用户名: 密码: 验证码:
北京西山废弃采石场生态恢复研究:自然恢复的过程、特征与机制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着经济的发展和现代化程度的提高,人类对矿产资源的开发利用也与日俱增,开山采石一方面极大地满足了人们物质生产的需求,另一方面造成对景观和自然生态系统的严重破坏,加强对废弃矿区受损生态系统的恢复与重建,已经成为生态学的重要研究课题。
     本研究以北京市西山(门头沟区)废弃采石场为例,运用空间代替时间的方法,在前期调查的基础上,选择了4个代表不同自然恢复时期的典型样地及1个未受采石影响对照样地,对自然生态恢复过程中土壤特性、植被变化规律、土壤种子库以及群落演替过程中早期物种的消退原因等进行了研究,以丰富恢复生态学的理论和指导生态恢复的实践。
     通过对废弃采石场自然生态恢复过程中土壤特征和植被特征研究发现:随着生态恢复的进行,土壤厚度、土壤有机质不断积累,土壤粒径、土壤容重、土壤pH值逐渐变小,土壤含水量、土壤全N、土壤全P、土壤全K以及速效N、速效P、速效K的含量逐渐增加,土壤理化性状逐渐得到改善。Pearson相关分析结果显示,群落的物种多样性、物种丰富度和地上生物量分别与其生境中土壤的含水量、容重、粉粒含量、粘粒含量、pH、有机质、全N、全P、全K、速效N、速效K之间存在显著相关(p<0.05),其中,与土壤容重、pH分别呈负相关,其余为正的相关。该结果表明,土壤性状的变化与群落结构动态相对应。土壤与植被的相互作用,共同推动着群落的演替。
     在生态恢复的不同阶段,组成群落的优势物种发生变化,在恢复1年、5年、15年和32年的样地中,优势植物分别为牛筋草(Eleusine indica)、狗尾草(Setariaviridis)、虎尾草(Chloris virgata)和狗尾草、荆条(Vitex negundo var.heterophylla)。随着群落演替的进行,植物群落物种组成、分科及生活型功能群结构也在改变。组成群落的物种数量总体呈增大趋势,在生态恢复过程中科的数目在不断增加,群落组成更加复杂化和多样化。随着生态恢复的进行,一年生植物的重要值逐渐减小,多年生植物和灌木的重要值逐渐增大。乔木在生态恢复的后期虽有零星出现,但所占的比重始终很小,这说明在当地矿区进行生态恢复时仅凭自然力几十年内难以恢复成森林生态系统,要想恢复成生态功能更强的森林生态系统,一定的人工措施是必要的。
     群落物种多样性、物种丰富度随着演替时间的延长先增加而后保持相对稳定,而植被总盖度和地上生物量呈不断增大趋势。相关分析表明,在不同恢复阶段的样地中,地上净初级生产力与Shannon-Wiener多样性指数及Margalef丰富度指数显著相关(p<0.01),在恢复1年的样地中,地上净初级生产力和生物多样性的关系呈线性负相关,恢复5年、15年的样地,地上净初级生产力随着生物多样性的增加呈现出线性递增的关系,到恢复的后期(大于32年),地上净初级生产力和物种多样性之间的关系为单峰曲线。这说明,在生态系统中,一定物种数量对生产力是必要的,但生态系统功能的维持,即初级生产力,主要是由群落中的优势种或功能群所决定的。
     研究样地自然生态恢复的状况表明:(1)北京西山采石废弃地在初期可以借助自然力实现初步的恢复,在自然恢复过程中,草本植物和灌木对采石场裸露废弃地表土的稳固和生态系统结构与功能的维持起着重要的作用,但在整个自然生态恢复过程中(包括大于50年的未受采矿影响的对照样地)乔木所占的比重始终很小,说明在当地的山地阳坡单靠自然力恢复很难形成森林群落,必须适当进行人工辅助。(2)一定数量的物种对维持态系统的功能是必要的,但对生态系统功能起关键作用的是功能群及优势物种,在生态恢复的实践中,要更加注重群落中植物功能群的组成和构建以及优势物种的选择和应用。
     通过对不同恢复阶段采石场废弃地种子库的研究,得到以下结果:从物种组成来看,本研究的土壤种子库共记录了35种植物,分属11个科,其中禾本科、菊科、马鞭草科和豆科占到总科数的69.23%-92.86%。在恢复1年的样地中,一年生草本占76.9%,随着恢复的进行,一年生草本的种数逐渐减少,多年生草本、半灌木灌木的种数逐渐增加。在所研究的不同恢复阶段的样地中,均未在种子库中发现乔木的种子。
     土壤种子库的密度随恢复时间的变化而变化,变动范围为269-5002粒.m~(-2)。随着生态恢复地进行,种子密度在恢复15年的样地中达到最大,然后呈减小趋势。土壤种子库的垂直分布特点是种子数随着土层深度的增加而降低,表现为0-3cm>3-6cm>6-10cm。
     土壤种子库物种多样性的变化表现为,随着演替的进行,优势度指数逐渐减小,而丰富度指数、均匀性指数和Shannon-Wiener多样性指数逐渐增大,恢复到32年时达到最大。土壤种子库和地上植被之间具有较大相似性。地上植被密度73%的变异可归结为土壤种子库密度的变异。在生态恢复过程中,土壤种子库和地上植被的3种相似性系数(Ochiai、Dice和Jaccard)具有相同的变化规律,3种相似性系数的变化范围分别为0.5-0.73、0.49-0.73和0.33-0.57。在恢复1年的样地中最小,恢复到15年时达到最大,以后随着恢复时间的延长又呈现下降的趋势。这说明在采石矿区生态恢复的过程中,土壤种子库对地上植被具有重要影响,在恢复的后期,植被成分主要受群落之间物种的相互作用决定,受种子库的影响降低。
     对不同恢复阶段样地的土壤种子库研究表明:(1)北京门头沟不同恢复阶段的采石场废弃地中含有相当数量的种子,并且在适宜的条件下能够萌发,可以为采石场废弃地初步的生态恢复提供的种源。(2)土壤种子库和地上植被在物种组成、密度、生物多样性以及相似性系数方面均具有较高的相似性。通过土壤种子库可以形成相对稳定的草本及灌丛群落,因此,在废弃采石场的生态恢复的初期,可以考虑利用土壤种子库的自然恢复力,如保留表土,这是一种经济而且有效的生态恢复措施。(3)土壤种子库中没有发现乔木物种,说明单纯依靠种子库难以在采石场废弃地上形成森林群落,采石场废弃地要想进一步恢复形成当地潜在的稳定森林群落,应当适当借助人力。
     对不同恢复阶段狗尾草(Setaria viridis(L.)Beauv.)生物量分配策略研究的研究结果表明:随着恢复时间的延长,茎、叶生物量及总生物量均增加,其中,茎的增加幅度最大,超过30%。而根、穗的生物量随着生态恢复的进行逐渐变小,其中穗的减幅最大,从恢复15年的样地,到恢复32年的样地,穗的生物量降低了37.6%。
     随着群落演替的进行,狗尾草显著提高了对茎的生物量分配,显著降低了对生殖构件和根的分配比率,对叶的分配虽有增加,但变化幅度较小。随着生态恢复的进程,狗尾草的地下/地上比值及根茎比逐渐减小,而茎叶比逐渐增大,并且各比值在不同样地间呈现出显著差异。相关分析结果显示,狗尾草茎生物量分配与根、叶、穗构件生物量分配间存在负相关关系,表明茎生物量分配与其他构件生物量分配间存在协调关系。
     通过狗尾草的生物量配置研究发现:在群落演替的后期,狗尾草为争夺光照而加大了对茎的生物量投资,减少了对生殖器官的投资比例,并最终造成狗尾草种子的减少,这可能是导致狗尾草退出演替序列的内在原因。
     总之,通过本研究发现,北京门头沟不同恢复阶段的采石场废弃地中含有相当数量的草本和灌木种子,并且在适宜的条件下能够萌发,可以为矿区的初步生态恢复提供种源,但要想进一步恢复形成当地潜在的稳定森林群落,必须采取适当的人工辅助措施。
The exploitation of natural resources has been increasing rapidly along with the development of economy and the modernization. The quarry is necessary to provide stones for the human beings, but it will destroy the landscape and natural ecosystem greatly. So, the restoration and reconstruction of damaged ecosystem caused by the quarry has become a hot topic of restoration ecology.
     The ecosystem restoration was studied in an abandoned quarry in Xishan Mountain in Beijing (Mentougou District) using ecosystems in different restoration stages to substitute the temporal restoration stages. Based on the pilot study, four typical plots and one comparison plot were selected to represent the different temporal restoration stages. The soil properties, the changes of the vegetation, the soil seed bank and the mechanisms of the community succession were studied to test and enrich the ecological theories and direct the ecological restoration practice.
     The studies on the soil properties and the vegetation characters in the abandoned quarry in Xishan Mountain found that: The soil particle size, soil bulk density and soil pH decreased along with the natural restoration, while the soil thickness, soil water content and soil nutrients increased along with the natural restoration. The increased soil nutrients include soil organic matter, total N, total P, total K, available N, available P, available K. The physical and chemical characteristics of soil were ameliorated significantly. The Pearson correlation analysis found that the species diversity, species richness and the aboveground biomass were correlated negatively with the soil bulk density and soil pH, while correlated positively with soil water content, percentage of fine sand (2-20μm)(%), percentage of clay (<2μm)(%), soil organic matter, total N, total P, total K, available N, available P, available K. These results showed that the changes of soil properties were corresponding to the changes of community structure. The interaction between the soil and vegetation may promote the community succession together.
     The dominant species of the communities changed with the ecological restoration. The Eleusine indica, Setaria viridis, Chloris virgata and Setaria viridis, Vitex negundo van heterophytla are the dominant species in the plots after one year, five years, fifteen years and thirty two years of restoration, respectively. Along with the community succession, the structure of the community changed significantly in terms of the composition of species, family and life forms. The number of species showed the trends of increase while the number of families increased gradually, which made the community more complex and diverse along with the succession time. The important value of annuals decreased, while the important value of perennials and shrubs increased gradually along with the restoration time. Only sporadic trees were found in the late of the restoration and their important value are small in the all the plots, which suggested that the natural restoration itself cannot restore forest ecosystems in 32 years and the human activities were needed to promote the restoration towards the forest ecosystems with more ecosystem services.
     The species diversity and species richness increased with the succession time at first and then tended to stabilize. The vegetation coverage and aboveground biomass increased along with the restoration stages in the study. The correlation analysis showed that the net aboveground primary production was correlated significantly with the Shannon-Wiener diversity index and Margalef richness index (p < 0.01). In the plots after one-year restoration, the net aboveground primary production was correlated negatively with the diversity indices; In the plots after five-year or fifteen-year restoration, the net aboveground primary production was correlated positively with the diversity indices; In the late restoration stages ( >32a ), a unimodal relationship was found between the net aboveground primary production and the diversity indices. The study suggested that the richness of species has the trend to promote the primary productivity of the ecosystem, but the relationship between them is not simple. In the ecological restoration, the restoration is of species richness is needed for the primary productivity, but the functional group and dominant species may play more important role in the function of the ecosystem.
     The studies on the vegetation in different restoration stages suggested that: (1) The abandoned quarry in Xishan Mountain could be restored by nature forces in the early stages. The restored herbs and shrubs could protect the topsoil and maintain the structure and function of the ecosystems. The important values of trees are small in the all the plots (including the comparison plot after more than 50 years of natural restoration), which suggested that the natural restoration itself cannot restore forest ecosystems in the studied sun-facing slopes and the human activities were needed to promote the restoration. (2) The richness of species is needed in maintain the function of the ecosystem, but the functional group and dominant species may play more important role in the function of the ecosystem. So, the composition of the functional group and the selection and build up of the dominant species may be more important in the ecological restoration.
     Based on the studies on the soil seed bank in abandoned quarry in the different restoration stages, 35 plants species belonging to 11 families were found in the soil bank. The number of species belonging to Poaceae, Compositae, Verbenaceae and Leguminosae amount to 69.23%-92.86% of all the species across different restoration stages. In the plots after one-year restoration, the annuals amount to the 76.9% of all the species. Along with the restoration time, the number of annual species decreased gradually, while the number of perennial and shrub species increased significantly. No seeds of trees were found in the seed bank of the studied plots in all the restoration stages.
     The density of soil seed bank varied significantly (from 269 to 5002 grain m~(-2))between the plots in different restoration stages. The density of soil seed in the plotafter 15-year restoration was the biggest, and then decrease gradually. The number ofseeds in soil bank decreased with the depth of the soil, the pattern is that 0-3cm > 3-6cm> 6-10cm.
     Along with the restoration stages, the dominance index decreased while the species richness index, evenness index and Shannon-Wiener diversity index increased gradually and come to the highest value in the plots after 32-year restoration. The soil seed bank and vegetation are similar in the study. 73% of the variance of the vegetation can be attributed to the variance of the soil seed bank. The indices of similarity (Ochiai, Dice and Jaccard) between the soil seed bank and vegetation have similar change trend. The three indices of similarity varied from 0.5 to 0.73, from 0.49 to 0.73, from 0.33 to 0.57, respectively. The indices of similarity in the plots after one-year restoration are the smallest and that in the plots after fifteen-year restoration are biggest After 15 years of restoration, the indices of similarity may tend to decrease along with the time. The results showed that the soil seed bank contributed significantly to the vegetation. In the late restoration stages, the composition of community was more influenced by the interactions between the plant species and the influences of seed bank may decrease gradually.
     The studies on the seed bank of different restoration stages suggested that: (1) There were abundant seeds that could germinate in suitable conditions in the abandoned quarry in Xishan Mountain in Beijing, which can provide seed resources for the elementary restoration. (2) The soil seed bank and vegetation are similar in terms of species composition, density, the indices of the diversity and similarities. The seed bank contributed to the formation of relatively stable communities of herbs and shrubs. So, the natural restoration using the soil seed bank should be considered first in the elementary restoration of abandoned quarry and preserving the topsoil to utilizing the soil seed bank is the economic and effective measure. (3). No seeds of trees were found in the seed bank of the studied plots in all the restoration stages, which suggested that the seed bank cannot restore forest ecosystems in the studied sun-facing slopes and the human activities were needed for the restoration towards the potential forest ecosystems.
     The studies on the biomass allocation of green foxtail (Setaria viridis (L.) Beauv.) in different restoration stages found that: Along with the restoration stages, the total biomass and the biomass of stems and leaves both increased. The biomass of stems increased the most, which is up to 30%. But, the biomass of roots and reproduction decreased gradually. The biomass of reproduction in the plots after 32 years of restoration decrease 37.6% comparing with that in the plots after 15 years of restoration.
     Along with the community succession, the green foxtail increased the percentage of biomass to the stems significantly while decreased the allocation to the reproduction and roots. The biomass to the leaves increased only a little. The ratio of belowground biomass to the aboveground biomass and the ratio of root to stem both decreased significantly along with the community succession, while the ratio of stems to leaves increased significantly. The correlation analysis found that the allocation of biomass to stem was negatively correlated with the allocation of biomass to other organs including roots, leaves and reproduction, which suggested the there was a tradeoff between the allocation of biomass to stems and to other organs.
     The studies on the biomass allocation found that the green foxtail increased the allocation of biomass to the stems while decreased the allocation to the reproduction in the late of the community succession, which is an adaptive response to scrabble for light resources. But this allocation pattern will passively decrease the seed production and may cause the green foxtail fade from the community succession.
     In conclusion, the study found that there were abundant seeds of herbs and shrubs that could germinate in suitable conditions in the abandoned quarry in Xishan Mountain in Beijing, which can provide seed resources for the elementary restoration. But the human activities were needed for the restoration towards the potential forest ecosystems.
引文
1.Aarssen L W.High productiviy in grassland ecosystems:effected by species diversity or productive species? Oikos,1997,80:183-184.
    2.Ackerly D D,Jasienske M.Size dependent variation of gender in high density stands of the monoecious annual,A mbrosia artemisiifolia(Asteraceae).Oecologia,1990,82:474-477.
    3.Adams R.Germination of Callitris seeds in relation to temperature,water stress,priming,and hydration-dehydration cycles.Journal of Arid Enviroments,1999,43:437-448.
    4.Aerts R,Chapinm F S.The mineral nutrition of wild plants revisited:a re-evaluation of processes and patterns.Advances in Ecological Research,2000,30:1-67.
    5.Agren G I,Franklin O.Root:shoot ratios,optimization and nitrogen productivity.Annals of Botany,2003,92:795-800.
    6.Agustin R,Adrian E.Small-scale spatial soil-plant relationship in semi-arid gypsum environments.Plant and Soil,2000,220:139-150.
    7.Amiaud B,Touzard B.The relationships between soil seed bank,aboveground vegetation and disturbances in old embanked marshlands of Western France.Flora,2004,199:25-35.
    8.Arahamson W G,Hershey B.Resource allocation and growth of Impatiens capensis(Balsaminaceae)in two habits.Bulletin of Torrey Botamical Club.1977,194:160-164.
    9.Armas C,Pugnaire F I.Plant interactions govern population dynamics in a semi-arid plant community.Journal of Ecology,2005,93:978-989.
    10.Ashton P M S,Harris P G,Thadani R.Soil seed bank dynamics in relation to topographic position of a mixed-deciduous forest in southern New England,USA. For Ecol Manag,1998,111:15-22.
    11.Augusto L,Dupouey J L,Picard J F,et al.Potential contribution of the seed bank in coniferous plantations to the restoration of native Deciduous forest vegetation.Acta Oecolog ica,2001,22:87-98.
    12.Bai Y F,Han X G,Wu J G,et al.Ecosystem stability and compensatory effects in the Inner Mongolia grassland.Nature,2004,431:181-184.
    13.Bailey D E,Gunn J,Handley J,et al.The construction of limestone eco systems on quarried rock slopes.In:Proceedings of the Environmental Workshop.Perth:Australian Mining Industry Council,1991,13-25.
    14.Bakker Chris,de Craaf Heiko F,Ernst Wilfried H O,van Bodegom Peter M.Does the seed bank contribute to the restoration of species-rich vegetation in wet dune slacks? Applied Vegetation Science,2005,8:39-48.
    15.Bazzaz F A,Grace J.Plant Resource Allocation.Academic Press,New York,1997.
    16.Bellot J,Maestre F T,Chirino E,et al.Afforestation with Pinus halepensis reduces native shrub performance in a Mediterranean semiarid area.Acta Oecologica,2004,25:7-15.
    17.Benedtti-Cecchi L.Unanticipated impacts of spatial variance of biodiversity on plant productivity.Ecology Letters,2005,8:791-799.
    18.Bigwood D W,Inouye D W.Spatial pattern analysis of seed banks:an improved method and optimized sampling.Ecology,1988,69:497-507.
    19.Blomqvist M M,Bekker R M,Vos P.Restoration of ditch bank plant species richness:The potential of the soil seed bank.Applied Vegetation Science,2003,6:179-188.
    20.Bloom A J,Chapin F S,Mooney H A.Resource limitation in plants-an economic analogy.Annual Review of Ecology and Systematics,1985,16:363-392.
    21.Bonet A.Secondary succession of semi-add Mediterranean old-fields in south-eastern Spain:insights for conservation and restoration of degraded lands.Journal of Arid Environments,2004,56:213-233.
    22.Borgegard S O.Vegetation development in abandoned gravel pits:effect of surronding vegetion,substrate and regionality.Journal of Vegetation Science,1990,1:670-680.
    23.Bossuyt B,Heyn M,Hermy M.Seed bank and vegetation composition of forest stands of varying age in central Belgium:consequences for regeneration of ancient forest vegetation.Plant Ecology,2002,162:33-48.
    24.Bowers J E.Seedling emergence on Sonoran Desert dunes.Journal of Arid Envirownents,1996,33:63-72.
    25.Bradshaw A D,Chadwick M J.The Restoration of Land.Oxford:Blackwell Scientific Publishers Ltd.,1980.
    26.Bradshaw A D.Restoration of Mined Lands-using Natural Process.Ecological Engineering,1997,8:255-269.
    27.Burton A J,Pregitzer K S,Hendrick R L.Relationships between fine root dynamics and nitrogen availability in Michigan northern hardwood forests.Oecologia,2000,125:389-399.
    28.Cabin R J,Marshall D L.The demographic role of soil seed banks.I.Spatial and temporal comparisons of below-and above-ground populations of the desert mustard Lesquerella fendleri.Journal of Ecology,2000,88:283-292.
    29.Casper B B,Jackson R B.Plant competition underground.Annual Review of Ecology and Systematics,1997,28:545-570.
    30.Caspersen J P,Pacala S W,Jenkins J C,Hunt G C,Moorcroft P R,Birdsey R A.Contributions of land-use history to carbon accumulation in U.S.forests.Science,2000,290:1148-1151.
    31.Cavers P B,Benoit D L.Seed banks in the arable land.In:Leck M A,Parker V T,Simpson R L.(Eds.),Ecology of Soil Seed Banks.Academic Press,San Diego,1989,309-328.
    32.Champness S S,Morris K.The population of buried variable seeds in relation to contrasting pasture and soil types.Journal of Ecology,1948,36:149-173.
    33.Chang E R,Jefferies R,Carleton T L.Relationship between vegetation and soil seed banks in an attic coastal marsh.Journal of Ecology,2001,89:367-384.
    34.Chapin F S Ⅲ.The mineral nutrition of wild plants.Annual Review of Ecology and Systematics,1980,11:233-260.
    35.Charley J L,West N E.Plant-induced soil chemical patterns in some shrubdominated semidesert ecosystems of Utah.Journal of Ecology,1975,63:945-963.
    36.Chen J,Stark J M.Plant species effects and carbon and nitrogen cycling in sagebrush crested wheatgrass soil.Soil Biology & Biochemistry,2000,32:47-57.
    37.Cheplick G.P.Life history trade-offs in Amphibromus scabrivalvis(Poaceae):allocation to clonal growth,storage and cleistoga mousre production.American Journal of Botony,1995,82:621-629.
    38.Christoffoleti P J,Caetano R S X.Soil seed banks.Science agriculture,1998,55:74-78.
    39.Clemente A S,Werner C,Maguas C,et al.Resto ration of a limestone quarry:Effect of soil amendments on the establishment of native Mediterranean sclerophyllous shrubs.Restoration Ecology,2004,12(1):20-28.
    40.Comas L H,Bouma T J,Eissenstat D M.Linking root traits to potential growth rate in six temperate tree species.Oecologia,2002,132,34-43.
    41.Connel J H,Slatyer R O.Mechanisms of succession in natural communities and their role in community stablity and organisation.Amer.Nat.,1977,111:1119-1144.
    42.Correia O,Clemente A S,Correia A I,Maguas C,Carolino M,Afonso A C,and Martins-Loucao M A.Quarry rehabilitation:a case study.In:Y.Villacampa,C.A.Brebbia,and J.L.Uso,editors.Ecosystems and sustainable development.Ⅲ.Advances in ecological sciences 10.Wit Press,Southampton,Boston,Massachusetts.2001,331-346.
    43.Crist J W,Stout G J.Relation between top and root size in herbaceous plants,Plant Physiology,1929,4:63-85.
    44.Cronin G,Lodge D M.Effects of light and nutrient availability on the growth,allocation,carbon/nitrogen balance,phenolic chemistry,and resistance to herbivory of two freshwater macrophytes.Oecologia,2003,137:32-41.
    45.Cullen W R,Wheater C P,Dunleavy P J.Establishment of species- rich vegetation on reclaimed limestone quarry faces in Derbyshire.Biological Conservation,1998,84:25-33.
    46.Daily G C.Restoring Value to the world's degraded lands.Science,1995,269:350-354.
    47.Darwin C R.The Origin of the Species by Means of Natural selection.New York:The New American Library,1859.
    48.Davidson R L.Effect of root/leaf temperature differentials on root/shoot ratios in some pasture grasses and clover,Annals of Botany,1969,33:561-569.
    49.Dessaint F,Chadoeuf R,Barralis G.Nine years' soil seed bank and weed vegetation relationships in an arable field without weed control.Journal of Applied Ecology,1997,34:123-130.
    50.Dessaint F,Chadoeup R,Barallis G.Spatial pattern analysis of weed seeds in the cultivated soil seed bank.Journal of Applied Ecology,1991,28:721-730.
    51.Dixon J M,Hambler D J.Experimental approach to the reclamation of a limestone quarry floor:the first three years.Environmental Conservation,1984,11:19-28.
    52.Dobson A D,Bradshaw A D,Baker A J M.Hopes for the future:restoration ecology and conservation biology.Science,1997,277:515-522.
    53.Donelan M,Thompson K.Distribution of buried viable seeds along a successional series.Biol Conserv,1980,17:297-311.
    54.Donnegan J A,Rebertus A J.Rates and mechanisms of subalpine forest succession along an environmental gradient.Ecology,1999,80:1370-1384.
    55.Douglas G.The weed flora of chemically-renewed lowland swards.Journal of British Grassland Society,1965,4:189-194.
    56.Egler F E.Vegetation science concepts.Ⅰ.Initial flouristic composition,a factor in old field vegetation development.Vegetatio,1954,14:412-417.
    57.Eissenstat D M,Yanai R D.The ecology of root lifespan.Advances in Ecological Research,1997,27:1-60.
    58.Elgersma A M.Primary forest succession on poor sandy soils as related to site factors.Biodiversity and Conservation,1998,7:193-206.
    59.Enquist B J,Allen A P,Brown J H,Gillooly J F,Kerkhoff A J,Niklas K J,et al.Biological scaling:Does the exception prove the rule? Nature,2007,445:E9-E10.
    60.Enquist B J,Niklas K J.Global allocation rules for patterns of biomass partitioning in seed plants.Science,2002,295:1517-1520.
    61.Enquist B J,West G B,Charnov E L,Brown J H.Allometric scaling of production and life-history variation in vascular plants.Nature,1999,401:907-911.
    62.Ericsson T.Growth and shoot:root ratio of seedlings in relation to nutrient availability.Plant Soil,1995,168-169;205-214.
    63.Escarre J,Hojussard C,Briane J P.Evolution of sex ratios in populations of Rumex acetosella after abanding cultiviation.Canadian Journal of Botany,1987,65(2):2668-2675.
    64.Escarre J,Hojussard C.Differences in Rumex acetosella L.populations along a secondary succession:I biomass allocation.Acta Oecologia,1989,3(3):297-302.
    65.Faliska K.Seed bank dynamics in abandoned meadows during a 20-year period in the Bialowieza National Park.Journal of Ecology,1999,87:461-475.
    66.Fay P K,Olson W A.Technique for separating weed seed from soil.Weed Science,1978,26:530-533.
    67.Fenner M.Seed Ecology.London:Chapman and Hall.1985,21-28.
    68.Fernando T M,Cortina J,Vallejo R.Are Ecosystem Composition,Structure,and Functional Status Related to Restoration Success?A Test from Semiarid Mediterranean Steppes.Restoration Ecology,2006,14:258-266.
    69.Field C,Mooney H A.The photosynthesis-nitrogen relation-ship in wild plants.In:Givinish T.J.ed.On the Economy of Plant Form and Function.Cambridge: Cambridge University Press.1986,25-55.
    70.Fisher F M,Zak J C,Cunni G L,et al.Water and nitrogen effects on growth and allocation patterns of creosotebush in the northern Chihuahua Desert.Journal of Range Management,1987,47:387-391.
    71.Fitter A H.Functional significance of root morphology and root system architecture.In:Fitter AH,eds.Ecological Interactions in Soil:Plants,Microbes and Animals.Oxford:Blackwell Scientific Press,1985,87-106.
    72.Forcella F.Prediction of weed seedling densities from buried seed reserves.Weed Res.,1992,32:29-38.
    73.Foster B L,Gross K L.Species richness in a successional grassland:effects of nitrogen enrichment and plant litter.Ecol.,1998,79:2593-2602.
    74.Fraterrigo J M,Turner M G,Pearson S M.Previous land use alters plant allocation and growth in forest herbs.Journal of Ecology,2006,94:548-557.
    75.Gadgil M,Bossert W H.Life historical consequences of natural selection.American Naturalist,1970,104:1-24.
    76.Gardiner D.Revegetation status of reclaimed abandoned mined land in western north Dakota.Arid soil research and rehabilitation,1993,7:79-84.
    77.Garner W,Steinberger Y.A proposed mechanism for the formation of "Fertile Island" in the desert ecosystem.Journal of Arid Environments,1989,16:257-262.
    78.Garnier E.Resource capture,biomass allocation and growth in herbaceous plants.Trends in Ecology and Evolution,1991,6:126-131.
    79.Gary G,Mittelbach,Steiner C F,et al.What is the observed relation between species richness and productivity.Ecology,2001,82(9):2381-2396.
    80.Gedroc J J,McConnaughay K D M,Coleman J S.Plasticity in root/shoot partitioning:optimal,ontogenetic,or both? Functional Ecology,1996,10:44-50.
    81.Givnish T J.On the adaptive significance of leaf height in forest herbs.American Naturalist,1982,120:353-381.
    82.Glynn C,Herms D A,Egawa M,Hansen R,Mattson W J.Effects of nutrient availability on biomass allocation as well as constitutive and rapid induced herbivore resistance in poplar.Oikos,2003,101:385-397.
    83.Goldberg D E,Miller T E.Effects of different resource additions on species diversity in an annual plant community.Ecology,1990,71:213-235.
    84.Gough L,Grace J B,Taylo K L.The relationship between species richness and community biomass-the importance of environmental variables.Oikos,1994,70:271-279.
    85.Grechi I,Vivin P,Hilbert G,Milin S,Robert T,Gaudillere J P.Effect of light and nitrogen supply on internal C:N balance and control of root-to-shoot biomass allocation in grapevine.Environmental and Experimental Botany,2007,59:139-149.
    86.Grime J P,Campbell B D,Mackey J M L,et al.Root plasticity,nitrogen capture and competitive ability.In:Atkinson A,eds.Plant Root Growth:An Ecological Perspective.Oxford:Blackwell Scientific Press,1991,381-397.
    87.Grime J P.Benefits of plant diversity to ecosystems:immediate,filter and founder effects.Journal of Ecology,1998,86:902-910.
    88.Grime J P.Biodiversity and ecosystem function:the debate deepens.Science,1997,277:1260-1261.
    89.Grime J P.Evidence for the existence of three primary strategies in plants and its relevance to ecological and evolutionary theory.American Naturalist,1977,111:1169-1194.
    90.Grime J P.Seed bank in ecological perspective.In:Leck,M.A.,V.T.Parker & R.L.Simpson eds.Ecology of soil seed bank.San Diego:Academic Press,1989,ⅩⅥ-ⅩⅪ.
    91.Grime J P.The C-S-R model of primary plant strategies-origins implications and tests.In:Plant Evolutionary Biology.Chanpman & Hall,London.1988,317-393.
    92.Grimm N B,Fisher S G.Nitrogen limitation in a Sonoran Desert stream.Journal of the North American Benthological Society,1986,5:2-15.
    93.Gunn J,Bailey D.Limestone quarrying and quarry reclamation in Britain.Environmental Geology,1993,21:167-172.
    94.Gutierrez J P,,Arancio G,Jaksic F M.Variation in vegetation and seed bank in a Chilean semiarid community affected by ENSO 1997.Journal of Vegetation Science,2000,11:641-648.
    95.Hammer R D,O'Brier R G,Lewis R J.Temporal and spatial soil variability on three forested landtypes on the mid Cumberland plateau.Soil.Sci.Sco.Am.J.,1987,51:1320-1326.
    96.Harper J L.Population biology of plants.London:Academic Press,UK.1977.
    97.Harris J A,Birch P,Palmer J.Land restoration and reclamation:principles and practice.Longman,Singapore,1996.
    98.Hector A,Schmid B,Beierkuhnlein C,et al.Plant diversity and productivity experiments in European grasslands.Science,1999,286:1123-1127.
    99.Henderson C B,Petersen K E,Redak R A.Spatial and temporal patterns in the seed bank and vegetation of a desert grassland community.Journal of Ecology,1988,76:717-728.
    100.Hendrick R L,Pretitzer K S.The dynamics of fine root,length,biomass,and nitrogen content in two northern hardwood forests.Ecoscience,1993,4:99-105.
    101.Hendricks J J,Nadelhoffer K J,Aber J D.Assessing the role of free roots in carbon and nutrient cycling.Trends Ecol Evol,1993,8:174-178.
    102.Henry M,Stevens H,CarsonW P.Plant density determine species richness along an experimental fertility gradient.Ecology,1999,80:455-465.
    103.Hermans C,Hammond J P,White P J,et al.How do plants respond to nutrient shortage by biomass allocation? Trends in plant science,2006,11(12):610-617.
    104.Higgs E S.What is good ecological restoration? Conservation Biology,1997,11:338-348.
    105.Hobbs R J,Harris J A.Restoration ecology:Repairing the Earth's Ecosystems in the New Millennium.Restoration Ecology,2001,9(2):239-246.
    106.Hooper D U,Vitousek P M.The effect of plant competition and diversity on ecosystem processes.Science,1997,277:1302-1305.
    107.Hooper DU.The role of complementarity and competition in ecosystem responses to variation in plant diversity.Ecology,1998,79:704-719.
    108.Hughes J B,Petchey O L.Merging perspectives on biodiversity and ecosystem functioning.Trends in Ecology and Evolution,2001,16:222-223.
    109.Humphries R N.Landscaping hard rock quarry faces.Landscape Design,1979,127:34-37.
    110.Hunt H W,Morgan J A,Read J J.Simulating growth and root-shoot partition in prairie grasses under elevated atmospheric CO_2 and water stress.Annals of Botmy,1998,81:489-501.
    111.Hunt R,Lloyd P S.Growth and partitioning.Now Phytol.,1987,106:235-249.
    112.Hunt R.Further observations on root-shoot equilibria in perennial Ryegrass (Lolium perenne L.),Annals of Botany,1975,39:745-755.
    113.Huston M A,Aarssen LW,Austin M P,et al.No consistent effect of plant diversity on productivity.Science,2000,289:1255.
    114.Huston M A.Hidden treatments in ecological experiments:re-evaluating the ecosystem function of biodiversity.Oecologia,1997,110:449-460.
    115.Jackson R B,Caldwell M M.Geostatistical patterns of soil heterogeneity around individual perennial plants.Journal of Ecology,1993,81:683-692.
    116.James F,Cahill J R.Interaction between root and shoot competition vary among species.Oikos,2002,99:101-112.
    117.Jenny H.The soil resource,New York:Springer-Verlag,1980.
    118.Jim C Y.Ecological and Landscape Rehabilitation of a Quarry Site in Hong Kong.Restoration Ecology,2001,9:85-94.
    119.Jimenez H E,Armesto J J.Importance of the soil seed bank of disturbed sites in Chilean matorral in early secondary succession.J.Veg.Sci.,1992,3:579-586.
    120.John E,DaleM R T.Environmental correlates of species distribution in a saxicolous lichen community.Journal of Vegetation Science,1990,1:385-392.
    121.Johnannes M H,David T.Dynamics of soil nitrogen and carbon accumulation for 61 years after agricultural abandonment.Ecology,2000,81:88-99.
    122.Johnson E A.Buried seed populations in the subarctic forest east of Great Slave Lake,Northwest Territories.Canadian Journal Botany,1975,53:2933-2941.
    123.Johnson S.Effects of water level and phosphorus enrichment on seedling emergence from marsh seed banks collected from northern Belize.Aquatic Botany,2004,79:311-323.
    124.Johnston A,Smoliak S,Stringer P W.Viable seed population in Alberta prairie top soils.Canadian Journal of Plant Science,1969,49:75-82.
    125.Jordan D F.Productivity of a tropical forest and its relation to a world pattern of energy storage.J.Ecol.,1971,59:425-433.
    126.Jordan W R Ⅲ,Gilpin M E,Aber J D.Restoration Ecology,a synthetic approach to ecological research.Cambridge Univerdity Press,1987.
    127.Jutila B E,Heli M.Seed bank of grazed and ungrazed Baltic seashore meadows.Journal of Vegetation Science,1998,9:395-480.
    128.Kaiser J.Rift over biodiversity divides ecologists.Science,2000,289:1282-1283.
    129.Kalamees R,Zobel M.Soil seed bank composition in different successional stages of a species rich wooded meadow in Laelatu,western Estonia.Acta Oecol,1998,19:175-180.
    130.Karel P,Petr P.How do species dominating in succession differ from other? Journal of vegetation Science,1999,10:383-392.
    131.Kassen R,Alcus B,Graham B,et al.Diversity peaks at intermediate productivity in a laboratory microcosm.Nature,2000,406:508-511.
    132.Kemp P R.seed bank and vegetation processes in desers.In:Leck,M.A.,V T.Parker & R.L.Simpson eds.Ecology of soil seed bank.San Diego,Academic Press.1989,257-282.
    133.Khater C,Martin A,Maillet J.Spontaneous vegetation dynamics and resto ration prospects for limestone quarries in Lebanon.Applied Vegetation Science,2003,6:199-204.
    134.King DA.Allocation of above-ground growth is related to light in temperate deciduous saplings.Functional Ecology,2003,17:482-488.
    135.Kondrat K Y,Korzov V I,Rudneva L B.Determination of soil weediness by the photometric method.Doklady Botany Science,1986,284:99-102.
    136.Kost D A,Vimmerestedt J P,Brown J H.Topsoiling,ripping,and fertilizing effects on tree growth and nutrition on calcareous minesoils.Forest ecology and management,1988,103:307-319.
    137.Kostel-Hughes F,Young T P.The soil seed bankand its relationship to the aboveground vegetation in deciduous forests in New YorkCity.Urban Ecosystems,1998,2:43-59.
    138.Larcher W.(翟志席译).植物生态生理学.北京:中国农业大学出版社,1991.
    139.Lavorel S,Debussche M,Lebreton J D,Lepan J.Seasonal patterns in the seed bank of Mediterranean old fields.Oikos,1993,67:114-128.
    140.Lawton J H.What do species do in ecosystems.Oikos,1994,71:367-374.
    141.Leck M A,Leck C F.A ten-year seed bank study of old field succession in central New Jersey.Journal of the Torrey Botanical Society,1998,125:11-32.
    142.Leck M A,Simpson R L.Seed bank of a freshwater tidal wetland:turnover and relationship to vegetation change.American Journal of Botany,1987,74:360-370.
    143.Leckie S,Velland M,Bell G,Waterway J,Lechwicz M J.The seed bank in an old-growth,temperate deciduous forest.Canadian Journal of Botany,2000,78:181-192.
    144.Leek M A,Graveline K J.The seed bank of a fresh-water tidal marsh.American Journal of Botany,1979,66:1006-1015.
    145.Levassor C,Ortega M,Peco B.Seed bank dynamics of Mediterranean pastures subjected to mechanical disturbance.J.Veg.Sci.,1990,1:339-344.
    146.Loreau M,Naeem S,Inchausti P,etal.Biodiversity and ecosystem functioning: current knowledge and future challenges.Science,2001,294:804-808.
    147.Loreau M.Biodiversity and ecosystem functioning:recent theoretical advances.Oikos,2000,91:3-17.
    148.Lortie C J,Turkington R.The effect of initial seed density on the structure of a desert annual plant community.Journal of Ecology,2002,90:435-445.
    149.Lyaruu H V M,Baekeus I.Soil seed bank and regeneration potential on eroded hill slopes in the Kondoa Irangi Hills,central Tanzania.Applied Vegetation Science,1999,2:209-214.
    150.MaeGibbon R.Mine site restoration using native plants:a viable option.New Zealand mining,1994,1333-1337.
    151.Maestre F T,Cortina J.Do positive interactions increase with abiotic stress? A test from a semi-arid steppe.Proceedings of the Royal Society of London,2004,B 271:S331-S333.
    152.Maranon T.Soil seed bank and community dynamics in an annual-dominated Mediterranean salt-marsh.Journal of Vegetation Science,1998,9:371-378.
    153.Margalef R.On certain unifying principles in ecology.American Naturalist.,1963,97:357-374.
    154.Marks P L.The role of pin cherry(Prunus pensy lanica L.)in the maintains of stability in northern hardwood ecosystems.Ecological Monographs,1974,44:73-88.
    155.Marler R J,Stromberg J C,Patten D T..Growth response of Populus fremontii,Salix gooddingii,and Tamarix ramosissima seedlings under different nitrogen and phosphorus concentrations.Journal of Arid Environments,2001,49:133-146.
    156.Marrs R H,Bradshaw A D.Nitrogen accumulation,cycling and the reclamation of China clay wastes.Journal of Environmental Management,1982,15:139-157.
    157.Mata-Gonzalez R,Sosebee R E,Wan C.Shoot and root biomass of desert grasses as affected by biosolids application.Journal of Arid Environments,2002,50:177-488.
    158.Matlack G R.Plant species migration in a mixed-history forest landscape in eastern North America.Ecology,1994,75:1491-1502.
    159.Matus G,Verhagen R,Bekker R M,et al.Restoration of the Cirsio dissecti-Molinietum in The Netherlands:Can we rely on the soil seed banks?Applied Vegetation Science,2003,6:73-84.
    160.McConnaughay K D M,Coleman J S.Biomass allocation in plants:ontogeny or optimality?.A test along three resource gradients.Ecology,1999,80:2581-2593.
    161.McDonald AW,Bakker J P,Vegelin K.Seed bank classification and its importance for the restoration of species-rich flood-meadows.J.Veget.Sci.,1996,7:157-164.
    162.Meerts P,Grommesch C.Soil seed banks in a heavy-metal polluted grassland at Prayon(Belgium).Plant Ecology,2001,155:35-45.
    163.Melillo J M,Aber J D,Muratore J F.Nitrogen and lignin control of hardwood leaf litter decomposition dynamics.Ecology,1982,63:621-626.
    164.Michalet R.Is facilitation in arid environments the result of direct or complex interactions.New Phytologist,2006,169:3-6.
    165.Milberg P.Soil seed bank after eighteen years of succession from grassland to forest,Oiks,1995,72:3-13.
    166.Mittelbach G G,Steiner C F,Scheiner S M,et al.What is the observed relationship between species richness and productivity? Ecology,2001,82:2381-2396.
    167.Miyawaki A.Restoration of urban green environments based on the theories of vegetation ecology.Ecological Engineering,1998,11:157-165.
    168.Moles A T,Drake D R.Potential of the seed rain and seed bank to regeneration of native forest under plantation pine in New Zealand.N.Z.J.Bet.,1999,37:83-93.
    169.Moreno-Penaranda R,Lloret F,Alcaniz J M..Effects of Sewage Sludge on Plant Community Composition in Restored Limestone Quarries.Restoration Ecology,2004,12(2):290-296.
    170.Muller I,Schmid B,Weiner J.The effect of nutrient availability on biomass allocation patterns in 27 species of herbaceous plants,Perspectives in Plant Ecology, Evolution and Systematic.s,2000,3:115-127.
    171.Nadelhoffer K J.Potential effects of nitrogen deposition on fine-root production in forest ecosystems.New Phytol,2000,147:131-139.
    172.Naeem S,Li S.Biodiversity enhances ecosystem reliability.Nature,1997,390:507-509.
    173.Naeem S,Thompson L J,Lawler S P,et al.Declining biodiversity can alter the performance of ecosystems.Nature,1994,368:734-736.
    174.Nathalie C,Jean R E,Bruno C,Jacques C.Modelling vertical and lateral seed bank movements during mouleboard ploughing.European Jouranl of Agronomy,2000,13(2~3):111-124.
    175.Ne'Eman G,Izhaki I.The effect of stand age and microhabitat on soil seed banks in Mediterranean Aleppo pine forests after fire.Plant Ecol.,1999,144:115-125.
    176.Newell S J,Framer E J.Reproductive strategies in herbaceous plant communities during succession.Ecology,1978,59:228-234.
    177.Nicol J M,Ganf G G,Pelton CzA.Seed banks of a southern Australian wetland:the influence of water regime on the final floristic composition.Plant Ecology,2003,168:191-205.
    178.Niinemets U.Global-scale climatic controls of leaf dry mass per area,density,and thickness in trees and shrubs.Ecology,2001,82:453-469.
    179.Niklas K J,Enquist B J.Canonical rules for plant organ biomass partitioning and annual allocation,American Journal of Botany,2002,89:812-819.
    180.Niklas K J.Modelling below- and above-ground biomass for non- woody and woody plants.Ann.Bot.,2005,95:315-321.
    181.Novak J,Prach K.Vegetation succession in basalt quarries:Pattern on a landscape scale.Applied Vegetation Science,2003,6:111-116.
    182.Odum E P.The strategy of ecosystem development.Science,1969,164:262-270.
    183.Oksanen J.Is the humped relationship between species richness and biomass an artefact due to plot size? Journal of Ecology,1996,84:293-295.
    184.Olff H,Ritchie M E.Effects of herbivores on grassland plant diversity.Trends in Ecology & Evolution,1998,13:261-265.
    185.Osonc Y,Tateno M.Applicability and limitations of optimal biomass allocation models:a test of two species from fertile and infertile habitats.Ann Bot,2005,95:1211-1220.
    186.Pacala S,Tilman D.The transition from sampling to complementarity.In:Kinzig A,Pacala S and Tilman D(eds.),The Functional Consequences of Biodiversity:Empirical Progress and Theoretical Extensions.Princeton University Press,Princeton,2002,151-166.
    187.Page A L,Miller R H,Keeney D R.Methods of Soil Analysis.2~(nd)E d.Wisconsin:ASA and SSSA,1982.
    188.Parker V T,Leck M A.Relationships of seed bank to plant distribution patterns in a fresh water tidal wetland.American Journal of Botany,1985,72:161-174.
    189.Passioura J B.Soil structure and plant growth.Aust.J.Soil Res.,1991,29:717-728.
    190.Peco B,Ortega M,Levassor C.Similarity between seed bank and vegetation in Mediterranean grassland:a predictive model.J.Veg.Sci.1998,9:815-828.
    191.Pianka E R.On r- and K-selection.American Naturalist,1970,104:592-597.
    192.Pichett S T A.Population patterns through twenty years of oldfield succession.Vegetatio,1982,49:45-59.
    193.Pigott C D,Taylor K.The distribution of some woodland herbs in relation to the supply of N and P in the soil.Journal of Ecology,1964,52:175-185.
    194.Pitelka L F,Stanton D S,Peckenhan M O.Effects of light and density on resource allocation in a forest herb,Aster acuminatux(Compositae)American Journal of Botany,1980,67:942-948.
    195.Poorter H,Nagel O.The role ofbiomass allocation in the growth response of plants to different levels of light,CO_2,nutrients and water:a quantitative review.Australian Journal of Plant Physiology,2000,27,595-607.
    196.Poorter L.Light-dependent changes in biomass allocation and their importance for growth ofrainforest tree species.Funct.Ecol.,2001,15:113-123.
    197.Porembski S,Theisen I,Barthlott W.Biomass allocation patterns in terrestrial,epiphytic and aquatic species of Utricularia(Lentibulariaceae).Flora,2006,201:477-482.
    198.Rajaniemi T K.Explaining productivity-diversity relationships in plants.Oikos,2003,101:449-457.
    199.Ramsay W J H.Bulk soil handling for quarry restoration.Soil use and management,1986,2:30-39.
    200.Rapport D J,Costanza R,McMichael A J.Assessing ecosystem health.Trends in Ecology and Evolution,1998,13:397-402.
    201.Rapson G L,Thompson K,Ghodgson J.The humped relationship between species richness and biomass-testing its sensitivity to sample quadrat size.Ecology,1997,85:99-100.
    202.Raupach M.Studies in the variation of soil reaction.Ⅱ.Seasonal variations at Baroga,N.S.W.Australian Journal of Agricultural Research,1951,2:73-82.
    203.Redmann R E.Production ecology of grassland plant communities in Western North Dakota.Ecological Monogaphs,1975,45:83-106.
    204.Reekie E G,Bazzaa F A.Peproductive effort in plants.2.Does carbon reflect allocation of other resources? Am.Nat.1987,129:897-906.
    205.Reich P B,Oleksyn J.Global patterns of plant leaf N and P in relation to temperature and latitude.Proceedings of the National Academy of Sciences,USA,2004,101:11001-11006.
    206.Reich P B,Tjoelker M G,Walters M B,Vanderklein D W,Buschera C.Close association of RG R,leaf and root morphology,seed mass and shade tolerance in seedlings of nine boreal tree species grown in high and low light.Functional Ecology,1998,12:327-338.
    207.Reichman J.Spatial and temporal variation of seed distribution in Sonoran desert soils.Journal of Biogeography,1984,11:1-11.
    208.Reynolds H L,D'Antonio C.The ecological significance of plasticity in root weight ratio in response nitrogen:opinion.Plant and Soil,1996,185:75-97.
    209.Rhoades C C,Miller S P,Shea M M.Soil properties and soil nitrogen dynamics of prairie-like forest openings and surrounding forests in Kentucky's knobs region.Amer Midland Natura,2004,152(1):1-11.
    210.Rice S A,Bazzaz F A.Growth consequences of plasticity of plant traits in response to light conditions.Oecologia,1989,78:508-512.
    211.Richards R T,Chambers J C,Ross C.Use of native plants on federal lands:policy and practice.Journal of range management,1998,51:625-632.
    212.Riley J D,Craft I W,Rimmer D L,Smith R S.Restoration of magnesian limestone grassland:Optimizing the time for seed collection by vacuum harvesting.Restoration Ecology,2004,3:313-317.
    213.Ritchie M E,Olff H.Spatial scaling laws yield a synthetic theory of biodiversity.Nature,1999,400:557-560.
    214.Roberts H A.Seed banks in soil.In:Coaker TH.(ed).Advances in Applied Biology.London:Academic Press.1981,1-55.
    215.Roberts J.A study of the root distribution and growth in a Pinussylvestris L.(Scots pine)plantation in East Anglia.Plant Soil,1976,44:607-621.
    216.Rogers H H,Runion G B,Krupa S V.Plant responses to atmospheric CO_2enrichment with emphasis on roots and the rhizosphere.Environment Pollution,1994,83:155-189.
    217.Ruiz-Jaen M C,Aide T M.Restoration Success:How Is It Being Measured?Restoration Ecology,2005b,13:569-577.
    218.Ruiz-Jaen MC,Aide T M.Vegetation structure,species diversity,and ecosystem processes as measures of restoration success.Forest Ecology and Management,2005a,218:159-173.
    219.Ruthrof K X.Improving the success of limestone quarry revegetation.Cave and karst science,1997,24:117-125.
    220.Rydgren K,Hestmark G,Oldand R H,Revegetation following experimental disturbance in a boreal old-growth Picea abies forest.J.Veg.Sci.,1998,9:763-776.
    221.Ryel R J,Caldwell M M.Nutrient acquisition from soils with patchy nutrient distributions as assessed with simulation models.Ecology,1998,79:2735-2744.
    222.Sami A,Anna M M.Optimality and phenotypic plasticity of shoot-to-root ratio under variable light and nutrient availabilities.Evolutionary Ecology,2002,16:67-76.
    223.Sankarn M,McNaughton S J.Determinants of biodiversity regulate compositional stability of communities.Nature,1999,401:691-693.
    224.Schaffers A P.Soil,biomass,and management of semi-natural vegetation-Part Ⅱ.Factors controlling species diversity.Plant Ecology,2002,158:247-268.
    225.Schenkeveld A J,Verkaar H J.The ecology of short-lived forbs in chalk grasslands:distribution of germinative seeds and its significance for seedling emergence.Journal of Biogeography,1984,11:251-260.
    226.Schiel D R.Growth survival and reproduction of two species of marine algae at different diversities in natural stands.J.Eco,1985,3:199-217.
    227.Schlesinger W H,Raikes J A,Hartley A E,Cross A F.On the spatial pattern of soil nutrients in grassland ecosystem.Ecology,1996,77:364-374.
    228.Schlesinger W H,Reynolds J F,Cunningham G L,Huenneke L F,Jarrell R A,Virginia W G.Biological feedbacks in global desertification.Science,1990,247:1043-1048.
    229.Seith B,George E,Marschner H,et al.Effects of varied soil nitrogen supply on Norway spruce(Picea abies L.Karst.)I Shoot and root growth and nutrient uptake.Plant Soil,1996,184:291-298.
    230.SER.Society for Ecological Restoration International Science & Policy Working Group.The SER International Primer on Ecological Restoration(available from http//www.ser.org)accessed in July 2005.Society for Ecological Restoration International,Tucson,Arizona.2004.
    231.Shaukat S S,Siddiqui I A.Spatial pattern analysis of seeds of an arable soil seed bankand its relationship with above-ground vegetation in an arid region.Journal of Arid Environments,2004,57:311-327.
    232.Silvertown J W.Introduction to Plant Ecology.New York:Longman Scientific -Technical and John Wiley & Sons Inc,1987,211-220.
    233.Simpson R.L.Ecology of Soil Seed Bank.San Diego:Academic Press,1989.
    234.Smith N S.Variation in response to defoliation between population of Bouteloua curtipendula var.caespitosa with different livestock grazing histories.American Journal of Botany,1998,85:1266-1272.
    235.Smith R S,Shiel R S,Ward D M,Corkhill P,Sanderson R A.Soil seed banks and the effects of meadow management on vegetation change in a 10-year meadow field trial.Journal of Applied Ecology,2002,39:279-293.
    236.Snell T W,Burgh D G.The effects of density on resources partitioning in Chamaesyce hirta(Euphnrbiaceae).Ecology,1975,56:742-746.
    237.Snyman H A.Rangeland degradation in a semi-arid South Africa-Ⅰ:influence on seasonal root distribution,root/shoot ratios and water-use efficiency.Journal of Arid Environments,2005,60:457-481.
    238.Sopper W E.Reclamation of mine land using municipal sludge.Advances in Soil Science,1992,17:351-431.
    239.Standifer L C A.Technique for estimating weed seed population in cultivated soil.Weed Science,1980,28:134-139.
    240.Stulen I,den Hertog J.Root growth and functioning under atmospheric CO_2enrichment.Vegetation,1993,104/105:99-115.
    241.Sultan SE.Phenotypic plasticity for plant development,function and life history.Trends Plant Sci,2000,5:537-542.
    242.Sutherland S,Vickery J R.Trade-offs between sexual and asexual reproduction in the genus Mimulus.Oecologia,1988,76:330-335.
    243.Suzuki J,Hara T.Partitioning of stored resources between shoots in a done,and its effects on shoot size hierarchy.Ann Bot,2001,87:655-659.
    244.Tani T,Kudoh H,Kachi N.Responses of root length/leaf area ratio and specific root length of an understory herb,Pteridoplryllum racemosum,to increases in irradiance.Plant and Soil,2003,255:227-237.
    245.Thatoi H,Misra A K.Comparative growth,nodulation and total nitrogen content of six tree legume species grown in Tom mine waste soil.Journal of Tropical Forest Science,1995,8:107-115.
    246.Thompson K,Bakker J P,Bekker R M.The soil seed banks of North West Europe:methodology,density and longevity.Cambridge University Press.1997.
    247.Thompson K,Grime J P.Seasonal variation in the seed bank of herbaceous species in ten constrasting habitats.Journal of Ecology,1979,67:893-921.
    248.Thompson K.Mineral nutrient content In:Methods in Comparative Plant Ecology,ed.G A.F.Hendry & J.P.Grime,London:Chapman & Hall,1993,192-194.
    249.Thompson K.The functional ecology of seed bank.In:Fenner,M.ed.Seeds-the ecology of regeneration in plant communities.Wallingford:CAB International,1992,231-258.
    250.Thornley J H M.A balanced quantitative model for root:shoot ratios in vegetative plants,Annals of Botany,1972,36:431-441.
    251.Thorsen J A,Crabtree G.Washing equipment for separating weed seed from soil.Weed Science,1977,25:41-42.
    252.Tilman D,Knops J,Wedin D,Reich P.The influence of functional diversity and composition on ecosystem processes.Science,1997,277:1300-1302.
    253.Tilman D,Lehman C L.Human-caused environmental change:impacts on plant diversity and evolution.Proceedings of the National Academy of Sciences,2001,98:5433-5440.
    254.Tilman D,Pacala S.The maintenance of species richness in plant communities In: Ricklefs,R.E.,Schluter,D.(eds)Species Diversity in Ecological Communities,Chicago:The University of Chicago Press,1993,13-25.
    255.Tilman D,Reich P B,Knops J,et al.Diversity and productivity in a long-term grassland experiment.Science,2001,294:843-845.
    256.Tilman D,Wedin D,Knopa J.Productivity and sustainability influenced by biodiversity in grassland ecosystems.Nature,1996,379:718-720.
    257.Tilman D.Nitrogen-limited growth in plants from different successional stages.Ecology,1986,67:555-563.
    258.Tilman D.Plant Strategies and the Dynamics and Structure of Plant Communities.Princeton University Press,Princeton,New Jersey.1988.
    259.Tilman D.Resource competition and community structure.Princeton University Press,Princeton,1982.
    260.Tilman D.The resource ratio hypothesis of succession.American Naturlist,1985,125:827-852.
    261.Tingey D T,Johnson M G.,Phillip D L,Johnson D W,Ball J T.Effects of elevated CO_2 and nitrogen on the synchrony of shoot and root growth in ponderosa pine.Tree Physiology,1996,16:905-914.
    262.Touzard B,Amiaud B,Langlois E,Lemauviel S,Clement B.The relationships between soil seed bank,aboveground vegetation and disturbances in an eutrophic alluvial wetland of Western France.Flora,2002,197:175-185.
    263.Trangrnar B B,Yost R S,Wade M K,Uehara G,Sudjadi M.Spatial variation of soil properties and rice yield on recently cleared land.Soil Sci.Soc.of Amer,1987,51:668-674.
    264.Troumbis A Y.No observational evidence for diversity enhancing productivity in Mediterranean shrublands? A reply to Wardle.Oecologia,2001,129:622-623.
    265.Uhl C,Clark K.Seed ecology of selected Amazon basin succession species.Botanical Gazette,1983,144:419-425.
    266.Ursic K A,Kenkel N C,Larson D W.Revegetation dynamics of cliff face in abandoned limestone quarries.Journal of Applied Ecology,1997,34:289-303.
    267.Vandermeer J.The ecology of intercropping.Cambridge University Press,New York.1989.
    268.Villar R,Ueneklaas E J,Jordano P,et al.Relative growth rate and biomass allocation in 20 Aegilops(Poaceae)species.New Phytol.,1998,140:425-437.
    269.Vinton M A,Burke I C.Interactions between individual plant species and soil nutrient status in shortgrass steppe.Ecology,1995,76:1116-1133.
    270.Vitonsek P M,Gosz J R,Grief C C,Melillo J M,Refiners W A.A comparative analysis of potential nitrification and nitrate mobility in forest ecosystems.Ecological Monographs,1982,52:155-177.
    271.Vitousek P M,Turner D R,Sanford R L.Litter decomposition on the Mauna Loa environmental matrix,Hawai'1:patterns,mechanisms,and models.Ecology,1994,75:418-429.
    272.Waide R B,Willig M R,Steiner C F,et al.The relationship between productivity and species richness.Annual Review of Ecology and systematics,1999,30:257-300.
    273.Waite S,Hutchings M J.Plastic energy allocation patterns in Plantago coronopus.Oikos,1982,38:333-342.
    274.Walker B H.Biological diversity and ecological redundancy.Conservation Biology,1992,6:18-23.
    275.Wang Renzhong,Gao Qiong,Chen Quansheng.Effects of climatic change on biomass and biomass allocation in Leymus chinensis(Poaceae)along the North-east China Transect(NECT).Journal of Arid Environments,2003,54:653-665.
    276.Wang Y B,Liu D Y,Zhang L,Li Y,Chu L.Patterns of Vegetation Succession in the Process of Ecological Restoration on the Deserted Land of Shizishan Copper Tailings in Tongling City.Acta Botanica Sinica,2004,46(7):780-787.
    277.Wardlaw I F.The control of carbon partitioning in plants.New Phytol.,1990,116: 341-381.
    278.Wardle D A,Zackrisson O,Hamberg G.et al.The influence of island area on ecosystem properties.Science,1997,227:1296-1299.
    279.Watson M A,Geber M A,Jones C S.Ontogenetic contingency and the expression of plant plasticity.Trends Evol Ecol,1995,10:474-475.
    280.Wedin D A,Tilman D.Species effects on nitrogen cycling:a test with perennial grasses.Oecologia,1990,84:433-441.
    281.Weiner J.Allocation,plasticity and allometry,in plants.Persp,Plant Ecol.Evol.System.,2004,6:207-215.
    282.Westoby M,Falster D S,Moles A T,Vesk P A,Wright L J.Plant ecological strategies:some leading dimensions of variation between species.Annu.Rev.Ecol.Syst.,2002,33:125-159.
    283.Whittacker R H.Communities and ecosystems.2~(nd)ed.New York:MacMillan.1975.
    284.Wilsey B J,Potvin C.Biodiversity and ecosystem function:importance of species evenness in an old field.Ecology,2000,81:887-892.
    285.Wilson J B.A review of evidence on the control of shoot:root ratio,in relation to models.Ann Bot,1988,61:433-449.
    286.Wilson S D,Moore D R J,Keddy P A.Relationships of marsh seed banks to vegetation patterns along environmental gradients.Freshwater Biology,1993,29:361-370.
    287.Wilson S D,Tilman D.Competitive responses of eight old-field plant species in four environments.Ecology,1995,76,1169-1180.
    288.Wilson S D,Tilman D.Interactive effects of fertilization and disturbance on community structure and resource availability in an old-field plant community.Oecologia,1991,88:61-71.
    289.Yan E R,Wang X H,Huang J J.Shifts in plant nutrient use strategies under secondary forest succession.Plant Soil,2006,289:187-197.
    290.Young D C.Theories for ecological restoration in changing environment:Toward'futuristic' restoration.Ecological Research,2004,19:75-81.
    291.Zak D R,Pregitzer K S.Nitrate assimilation by herbaceous ground flora in late successional forests.Journal of Ecology,1988,76:537-546.
    292.Zhang P,Xia H P.Revegetation of quarry using a complex vetiver eco-engineering technique.In:Tmong P,Xia H P eds.Proceedings of the Third International Conference on Vetiver and Exhibition.Beijing:China Agricultural Press,2003,324-332.
    293.Zhang Z Q,Shu W S,Lan C Y,et al.Soil seed bank as an input of seed source in revegetation of lead/zinc mine tailings,Restoration Ecology,2001,9:378-385.
    294.Zhou Z,Sun O J,Huang J,Gao Y,Han X.Land-use affects the relationship between species diversity and productivity at the local scale in a semi-arid steppe ecosystem.Functional Ecology,2006,20:753-762.
    295.安树青,林向阳,洪必恭.宝华山主要植被类型土壤种子库初探.植物生态学报,1996,20(1):41-50.
    296.白永飞,李凌浩等.内蒙古高原针茅草原植物多样性与植物功能群组成对群落初级生产力稳定性的影响.植物学报,2001,43(3):280-287.
    297.陈法扬.城市化过程中的废弃采石场治理技术探讨.中国水土保持,2002,(5):39-41.
    298.陈芳清,卢斌,王祥荣.村坪磷矿废弃地植物群落的形成与演替.生态学报,2001,21(8):1347-1354.
    299.邓自发,周兴民,王启基.青藏高原矮蒿草草甸种子库的初步研究.生态学报,1997,16(5):19-23.
    300.董鸣,王义凤,孔繁志,蒋高明,张知彬.陆地生物群落调查观测与分析.北京:中国标准出版社,1997.
    301.杜国祯,覃光莲等.高寒草甸植物群落中物种丰富度与生产力的关系研究.植物生态学报,2003,27(1):125-132.
    302.高素华,郭建平.CO_2浓度和土壤湿度对羊草光合特性影响机理的初探.学业 科学,2004,21(5):23-27.
    303.韩有志,王政权.两个林分水曲柳的土壤种子库空间格局的定量比较.应用生态学报,2003,14:487-492.
    304.韩忠明,韩梅,吴劲松,杨利民.不同生境下刺五加种群构件生物量结构与生长规律.应用生态学报,2006,17(7):1164-1168.
    305.郝文芳,梁宗锁,陈存根,唐龙.黄土丘陵沟壑区弃耕地群落演替与土壤性质演变研究.中国农学通报,2005,21(8):226-231.
    306.贺金生,方精云,马克平等.生物多样性与生态系统生产力:为什么野外观测和受控实验结果不一致?植物生态学报,2003,27(6):835-843.
    307.贺士元,刑其华,尹祖棠,江先甫.北京植物志.北京:北京出版社,1987.
    308.黄忠良,孔国辉,魏平.南亚热带森林不同演替阶段的土壤种子库初探.热带亚热带植物学报,1996,4(4):42-49.
    309.姜汉侨,段昌群,杨树华,王崇云,苏文华等.植物生态学.北京:高等教育出版社,2004.
    310.李潮海,王群,郝四平.土壤物理性质对土壤生物活性及作物生长的影响研究进展.河南农业大学学报,2002,36(1):32-36.
    311.李锋瑞,赵丽娅,王树芳等.封育对退化沙质草地土壤种子库与地上群落结构的影响.草业学报,2003,12(4):90-99.
    312.李建东,吴榜华,盛连喜等.吉林植被.沈阳:吉林科学技术出版社,2002.
    313.李金花,李镇清.不同放牧强度下冷篙、星毛委陵菜的形态可塑性及生物量分配格局.植物生态学报,2002,26(4):435-440.
    314.李荣平,闫巧玲.放牧与刈割对科尔沁草甸植被演替的影响.干旱区资源与环境,2006,20(2):180-184.
    315.李伟,刘贵华,周进等.淡水湿地种子库研究综述.生态学报,2002,22(3):395-402.
    316.林波,刘庆,吴彦等.川西亚高山针叶林凋落物对土壤理化性质的影响.应用与环境生物学报,2003,9(4):346-351.
    317.刘贵华,李伟,王相磊,张学江.湖南茶陵湖里沼泽种子库与地表植被的关系. 生态学报,2004,24:450-456.
    318.刘世忠,夏汉平,孔国辉等.茂名北排油页岩废渣场的土壤与植被特性研究.生态科学,2002,21(1):25-29.
    319.刘志民,赵文智,李志刚.西藏雅鲁藏布江中游河谷沙生槐种群种子库特征.生态学报,2002,22:715-722.
    320.吕贻忠,李保国.土壤学.北京:中国农业出版社,2006.
    321.罗辉,王克勤.金沙江干热河谷山地植被恢复区土壤种子库和地上植被研究.生态学报,2006,26(8):2432-2442.
    322.宁丰收,游霞,杨海林.重庆市主城区废弃采石场生态与景观恢复对策.水土保持通报,2005,25(3):77-80.
    323.彭军,李旭光,董鸣,刘玉成.重庆四面山亚热带常绿阔叶林种子库研究.植物生态学报,2000,24:209-214.
    324.秦耀东.土壤物理学.北京:高等教育出版社,2003.
    325.曲国辉,郭继勋.松嫩平原不同演替阶段植物群落和土壤特性的关系.草业学报,2003,12(1):18-22.
    326.任海,彭少蘑,陆宏芳.退化生态系统恢复与恢复生态学.生态学报,2004,24(8):1761-1762.
    327.任海,彭少麟.恢复生态学导论.北京:科学出版社,2001.
    328.沈有信,刘文耀,张彦东.东川干热退化山地不同植被恢复方式对物种组成与土壤种子库的影响.生态学报,2003,23:1454-1460.
    329.首届北京生态建设国际论坛文集.2005.
    330.束文圣,蓝崇钰,黄铭洪等.采石场废弃地的早期植被与土壤种子库.生态学报,2003,23(7):1305-1312.
    331.宋永昌.植被生态学.上海:华东师范大学出版社.2001.
    332.苏智先,钟章成.四川大头茶种群生殖生态学研究.生殖年龄、生殖年龄结构及其影响因素.生态学报,1996,16(5):517-524.
    333.苏智先,钟章成.四川大头茶种群生殖生态学研究Ⅱ.种群生物量生殖配置格局研究.生态学报,1998,18(4):379-385.
    334.孙伟,王德利,王立,杨允菲.狗尾草蒸腾特性与水分利用效率对模拟光辐射增强和CO_2浓度升高的响应.植物生态学报,2003,27(4):448-453.
    335.覃光莲,杜国祯,李自珍等.高寒草甸植物群落中物种多样性与生产力关系研究.植物生态学报,2002,26(增):57-62.
    336.汤惠君,胡振琪.试论采石场的生态恢复.中国矿业,2004,13(7):38-42.
    337.唐勇,曹敏,张建侯.西双版纳热带森林土壤种子库与地上植被的关系.应用生态学报,1999,10(3):279-282.
    338.唐勇,曹敏,张建侯等.西双版纳白背桐次生林土壤种子库、种子雨研究.植物生态学报,1998,22(6):505-512.
    339.王静,杨持,王铁娟.放牧退化群落中冷蒿种群生物量资源分配的变化.应用生态学报,2005,16(12):2316-2320.
    340.王仁卿.周光裕主编.山东植被.济南:山东科学技术出版社,2000.
    341.王仁卿,滕原一绘,尤海梅.森林植被恢复的理论和实践:用乡土树种重建当地森林—宫胁森林重建法介绍.植物生态学报,2002a,26(增刊):133-139.
    342.王仁卿,张淑萍,葛秀丽.利用宫胁森林重建法恢复和再建山东森林植被.山东林业科技,2002b,4:3-7.
    343.王相磊,周进,李伟,刘贵华,张学江.洪湖湿地退耕初期种子库的季节动态.生态学报,2003,27(3):352-359.
    344.王正文,祝廷成.松嫩草地水淹干扰后的土壤种子库特征及其与植被关系.生态学报,2002,22(9):1392-1398.
    345.吴彦,刘庆,乔永康,潘开文,赵常明,陈庆恒.亚高山针叶林不同恢复阶段群落物种多样性变化及其对土壤理化性质的影响.植物生态学报,2001,25(6):648-655.
    346.吴征镒主编,中国植物志.第10卷,第1分册,1990,334-335.
    347.徐化成,班勇.大兴安岭北部兴安落叶松种子在土壤中的分布及其种子库的持续性.植物生态学报,1996,20:28-34.
    348.许振柱,周广胜,李晖等.羊草干物质积累及叶片气体交换对土壤水分的响应.干旱区研究,2003,20(4):241-246.
    349.杨小波,陈明智,吴庆书.热带地区不同土地利用系统土壤种子库的研究.土壤学报,1999,36(3):327-333.
    350.杨跃军,孙向阳,王保平.森林土壤种子库与天然更新.应用生态学报,2001,12(2):304-308.
    351.杨允菲,祝玲,张宏一.松嫩平原两种碱蓬群落土壤种子库通量及幼苗死亡的分析.生态学报,1995,15(1):66-71.
    352.于长青,张玉虎,宋百敏等.废弃采矿场(包括石灰矿、大理石矿、页腊石矿等)生态环境调查评价与修复规划及技术方案(D0605046040191-102)课题研究报告.2007.
    353.于顺利,蒋高明.土壤种子库的研究进展及若干研究热点.植物生态学报,2003,27(4):552-560.
    354.袁剑刚,周先叶,陈彦,凡玲,杨中艺.采石场悬崖生态系统自然演替初期土壤和植被特征,生态学报,2005,25(6):1517-1522.
    355.曾彦军,王彦荣,南志标等.阿拉普干旱荒漠区不同植被类型土壤种子库研究.应用生态学报,2003,14(9):1457-1463.
    356.张大勇,姜新华,雷光春.理论生态学研究.北京:高等教育出版社,2000.
    357.张华,伏乾科,李锋瑞,Yasuhito Shirato.退化沙质草地自然恢复过程中土壤—植物系统的变化特征.水土保持通报,2003,23(6):1-6.
    358.张继义,赵哈林,张铜会,赵学勇.科尔沁沙地植被恢复系列上群落演替与物种多样性的恢复动态.植物生态学报,2004,28(1):86-92.
    359.张金屯.植被数量生态学方法.北京:中国科学技术出版社,1995.
    360.张俊云,周德培,李绍才.厚层基材喷射护坡实验研究.水土保持通报,2001,21(4):44-46.
    361.张庆费,曲文辉等.浙江天童森林公园植物群落演替对土壤物理性质的影响.植物资源与环境,1997,6(2):36-40.
    362.张庆费,宋永昌,曲文辉.浙江天童植物群落次生演替与土壤肥力的关系,生态学报,1999,19(2):174-178.
    363.张全发,郑重,金义兴.植物群落演替与土壤发展之间的关系.武汉植物学研 究,1990,8(4):321-334.
    364.张志权,束文圣,廖文波等.豆科植物与矿业废弃地植被恢复.生态学杂志,2002,21(2):47-52.
    365.张志权.土壤种子库.生态学杂志,1996,15(6):36-42.
    366.赵丽娅,李锋瑞,王先之.草地沙化过程中地上植被与土壤种子库变化特征.生态学报,2003,23(9):1745-1756.
    367.赵丽娅,李兆华,李锋瑞,赵哈林.科尔沁沙地植被恢复演替进程中群落土壤种子库研究.生态学报,2005,25(12):3204-3211.
    368.赵丽娅,李兆华,赵锦慧,赵哈林,赵学勇.科尔沁沙质草地放牧和围封条件下的土壤种子库.植物生态学报,2006,30(4):617-623.
    369.中国科学院南京土壤研究所.土壤理化分析.上海:上海科学技术出版社,1978.
    370.钟章成.植物种群的繁殖对策.生态学杂志,1995,14(1):37-42.
    371.仲延凯,张海燕.割草干扰对典型草原土壤种子库种子数量与组成的影响(土壤种子库研究方法的探讨).内蒙古大学学报(自然科学版),2001,32(6):644-648.
    372.周广胜,许振柱,王玉辉.全球变化的生态系统适应性.地球科学进展,2004,19(4):642-649.
    373.周瑞莲,赵哈林,王海鸥.科尔沁沙地植物演替的生理机制.干旱区研究,2001,18(3):13-19.
    374.周先叶,李鸣光,王伯荪,昝启杰.广东黑石顶自然保护区森林次生演替不同阶段土壤种子库的研究.植物生态学报,2000,24:222-230.
    375.朱建中,王仁卿,张淑萍.昆嵛山主要林型土壤种子库及幼苗分布特点.见:生物多样性与人类未来——第二届全国生物多样性保护与持续利用研讨会论文集(中国科学院生物多样性委员会主编),中国林业出版社,2000,282-287.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700