.Bayley,J.P.,T.H.Ottenhoff,and C.L.Verweij,Is there a future for TNF promoter polymorphisms? Genes Immun,2004.5(5):p.315-29.
    1.Bartel,D.E,MicroRNAs:genomics,biogenesis,mechanism,and function.Cell,2004.116(2):p.281-97.
    2.Lee,R.C.,R.L.Feinbaum,and V.Ambros,The C.elegans heterochronic gene lin-4encodes small RNAs with antisense complementarity to lin-14.Cell,1993.75(5):p.843-54.
    3.Wightman,B.,I.Ha,and G.Ruvkun,Posttranscriptional regulation of the heterochronic gene lin-14 by lin-4 mediates temporal pattern formation in C.elegans.Cell,1993.75(5):p.855-62.
    4.Pasquinelli,A.E.,et al.,Conservation of the sequence and temporal expression of let-7 heterochronic regulatory RNA.Nature,2000.408(6808):p.86-9.
    5.Poy,M.N.,et al.,A pancreatic islet-specific microRNA regulates insulin secretion.Nature,2004.432(7014):p.226-30.
    6.Zhao,Y.,et al.,Dysregulation of cardiogenesis,cardiac conduction,and cell cycle in mice lacking miRNA-1-2.Cell,2007.129(2):p.303-17.
    7.Kampa,D.,et al.,Novel RNAs identified from an in-depth analysis of the transcriptome of human chromosomes 21 and 22.Genome Res,2004.14(3):p.331-42.
    8.Kim,V.N.,Small RNAs:classification,biogenesis,and function.Mol Cells,2005.19(1):p.1-15.
    9.Nam,J.W.,et al.,Human microRNA prediction through a probabiIistic co-learning model of sequence and structure.Nucleic Acids Res,2005.33(11):p.3570-81.
    10.Calin,G.A.,et al.,Human microRNA genes are frequently located at fragile sites and genomic regions involved in cancers.Proc Natl Acad Sci U S A,2004.101(9):p.2999-3004.
    11.Metzler,M.,et al.,High expression of precursor microRNA-155/BIC RNA in children with Burkitt lymphoma.Genes Chromosomes Cancer,2004.39(2):p.167-9.
    12.Care,A.,et al.,MicroRNA-133 controls cardiac hypertrophy.Nat Med,2007.13(5):p.613-8.
    13.Schmittgen,T.D.,et al.,A high-throughput method to monitor the expression of microRNAprecursors.Nucleic Acids Res,2004.32(4):p.e43.
    14.Lewis,B.P.,C.B.Burge,and D.P.Bartel,Conserved seed pairing,often flanked by adenosines,indicates that thousands of human genes are microRNA targets.Cell,2005.120(1):p.15-20.
    15.Krek,A.,et al.,Combinatorial microRNA target predictions.Nat Genet,2005.37(5):p.495-500.
    16.Sethupathy,P.,M.Megraw,and A.G.Hatzigeorgiou,A guide through present computational approaches for the identification of mammalian microRNA targets.Nat Methods,2006.3(11):p.881-6.
    17.Brennecke,J.,et al.,Principles of microRNA-target recognition.PLoS Biol,2005.3(3):p.e85.
    18.Barnes,M.R.,et al.,The micro RNA target paradigm:a fundamental and polymorphic control layer of cellular expression.Expert Opin Biol Ther,2007.7(9):p.1387-99.
    19.Georges,M.,W.Coppieters,and C.Charlier,Polymorphic miRNA-mediated gene regulation:contribution to phenotypic variation and disease.Curr Opin Genet Dev,2007.17(3):p.166-76.
    20.Abelson,J.E,et al.,Sequence variants in SLITRK1 are associated with Tourette's syndrome.Science,2005.310(5746):p.317-20.
    21.Clop,A.,et al.,A mutation creating a potential illegitimate microRNA target site in the myostatin gene affects muscularity in sheep.Nat Genet,2006.38(7):p.813-8.
    22.Sethupathy,P.,et al.,Human microRNA-155 on chromosome 21 differentially interacts with its polymorphic target in the AGTR1 3' untranslated region:a mechanism for functional single-nucleotide polymorphisms related to phenotypes.Am J Hum Genet,2007.81(2):p.405-13.
    23.Mishra,P.J.,et al.,A miR-24 microRNA binding-site polymorphism in dihydrofolate reductase gene leads to methotrexate resistance.Proc Natl Acad Sci U S A,2007.104(33):p.13513-8.
    24.van Haeften,T.W.and T.B.Twickler,Insulin-like growth factors and pancreas beta cells.Eur J Clin Invest,2004.34(4):p.249-55.
    25.Di Bacco,A.and G.Gill,The secreted glycoprotein CREG inhibits cell growth dependent on the mannose-6-phosphate/insulin-like growth factor Ⅱ receptor. Oncogene,2003.22(35):p.5436-45.
    26.Ikushima,H.,et al.,Internalization of CD26 by mannose 6-phosphatelinsulin-like growth factor Ⅱ receptor contributes to T cell activation.Proc Natl Acad Sci U S A,2000.97(15):p.8439-44.
    27.Gasanov,U.,et al.,Identification of the insulin-like growth factor Ⅱ receptor as a novel receptor for binding and invasion by Listeria monocytogenes.Infect Immun,2006.74(1):p.566-77.
    28.Duggirala,R.,et al.,A major locus for fasting insulin concentrations and insulin resistance on chromosome 6q with strong pleiotropic effects on obesity-related phenotypes in nondiabetic Mexican Americans.Am J Hum Genet,2001.68(5):p.1149-64.
    29.Villuendas,G.,et al.,The ACAA-insertion/deletion polymorphism at the 3' UTR of the IGF-Ⅱ receptor gene is associated with type 2 diabetes and surrogate markers of insulin resistance.Eur J Endocrinol,2006.155(2):p.331-6.
    30.Costello,M.,R.C.Baxter,and C.D.Scott,Regulation of soluble insulin-like growth factor Ⅱ/mannose 6-phosphate receptor in human serum:measurement by enzyme-linked immunosorbent assay.J Clin Endocrinol Metab,1999.84(2):p.611-7.
    31.Rusinov,V.,et al.,Microlnspector:a web tool for detection of miRNA binding sites in an RNA sequence.Nucleic Acids Res,2005.33(Web Server issue):p.W696-700.
    32.John,B.,et al.,Human MicroRNA targets.PLoS Biol,2004.2(11):p.e363.
    33.Griffiths-Jones,S.,et al.,miRBase:microRNA sequences,targets and gene nomenclature.Nucleic Acids Res,2006.34(Database issue):p.D140-4.
    34.Landi,D.,et al.,A Catalog of Polymorphisms Falling in MicroRNA-Binding Regions of Cancer Genes.DNA Cell Biol,2007.
    35.Frayling,T.M.,et al.,A common variant in the FTO gene is associated with body mass index and predisposes to childhood and adult obesity.Science,2007.316(5826):p.889-94.
    36.Young,L.E.,et al.,Epigenetic change in IGF2R is associated with fetal overgrowth after sheep embryo culture.Nat Genet,2001.27(2):p.153-4.
    37.Gicquel,C.,et al.,Epigenetic abnormalities of the mannose-6-phosphate/IGF2receptor gene are uncommon in human overgrowth syndromes.J Med Genet,2004. 41(1): p. e4.
    1.Haydon,D.T.,R.R.Kao,and R.P.Kitching,The UK foot-and-mouth disease outbreak - the aftermath.Nat Rev Microbiol,2004.2(8):p.675-81.
    2.Thompson,D.,et al.,Economic costs of the foot and mouth disease outbreak in the United Kingdom in 2001.Rev Sci Tech,2002.21(3):p.675-87.
    3.Saiz,M.,et al.,Foot-and-mouth disease virus:biology and prospects for disease control.Microbes Infect,2002.4(11):p.1183-92.
    4.Chen,S.P.,et al.,Immune responses to foot-and-mouth disease virus in pig farms after the 1997 outbreak in Taiwan.Vet Microbiol,2007.
    5.Shih,S.R.,et al.,Genetic analysis of enterovirus 71 isolated from fatal and non-fatal cases of hand,foot and mouth disease during an epidemic in Taiwan,1998.Virus Res,2000.68(2):p.127-36.
    6.Ward,G.,E.Rieder,and P.W.Mason,Plasmid DNA encoding replicating foot-and-mouth disease virus genomes induces antiviral immune responses in swine.J Virol,1997.71(10):p.7442-7.
    7.Balamurugan,V.,R.M.Kumar,and V.V.Suryanarayana,Past and present vaccine development strategies for the control of foot-and-mouth disease.Acta Virol,2004.48(4):p.201-14.
    8.Van Rensburg,H.G.and P.W.Mason,Construction and evaluation of a recombinant foot-and-mouth disease virus:implications for inactivated vaccine production.Ann N Y Acad Sci,2002.969:p.83-7.
    9.Grubman,M.J.and T.de los Santos,Rapid control of foot-and-mouth disease outbreaks:is RNAi a possible solution? Trends Immunol,2005.26(2):p.65-8.
    10.Napoli,C.,C.Lemieux,and R.Jorgensen,Introduction of a Chimeric Chalcone Synthase Gene into Petunia Results in Reversible Co-Suppression of Homologous Genes in trans.Plant Cell,1990.2(4):p.279-289.
    11.Cogoni,C.and G.Macino,Isolation of quelling-defective(qde) mutants impaired in posttranscriptional transgene-induced gene silencing in Neurospora crassa.Proc Natl Acad Sci U S A,1997.94(19):p.10233-8.
    12.Fire,A.,et al.,Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans.Nature,1998.391(6669):p.806-11.
    13.Bennasser,Y.,M.L.Yeung,and K.T.Jeang,RNAi therapy for HIV infection:principles and practicalities.BioDrugs,2007.21(1):p.17-22.
    14.Nekhai,S.and M.Jerebtsova,Therapies for HIV with RNAi.Curr Opin Mol Ther,2006.8(1):p.52-61.
    15.Kim,Y.H.,et al.,RNAi-based knockdown of HBx mRNA in HBx-transformed and HBV-producing human liver cells.DNA Cell Biol,2006.25(7):p.412-7.
    16.Rendall,G.,Progress toward the therapy of hepatitis with RNAi.Hepatology,2005.41(6):p.1220-2.
    17.Radhakrishnan,S.K.,T.J.Layden,and A.L.Gartel,RNA interference as a new strategy against viral hepatitis.Virology,2004.323(2):p.173-81.
    18.Akerstrom,S.,A.Mirazimi,and Y.J.Tan,Inhibition of SARS-CoV replication cycle by small interference RNAs silencing specific SARS proteins,7a/7b,3a/3b and S.Antiviral Res,2007.73(3):p.219-27.
    19.Wu,C.J.,et al.,Inhibition of SARS-CoV replication by siRNA.Antiviral Res,2005.65(1):p.45-8.
    20.Chen,W.,et al.,Adenovirus-mediated RNA interference against foot-and-mouth disease virus infection both in vitro and in vivo.J Virol,2006.80(7):p.3559-66.
    21.Chen,W.,et al.,RNA interference targeting VP1 inhibits foot-and-mouth disease virus replication in BHK-21 cells and suckling mice.J Virol,2004.78(13):p.6900-7.
    22.de los Santos,T.,et al.,Short hairpin RNA targeted to the highly conserved 2B nonstructural protein coding region inhibits replication of multiple serotypes of foot-and-mouth disease virus.Virology,2005.335(2):p.222-31.
    23.Kahana,R.,et al.,Inhibition of foot-and-mouth disease virus replication by small interfering RNA.J Gen Virol,2004.85(Pt 11):p.3213-7.
    24.Mohapatra,J.K.,et al.,Evaluation of in vitro inhibitory potential of small interfering RNAs directed against various regions of foot-and-mouth disease virus genome.Biochem Biophys Res Commun,2005.329(3):p.1133-8.
    25.Mason,P.W.,M.J.Grubman,and B.Baxt,Molecular basis of pathogenesis of FMDV.Virus Res,2003.91(1):p.9-32.
    26.Belsham,G.J.,Translation and replication of FMDV RNA.Curr Top Microbiol Immunol,2005.288:p.43-70.
    27.Gitlin,L.,J.K.Stone,and R.Andino,Poliovirus escape from RNA interference:short interfering RNA-target recognition and implications for therapeutic approaches.J Virol,2005.79(2):p.1027-35.
    28.Ge,Q.,et al.,Inhibition of influenza virus production in virus-infected mice by RNA interference.Proc Natl Acad Sci U S A,2004.101(23):p.8676-81.
    29.Reed,L.J.and H.A.Muench.,A simple method of estimating fifty percent end points.Am.J.Hyg.,1938.27:p.493-7.
    30.Donze,O.and D.Picard,RNA interference in mammalian cells using siRNAs synthesized with T7 RNA polymerase.Nucleic Acids Res,2002.30(10):p.e46.
    31.Westerhout,E.M.,et al.,HIV-1 can escape from RNA interference by evolving an alternative structure in its RNA genome.Nucleic Acids Res,2005.33(2):p.796-804.
    1.Kleinjan,D.A.and V.van Heyningen,Long-range control of gene expression:emerging mechanisms and disruption in disease.Am J Hum Genet,2005.76(1):p.8-32.
    2.Hoogendoorn,B.,et al.,Functional analysis of human promoter polymorphisms.Hum Mol Genet,2003.12(18):p.2249-54.
    3.Pastinen,T.,B.Ge,and T.J.Hudson,Influence of human genomepolymorphism on gene expression.Hum Mol Genet,2006.15 Spec No 1:p.R9-16.
    4.Abelson,J.F.,et al.,Sequence variants in SLITRK1 are associated with Tourette's syndrome.Science,2005.310(5746):p.317-20.
    5.Clop,A.,et al.,A mutation creating a potential illegitimate microRNA target site in the myostatin gene affects muscularity in sheep.Nat Genet,2006.38(7):p.813-8.
    6.Kampa,D.,et al.,Novel RNAs identified from an in-depth analysis of the transcriptome of human chromosomes 21 and 22.Genome Res,2004.14(3):p.331-42.
    7.Ameyar-Zazoua,M.,V.Guasconi,and S.Ait-Si-Ali,siRNA as a route to new cancer therapies.Expert Opin Biol Ther,2005.5(2):p.221-4.
    8.Hannon,G.J.,RNA interference.Nature,2002.418(6894):p.244-51.
    9.Lee,R.C.,R.L.Feinbaum,and V.Ambros,The C.elegans heterochronic gene lin-4encodes small RNAs with antisense complementarity to lin-14.Cell,1993.75(5):p.843-54.
    10.Pasquinelli,A.E.,et al.,Conservation of the sequence and temporal expression of let-7 heterochronic regulatory RNA.Nature,2000.408(6808):p.86-9.
    11.Fire,A.,et al.,Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans.Nature,1998.391(6669):p.806-11.
    12.Grishok,A.,et al.,Genes and mechanisms related to RNA interference regulate expression of the small temporal RNAs that control C.elegans developmental timing.Cell,2001.106(1):p.23-34.
    13.Lau,N.C.,et al.,An abundant class of tiny RNAs with probable regulatory roles in Caenorhabditis elegans.Science,2001.294(5543):p.858-62.
    14.Lee,R.C.and V.Ambros,An extensive class of small RNAs in Caenorhabditis etegans.Science,2001.294(5543):p.862-4.
    15.Bentwich,I.,et al.,Identification of hundreds of conserved and nonconserved human microRNAs.Nat Genet,2005.37(7):p.766-70.
    16.Griffiths-Jones,S.,et al.,miRBase:microRNA sequences,targets and gene nomenclature.Nucleic Acids Res,2006.34(Database issue):p.D140-4.
    17.Mattick,J.S.,Challenging the dogma:the hidden layer of non-protein-coding RNAs in complex organisms.Bioessays,2003.25(10):p.930-9.
    18.Chen,K.and N.Rajewsky,Natural selection on human microRNA binding sites inferred from SNP data.Nat Genet,2006.38(12):p.1452-6.
    19.Genome-wide association study of 14,000 cases of seven common diseases and 3,000 shared controls.Nature,2007.447(7145):p.661-78.
    20.Frayling,T.M.,et al.,A common variant in the FTO gene is associated with body mass index and predisposes to childhood and adult obesity.Science,2007.316(5826):p.889-94.
    21.McGovern,D.P.,et al.,TUCAN(CARD8) genetic variants and inflammatory bowel disease.Gastroenterology,2006.131(4):p.1190-6.
    22.Helgadottir,A.,et al.,A common variant on chromosome 9p21 affects the risk of myocardial infarction.Science,2007.316(5830):p.1491-3.
    23.Bartel,D.P.,MicroRNAs:genomics,biogenesis,mechanism,and function.Cell,2004.116(2):p.281-97.
    24.Kim,V.N.,MicroRNA biogenesis:coordinated cropping and dicing.Nat Rev Mol Cell Biol,2005.6(5):p.376-85.
    25.Brown,J.R.and P.Sanseau,A computational view of microRNAs and their targets.Drug Discov Today,2005.10(8):p.595-601.
    26.Lewis,B.P.,C.B.Burge,and D.P.Bartel,Conserved seed pairing,often flanked by adenosines,indicates that thousands of human genes are microRNA targets.Cell,2005.120(1):p.15-20.
    27.Krek,A.,et al.,Combinatorial microRNA target predictions.Nat Genet,2005.37(5):p.495-500.
    28.Olsen,EH.and V.Ambros,The lin-4 regulatory RNA controls developmental timing in Caenorhabditis elegans by blocking LIN-14 protein synthesis after the initiation of translation.Dev Biol,1999.216(2):p.671-80.
    29.Pillai,R.S.,et al.,Inhibition of translational initiation by Let-7 MicroRNA in human cells.Science,2005.309(5740):p.1573-6.
    30.Jing,Q.,et al.,Involvement of microRNA in AU-rich element-mediated mRNA instability.Cell,2005.120(5):p.623-34.
    31.Bagga,S.,et al.,Regulation by let-7 and lin-4 miRNAs results in target mRNA degradation.Cell,2005.122(4):p.553-63.
    32.Sen,G.L and H.M.Blau,Argonaute 2/RISC resides in sites of mammalian mRNA decay known as cytoplasmic bodies.Nat Cell Biol,2005.7(6):p.633-6.
    33.Liu,J.,et al.,MicroRNA-dependent localization of targeted mRNAs to mammalian P-bodies.Nat Cell Biol,2005.7(7):p.719-23.
    34.Pfeffer,S.,et al.,Identification of virus-encoded microRNAs.Science,2004.304(5671):p.734-6.
    35.Birmingham,A.,et al.,3' UTR seed matches,but not overall identity,are associated with RNAi off-targets.Nat Methods,2006.3(3):p.199-204.
    36.Wightman,B.,I.Ha,and G.Ruvkun,Posttranscriptional regulation of the heterochronic gene lin-14 by lin-4 mediates temporal pattern formation in C.elegans.Cell,1993.75(5):p.855-62.
    37.Grosshans,H.,et al.,The temporal patterning microRNA let-7 regulates several transcription factors at the larval to adult transition in C.elegans.Dev Cell,2005.8(3):p.321-30.
    38.Esau,C.,et al.,MicroRNA-143 regulates adipocyte differentiation.J Biol Chem, 2004.279(50):p.52361-5.
    39.Calin,G.A.,et al.,Human microRNA genes are frequently located at fragile sites and genomic regions involved in cancers.Proc Natl Acad Sci U S A,2004.101(9):p.2999-3004.
    40.O'Donnell,K.A.,et al.,c-Myc-regulated microRNAs modulate E2F1 expression.Nature,2005.435(7043):p.839-43.
    41.Xu,P.,et al.,The Drosophila microRNA Mir-14 suppresses cell death and is required for normal.fat metabolism.Curr Biol,2003.13(9):p.790-5.
    42.Schratt,G.M.,et al.,A brain-specific microRNA regulates dendritic spine development.Nature,2006.439(7074):p.283-9.
    43.Poy,M.N.,et al.,A pancreatic islet-specific microRNA regulates insulin secretion.Nature,2004.432(7014):p.226-30.
    44.Leaman,D.,et al.,Antisense-mediated depletion reveals essential and specific functions of microRNAs in Drosophila development.Cell,2005.121(7):p.1097-108.
    45.Hertel,J.,et al.,The expansion of the metazoan microRNA repertoire.BMC Genomics,2006.7:p.25.
    46.Lai,E.C.,et al.,Computational identification of Drosophila microRNA genes.Genome Biol,2003.4(7):p.R42.
    47.Nam,J.W.,et al.,Human microRNA prediction through a probabilistic co-learning model of sequence and structure.Nucleic Acids Res,2005.33(11):p.3570-81.
    48.Shahi,P.,et al.,Argonaute--a database for gene regulation by mammalian microRNAs.Nucleic Acids Res,2006.34(Database issue):p.D115-8.
    49.Hsu,P.W.,et al.,miRNAMap:genomic maps of microRNA genes and their target genes in mammalian genomes.Nucleic Acids Res,2006.34(Database issue):p.D135-9.
    50.Maziere,P.and A.J.Enright,Prediction of microRNA targets.Drug Discov Today,2007.12(11-12):p.452-8.
    51.Lewis,B.P.,et al.,Prediction of mammalian microRNA targets.Cell,2003.115(7):p.787-98.
    52.Brennecke,J.,et al.,Principles of microRNA-target recognition.PLoS Biol,2005.3(3):p.e85.
    53.Doench,J.G.,C.P.Petersen,and P.A.Sharp,siRNAs can function as miRNAs.Genes Dev,2003.17(4):p.438-42.5
    4.Zeng,Y.,R.Yi,and B.R.Cullen,MicroRNAs and small interfering RNAs can inhibit mRNA expression by similar mechanisms.Proc Natl Acad Sci U S A,2003.100(17):p.9779-84.
    55.Long,D.,et al.,Potent effect of target structure on microRNA function.Nat Struct Mol Biol,2007.14(4):p.287-94.
    56.Huttenhofer,A.and J.Vogel,Experimental approaches to identify non-coding RNAs.Nucleic Acids Res,2006.34(2):p.635-46.
    57.Rehmsmeier,M.,et al.,Fast and effective prediction of microRNA/target duplexes.Rna,2004.10(10):p.1507-17.
    58.John,B.,et al.,Human MicroRNA targets.PLoS Biol,2004.2(11):p.e363.
    59.Giraldez,A.J.,et al.,Zebrafish MiR-430 promotes deadenylation and clearance of maternal mRNAs.Science,2006.312(5770):p.75-9.
    60.Bentwich,I.,Prediction and validation of microRNAs and their targets.FEBS Lett,2005.579(26):p.5904-10.
    61.Chamary,J.V.,J.L.Parmley,and L.D.Hurst,Hearing silence:non-neutral evolution at synonymous sites in mammals.Nat Rev Genet,2006.7(2):p.98-108.
    62.Lytle,J.R.,T.A.Yario,and J.A.Steitz,Target mRNAs are repressed as efficiently by microRNA-binding sites in the 5' UTR as in the 3' UTR.Proc Natl Acad Sci U S A,2007.104(23):p.9667-72.
    63.Hurst,L.D.,Preliminary assessment of the impact of microRNA-mediated regulation on coding sequence evolution in mammals.J Mol Evol,2006.63(2):p.174-82.
    64.Esquela-Kerscher,A.and F.J.Slack,Oncomirs - microRNAs with a role in cancer.Nat Rev Cancer,2006.6(4):p.259-69.
    65.Schmittgen,T.D.,et al.,A high-throughput method to monitor the expression of microRNA precursors.Nucleic Acids Res,2004.32(4):p.e43.
    66.Diederichs,S.and D.A.Haber,Sequence variations of microRNAs in human cancer:alterations in predicted secondary structure do not affect processing.Cancer Res,2006.66(12):p.6097-104.
    67.Baskerville,S.and D.P.Bartel,Microarray profiling of microRNAs reveals frequent coexpression with neighboring miRNAs and host genes.Rna,2005.11(3):p.241-7.
    68.Gregory,R.I.and R.Shiekhattar,MicroRNA biogenesis and cancer.Cancer Res,2005.65(9):p.3509-12.
    69.Lu,J.,et al.,MicroRNA expression profiles classify human cancers.Nature,2005.435(7043):p.834-8.
    70.Johnson,S.M.,et al.,RAS is regulated by the let-7 microRNA family.Cell,2005.120(5):p.635-47.
    71.Hammond,S.M.,MicroRNAs as oncogenes.Curr Opin Genet Dev,2006.16(1):p.4-9.
    72.Xi,Y.,et al.,Differentially regulated micro-RNAs and actively translated messenger RNA transcripts by tumor suppressor p53 in colon cancer.Clin Cancer Res,2006.12(7 Pt 1):p.2014-24.
    73.Zhao,Y.,et al.,Dysregulation of cardiogenesis,cardiac conduction,and cell cycle in mice lacking miRNA-1-2.Cell,2007.129(2):p.303-17.
    74.Iwai,N.and H.Naraba,Polymorphisms in human pre-miRNAs.Biochem Biophys Res Commun,2005.331(4):p.1439-44.
    75.Saunders,M.A.,H.Liang,and W.H.Li,Human polymorphism at microRNAs and microRNA target sites.Proc Natl Acad Sci U S A,2007.104(9):p.3300-5.
    76.Duan,R.,C.Pak,and P.Jin,Single nucleotide polymorphism associated with mature miR-125a alters the processing of pri-miRNA.Hum Mol Genet,2007.16(9): p.1124-31.
    77.Lee,Y.,et al.,MicroRNA genes are transcribed by RNA polymerase Ⅱ.Embo J,2004.23(20):p.4051-60.
    78.Borchert,G.M.,W.Lanier,and B.L.Davidson,RNA polymerase Ⅲ transcribes human microRNAs.Nat Struct Mol Biol,2006.13(12):p.1097-101.
    79.Lee,J.,et al.,Regulatory circuit of human microRNA biogenesis.PLoS Comput Biol,2007.3(4):p.e67.
    80.Zeng,Y.and B.R.Cullen,Sequence requirements for micro RNA processing and function in human cells.Rna,2003.9(1):p.112-23.
    81.Borenstein,E.and E.Ruppin,Direct evolution of genetic robustness in microRNA.Proc Natl Acad Sci U S A,2006.103(17):p.6593-8.
    82.Georges,M.,et al.,Polymorphic microRNA-target interactions:a novel source of phenotypic variation.Cold Spring Harb Symp Quant Biol,2006.71:p.343-50.
    83.Doench,J.G.and P.A.Sharp,Specificity of microRNA target selection in translational repression.Genes Dev,2004.18(5):p.504-11.
    84.Tobin,J.F.and A.J.Celeste,Myostatin,a negative regulator of muscle mass:implications for muscle degenerative diseases.Curr Opin Pharmacol,2005.5(3):p.328-32.
    85.Duff,G.W.,Evidence for genetic variation as a factor in maintaining health.Am J Clin Nutr,2006.83(2):p.431S-435S.
    86.Miller,D.T.,et al.,Association of common CRP gene variants with CRP levels and cardiovascular events.Ann Hum Genet,2005.69(Pt 6):p.623-38.
    87.Oliver,S.G.,et al.,Systematic functional analysis of the yeast genome.Trends Biotechnol,1998.16(9):p.373-8.
    88.Shoji,Y.and H.Nakashima,Current status of delivery systems to improve target efficacy of oligonucleotides.Curr Pharm Des,2004.10(7):p.785-96.
    89.Gardlik,R.,et al.,Vectors and delivery systems in gene therapy.Med Sci Monit,2005.11(4):p.RA110-21.
    90.Naguibneva,I.,et al.,An LNA-based loss-of-function assay for micro-RNAs.Biomed Pharmacother,2006.60(9):p.633-8.
    91.Orom,U.A.,S.Kauppinen,and A.H.Lund,LNA-modified oligonucleotides mediate specific inhibition of microRNA function.Gene,2006.372:p.137-41.
    92.Bumcrot,D.,et al.,RNAi therapeutics:a potential new class of pharmaceutical drugs.Nat Chem Biol,2006.2(12):p.711-9.
    93.Cargill,M.,et al.,Characterization of single-nucleotide polymorphisms in coding regions of human genes.Nat Genet,1999.22(3):p.231-8.
    94.Salisbury,B.A.,et al.,SNP and haplotype variation in the human genome.Mutat Res,2003.526(1-2):p.53-61.
    95.Schneider,J.A.,et al.,DNA variability of human genes.Mech Ageing Dev,2003.124(1):p.17-25.
    96.Schork,N.J.,D.Fallin,and J.S.Lanchbury,Single nucleotide polymorphisms and the future of genetic epidemiology.Clin Genet,2000.58(4):p.250-64.
    97.Sachidanandam,R.,et al.,A map of human genome sequence variation containing 1.42 million single nucleotide polymorphisms.Nature,2001.409(6822):p.928-33.
    98.Zhu,Y.,et al.,An evolutionary perspective on single-nucleotide polymorphism screening in molecular cancer epidemiology.Cancer Res,2004.64(6):p.2251-7.
    99.Lohmueller,K.E.,et al.,Meta-analysis of genetic association studies supports a contribution of common variants to susceptibility to common disease.Nat Genet,2003.33(2):p.177-82.
    100.Botstein,D.and N.Risch,Discovering genotypes underlying human phenotypes:past successes for mendelian disease,future approaches for complex disease.Nat Genet,2003.33 Suppl:p.228-37.
    101.Stoilov,P.,et al.,Defects in pre-mRNA processing as causes of and predisposition to diseases.DNA Cell Biol,2002.21(11):p.803-18.
    102.Knight,J.C.,Functional implications of genetic variation in non-coding DNA for disease susceptibility and gene regulation.Clin Sci(Lond),2003.104(5):p. 493-501.
    103.Li,A.P.,D.L.Kaminski,and A.Rasmussen,Substrates of human hepatic cytochrome P450 3A4.Toxicology,1995.104(1-3):p.1-8.
    104.Hashimoto,H.,et al.,Gene structure of CYP3A4,an adult-specific form of cytochrome P450 in human livers,and its transcriptional control Eur J Biochem,1993.218(2):p.585-95.
    105.Rebbeck,T.R.,M.Spitz,and X.Wu,Assessing the function of genetic variants in candidate gene association studies.Nat Rev Genet,2004.5(8):p.589-97.
    106.Paris,P.L.,et al.,Association between a CYP3A4 genetic variant and clinical presentation in African-American prostate cancer patients.Cancer Epidemiol Biomarkers Prev,1999.8(10):p.901-5.
    107.Felix,C.A.,et al.,Association of CYP3A4 genotype with treatment-related leukemia.Proc Natl Acad Sci U S A,1998.95(22):p.13176-81.
    108.Kadlubar,F.F.,et al.,The CYP3A4~*1B variant is related to the onset of puberty,a known risk factor for the development of breast cancer.Cancer Epidemiol Biomarkers Prev,2003.12(4):p.327-31.
    109.Young,L.E.,et al.,Epigenetic change in IGF2R is associated with fetal overgrowth after sheep embryo culture.Nat Genet,2001.27(2):p.153-4.
    110.Jernstrom,H.,et al.,Genetic factors related to racial variation in plasma levels of insulin-like growth factor-1:implications for premenopausal breast cancer risk.Mol Genet Metab,2001.72(2):p.144-54.
    111.Lamba,J.K.,et al.,Common allelic variants of cytochrome P4503A4 and their prevalence in different populations.Pharmacogenetics,2002.12(2):p.121-32.
    112.Westlind,A.,et al.,Interindividual differences in hepatic expression of CYP3A4:relationship to genetic polymorphism in the 5'-upstream regulatory region.Biochem Biophys Res Commun,1999.259(1):p.201-5.
    113.Amirimani,B.,et al.,RESPONSE:re:modification of clinical presentation of prostate tumors by a novel genetic variant in CYP3A4.J Natl Cancer Inst,1999. 91(18):p.1588-90.
    114.Spurdle,A.B.,et al.,The CYP3A4~*1B polymorphism has no functional significance and is not associated with risk of breast or ovarian cancer.Pharmacogenetics,2002.12(5):p.355-66.
    115.Floyd,M.D.,et al.,Genotype-phenotype associations for common CYP3A4 and CYP3A5 variants in the basal and induced metabolism of midazolam in European- and African-American men and women.Pharmacogenetics,2003.13(10):p.595-606.
    116.Amirimani,B.,et al.,Increased transcriptional activity of the CYP3A4~*1B promoter variant.Environ Mol Mutagen,2003.42(4):p.299-305.
    117.Hamzeiy,H.,et al.,Transcriptional regulation of cytochrome P4503A4 gene expression:effects of inherited mutations in the 5'-flanking region.Xenobiotica,2003.33(11):p.1085-95.
    118.Jeon,J.and G.An,Gene tagging in rice:a high throughput system for functional genomics.Plant Sci,2001.161(2):p.211-219.
    119.Cecconi,F.and B.I.Meyer,Gene trap:a way to identify novel genes and unravel their biological function.FEBS Lett,2000.480(1):p.63-71.
    120.Waldron-Lynch,F.,et al.,Tumour necrosis factor 5' promoter single nucleotide polymorphisms influence susceptibility to rheumatoid arthritis(RA) in immunogenetically defined multiplex RA families.Genes Immun,2001.2(2):p.82-7.
    121.Lee,Y.S.and M.Mrksich,Protein chips:from concept to practice.Trends Biotechnol,2002.20(12 Suppl):p.S14-8.
    122.Nikaido,I.,et al.,EICO(Expression-based Imprint Candidate Organizer):finding disease-related imprinted genes.Nucleic Acids Res,2004.32(Database issue):p.D548-51.
    123.Knight,J.C.,et al.,In vivo characterization of regulatory polymorphisms by allele-specific quantification of RNA polymerase loading.Nat Genet,2003.33(4):p. 469-75.
    124.Fay,J.C.,G.J.Wyckoff,and C.I.Wu,Positive and negative selection on the human genome.Genetics,2001.158(3):p.1227-34.
    125.Akey,J.M.,et al.,Interrogating a high-density SNP map for signatures of natural selection.Genome Res,2002.12(12):p.1805-14.
    126.Feder,J.N.,et al.,A novel MHC class I-like gene is mutated in patients with hereditary haemochromatosis.Nat Genet,I996.13(4):p.399-408.
    127.Nielsen,D.M.,M.G.Ehm,and B.S.Weir,Detecting marker-disease association by testing for Hardy-Weinberg disequilibrium at a marker locus.Am J Hum Genet,1998.63(5):p.1531-40.
    128.Hohjoh,H.and K.Tokunaga,Allele-specific binding of the ubiquitous transcription factor OCT-1 to the functional single nucleotide polymorphism(SNP) sites in the tumor necrosis factor-alpha gene(TNFA) promoter Genes Immun,2001.2(2):p.105-9.
    129.Perutz,M.F.,Structure and function of haemoglobin.I.A tentative atomic model of horse oxyhaemoglobin.J Mol Biol,1965.13:p.646-68.
    130.Wu,M.S.,et al.,Promoter polymorphisms of tumor necrosis factor-alpha are associated with risk of gastric mucosa-associated lymphoid tissue lymphoma.Int J Cancer,2004.110(5):p.695-700.
    131.Ferrer-Costa,C.,M.Orozco,and X.de la Cruz,Characterization of disease-associated single amino acid polymorphisms in terms of sequence and structure properties.J Mol Biol,2002.315(4):p.771-86.
    132.Saunders,C.T.and D.Baker,Evaluation of structural and evolutionary contributions to deleterious mutation prediction.J Mol Biol,2002.322(4):p.891-901.
    133.Herrgard,S.,et al.,Prediction of deleterious functional effects of amino acid mutations using a library of structure-based function descriptors.Proteins,2003.53(4):p.806-16.
    134.Santibanez Koref,M.F.,et al.,A phylogenetic approach to assessing the significance of missense mutations in disease genes.Hum Mutat,2003.22(1):p.51-8.
    135.Krishnan,V.G.and D.R.Westhead,A comparative study of machine-learning methods to predict the effects of single nucleotide polymorphisms on protein function.Bioinformatics,2003.19(17):p.2199-209.
    136.Ng,P.C.and S.Henikoff,Predicting deleterious amino acid substitutions.Genome Res,2001.11(5):p.863-74.
    137.Haukim,N.,et al.,Cytokine gene polymorphism in human disease:on-line databases,supplement 2.Genes Immun,2002.3(6):p.313-30.
    138.Ng,P.C.and S.Henikoff,SIFT:Predicting amino acid changes that affect protein function.Nucleic Acids Res,2003.31(13):p.3812-4.
    139.Ramensky,V.,P.Bork,and S.Sunyaev,Human non-synonymous SNPs:server and survey.Nucleic Acids Res,2002.30(17):p.3894-900.
    140.Fleming,M.A.,et al.,Understanding missense mutations in the BRCA1 gene:an evolutionary approach.Proc Natl Acad Sci U S A,2003.100(3):p.1151-6.
    141.The ENCODE(ENCyclopedia Of DNA Elements) Project.Science,2004.306(5696):p.636-40.
    142.Rogan,P.K.,S.Svojanovsky,and J.S.Leeder,Information theory-based analysis of CYP2C19,CYP2D6 and CYP3A5 splicing mutations.Pharmacogenetics,2003.13(4):p.207-18.
    143.Pagani,F.and F.E.Baralle,Genomic variants in exons and introns:identifying the splicing spoilers.Nat Rev Genet,2004.5(5):p.389-96.
    144.Kryukov,G.V.,L.A.Pennacchio,and S.R.Sunyaev,Most rare missense alleles are deleterious in humans:implications for complex disease and association studies.Am J Hum Genet,2007.80(4):p.727-39.
    145.Schuetz,E.G.,Lessons from the CYP3A4 promoter.Mol Pharmacol,2004.65(2):p.279-81.
    146.Zeigler-Johnson,C.M.,et al.,Ethnic differences in the frequency of prostate cancer susceptibility alleles at SRD5A2 and CYP3A4.Hum Hered,2002.54(1):p.13-21.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700