用户名: 密码: 验证码:
空间钢框架高等分析方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
传统的分析和设计方法存在很多局限性,随着计算机技术和结构分析设计理论的发展,高等分析和设计方法将是未来结构分析和设计实践的一个重要发展方向。本论文建立了基于梁柱理论稳定函数和精细塑性铰模型的空间梁单元。单元能够考虑几何非线性、材料非线性、剪切变形、弯曲缩短、残余应力以及连接柔性等非线性效应的影响。单元程序利用商用有限元ANSYS软件的二次开发技术编写,并在ANSYS软件平台上运行。单元能够应用于空间钢结构的静力或动力高等分析。论文的主要工作详述如下。
     推导了考虑剪切影响的转角位移方程,并利用它计算单元内力,其中的稳定函数可以准确考虑单元P ?δ效应。讨论了单元考虑弯曲缩短影响(弓形效应)的方法,算例分析表明,非迭代近似方法能够有效考虑弯曲缩短的影响。利用虚位移原理和稳定插值函数推导了空间薄壁梁单元的刚度方程。考察了不同形式的几何刚度矩阵对单元精度的影响,在非线性分析中若采用相同的方法计算单元内力,则几何刚度矩阵的形式和精度对分析结果几乎没有影响。采用节点方向矩阵和单元刚体转角两种不同方法更新单元坐标转换矩阵,对两种方法进行了对比分析;静力分析时,两种方法计算的结果比较接近;但进行动力分析时,前者的稳定性和收敛性要优于后者。
     进行弹性分析时,采用总量算法计算单元内力要优于采用增量算法计算单元内力。进行几何非线性分析时,本论文梁单元的精度总体上要优于ANSYS软件中的BEAM4单元,与BEAM189单元的精度相当甚至略优于BEAM189单元。
     采用精细塑性铰模型考虑材料非线性,单元能够较好地模拟平面和空间钢框架结构的弹塑性承载力极限状态,单元分析结果与塑性区模型BEAM189单元分析的结果吻合良好。单元具有良好的精度,结构若只承受节点荷载,则每根构件通常只需用1个单元模拟;若构件承受分布荷载,则每根构件只需用2个单元模拟即可。而采用ANSYS软件中的BEAM189单元进行弹塑性分析时,每根构件通常要用3~5个单元模拟才能获得较准确的结果。本论文精细塑性铰梁单元不需要进行数值积分运算,因此单元计算效率很高;进行大型结构分析时,与使用数值积分单元相比,使用本论文的梁单元可以节省大量计算时间。
     采用修正梁单元方法考虑连接柔性的影响,单元分析结果与相关文献的试验结果吻合较好。采用ANSYS软件中的COMBIN39单元也能有效考虑连接柔性的影响,COMBIN39组合BEAM189单元分析的结果与本论文梁单元分析的结果吻合很好。采用本论文梁单元考虑连接半刚性时,单元使用方便,可以采用与刚性连接框架相同的模型;而采用COMBIN39单元模拟连接时,建模过程和单元实常数的确定比较复杂,节点、单元数量多。
     利用ANSYS软件的用户可编程特性(UPFs)采用FORTRAN语言编写了精细塑性铰梁单元程序,通过编译以及与ANSYS程序的连接获得了用户定制ANSYS程序。运行定制的ANSYS程序可以方便地调用用户梁单元,用于平面和空间钢结构的静力或动力分析。进行结构分析时用户梁单元能够与ANSYS中的标准单元联合使用,因此可充分利用ANSYS软件丰富的单元、强大的求解器和便捷的前后处理功能。
     针对精细塑性铰梁单元和数值积分梁单元两种不同类型的单元,对刚性和半刚性钢框架进行了弹性及弹塑性地震时程响应对比分析。对于塑性发展不严重或者冗余度较高(例如框架支撑结构)的刚性或半刚性钢结构,采用本论文精细塑性铰梁单元进行动力时程分析能够获得比较准确的结果。而对于塑性发展严重可能导致局部楼层侧向刚度发生急剧削弱的结构,则应采用数值积分单元进行分析,才能获得准确的结果。
     在地震激励作用下,与刚性框架相比,半刚性框架将具有更小的基底总剪力响应。随着连接刚度的减小,同一地震激励引起的最大基底总剪力也减小;但半刚性框架的最大侧移和层间侧移并不总是随着连接刚度的减小而增大。
Traditional analysis and design methods have many limitations. With the development of computer technology and theories of structural analysis and design, the advanced analysis and design method must be an important trend in future analysis and design practices. A three-dimensional beam element, which based on stability functions of beam-column theory and refined plastic hinge model, has been developed. Nonlinear effects, such as geometic nonlinearity, material nonlinearity, shear deformation, effect of curvature shortening, residual stress and connection flexibility, can be considered in element formulation.
     Element routines are developed using the redevelopment technique of commercial finite element ANSYS software, and run on the platform of ANSYS software. Element can be used for static or dynamic advanced analysis of three-dimensional steel structures. The followings are the mian contents in detail. The slope-deflection equations including shear effect are derived and used to compute element internal forces, in which the element P ?δeffect can be accurately captured by the stability functions. Methods to consider the effect of curvature shortening (bowing effect) are discussed. Results of analysis examples show that the bowing effect can be taken into account effectively by an approximate non-iterative method. Using virtual displacement principle and stability interpolation functions, stiffness equation of a three-dimensional thin-walled beam element is derived. Influences of different types of element stiffness matrixes on the accuracy of element are observed. It is found that the form and accuracy of the geometric stiffness matrix used in a nonlinear analysis almost have no effect on the accuracy of the final solution when the same expressions are used to calculate the internal forces. The element transformation matrix is updated either by joint orientation matrix or by element rigid body rotation, and difference between two methods is analysed. It is found that the results of two methods are close in static analysis, whereas in dynamic analysis the former has better robustness and convergence than the latter.
     In elastic analysis, algorithm for internal forces calculation based on the total equilibrium condition is better than that based on the incremental equilibrium condition. As far as geometric nonlinear analysis is concerned, the performance of proposed beam element is better than that of BEAM4 element, and is comparable to, to some extent even better than, that of BEAM189 element in ANSYS program.
     Material nonlinearity is modeled using refined plastic hinge approach. Inelastic strength limit state of planar and space steel frames can be captured by proposed element. The analytical results of proposed element are compared fairly well with those of plastic zone based beam element BEAM189. In structural inelastic analysis, only one or two proposed elements for each member loaded by nodal loads or by distributed loads, respectively, in contrast to three to five BEAM189 elements for each member, are needed to achieve acceptable accuracy. The proposed beam element has excellent efficiency since it does not do any numerical integration operation. A lot of computing time can therefore be saved in the analysis of large-scale structures by using proposed element, as compared to using numerically integrated element.
     Modified beam element method is used to account for the effect of connection flexibility on the structural behavior. The analytical results of proposed element are compared reasonably well with the test results. Effect of connection flexibility can also be taken into account in analysis by connection element, such as COMBIN39 element in ANSYS program. The analytical results by use of COMBIN39 and BEAM189 elements are very close to those by proposed element. Using proposed element is quite convenient, because the same structural model as the rigid frame can be used. However, using COMBIN39 element is more complicated since the creation of structural model and the determination of real constants are troublesome, and the number of nodes and elements in finite element model is large.
     Routines of the refined plastic hinge based beam element are written in FORTRAN language using User Programmable Features (UPFs) of ANSYS program. Customized ANSYS program has been obtained after these routines are compiled and linked into ANSYS program. The user beam element can be easily activated in customized ANSYS program and then can be used for static or dynamic analysis of planar and space steel structures. The user beam element can be used with standard elements in ANSYS program, therefore, the advantages of ANSYS program, such as the abundant elements, the powerful solution tools and the convenient pre- and post-processor can be readily and well used in the structural analysis.
     Elastic and plastic comparison analyses between two types of elements, namely the refined plastic hinge based beam element and the numerically integrated beam element, are performed for rigid and semi-rigid steel frames under earthquake excitations. High accuracy results can be obtained using proposed beam element in the time-history analysis for rigid and semi-rigid structures where spread-of-plasticity is not significant or where redundancy is high, such as for braced frames. However, numerically integrated elements should be employed in the time-history analysis to obtain accurate results for structures where spread-of-plasticity is significant and abrupt reduction in lateral stiffness of some story may be induced.
     In comparison with rigid frames, semi-rigid frames may have lesser total base shear response under earthquake excitations. As the stiffness of connection decreases, the maximum total base shear resulting from the same earthquake excitation decreases. However, the maximum lateral drifts and the maximum inter-story drifts of the semi-rigid frames do not always increase with the decreasing of connection stiffness.
引文
1 S. E. Kim, W. F. Chen. Practical Advanced Analysis for Braced Steel Frame Design. Journal of Structural Engineering. 1996, 122(11):1266~1274
    2 W. F. Chen. Structural Stability: from Theory to Practice. Engineering Structures. 2000, 22(2):116~122
    3 张耀春, 武振宇, 张文元. 值得探讨的若干钢结构稳定问题. 钢结构工程研究④, 钢结构增刊. 2002:223~230
    4 李进军. 变截面门式钢刚架非线性分析及整体可靠度设计理论研究. 同济大学博士论文. 2001:1~102
    5 AS4100-1990. Standards Australia, Steel Structures. Sydney, 1990
    6 D. W. White. Plastic-Hinge Methods for Advanced Analysis of Steel Frames. Journal of Constructional Steel Research. 1993, 24(2):121~152
    7 S. E. Kim, W. F. Chen. Design Guide for Steel Frames Using Advanced Analysis Program. Engineering Structures. 1999, 21(4):352~364
    8 Eurocode 3. Design of Steel Structures - Part 1-1: General Rules and Rules for Buildings. prEN 1993-1-1. European Committee for Standardisation (CEN), 2003
    9 ANSI/AISC 360-05. Specification for Structural Steel Buildings. American Institute of Steel Construction, 2005
    10 GB50017-2003. 钢结构设计规范. 中国计划出版社, 2003
    11 K. Hwa. Toward Advanced Analysis in Steel Frame Design. PhD Dissertation of University of Hawaii. 2003:1~203
    12 P. Avery, M. Mahendran. Distributed Plasticity Analysis of Steel Frame Structures Comprising Non-Compact Sections. Engineering Structures. 2000, 22(8):901~919
    13 S. E. Kim, D. H. Lee. Second-Order Distributed Plasticity Analysis of Space Steel Frames. Engineering Structures. 2002, 24(6):735~744
    14 L. H. Teh, M. J. Clarke. Plastic-Zone Analysis of 3D Steel Frames Using Beam Elements. Journal of Structural Engineering. 1999, 125(11):1328~1337
    15 A. Kassimali. Large Deformation Analysis of Elastic-Plastic Frames. Journal of Structural Engineering. 1983, 109(8):1869~1886
    16 J. Y. R. Liew, D. W. White, W. F. Chen. Notional-Load Plastic-Hinge Method for Frame Design. Journal of Structural Engineering. 1994, 120(5): 1434~1454
    17 周奎, 宋启根, 贾军波. 高等分析及其在钢结构设计中的应用. 建筑钢结构进展. 2002, 4(2):33~38
    18 J. Y. R. Liew, D. W. White, W. F. Chen. Second-Order Refined Plastic-Hinge Analysis for Frame Design. Part I. Journal of Structural Engineering. 1993, 119(11):3196~3216
    19 李国强, 沈祖炎. 钢框架弹塑性静动力反应的非线性分析模型. 建筑结构学报. 1990, 11(2):51~59
    20 W. S. King, D. W. White, W. F. Chen. Second-Order Inelastic Analysis Methods for Steel-Frame Design. Journal of Structural Engineering. 1992, 118(2):408~428
    21 F. Al-Mashary, W. F. Chen. Simplified Second-Order Inelastic Analysis for Steel Frames. The Structural Engineer. 1991, 69(23):395~399
    22 徐伟良, 吴惠弼. 钢框架二阶弹塑性分析的简化塑性区法. 重庆建筑工程学院学报. 1994, 16(2):74~80
    23 张文元. 巨型钢结构体系弹塑性静动力分析. 哈尔滨工业大学博士学位论文. 2001:1~134
    24 M. R. Attalla, G. G. Deierlein, W. McGuire. Spread of Plasticity: Quasi-Plastic-Hinge Approach. Journal of Structural Engineering. 1994, 120(8): 2451~2473
    25 G. M. Barsan, C. G. Chiorean. Computer Program for Large Deflection Elasto-Plastic Analysis of Semi-Rigid Steel Frameworks. Computers and Structures. 1999, 72(6):699~711
    26 李国强, 刘玉姝. 钢结构框架体系整体非线性分析研究综述. 同济大学学报. 2003, 31(2):138~144
    27 M. J. Clarke, R. Q. Bridge, G. J. Hancock, N. J. Trahair. Advanced Analysis of Steel Building Frames. Journal of Constructional Steel Research. 1992, 23(1-3):1~29
    28 S. L. Chan, J. X. Gu. Exact Tangent Stiffness for Imperfect Beam-Column Members. Journal of Structural Engineering. 2000, 126(9):1094~1102
    29 吕烈武, 沈世钊, 沈祖炎, 胡学仁. 钢结构构件稳定理论. 中国建筑工业出版社, 1983:8~10 12~14
    30 W. F. Chen, E. M. Lui. Stability Design of Steel Frames. Boca Raton: CRC Press, 1991:225 232 200 70~72 155~157 123~141 227~229
    31 E. M. Lui, W. F. Chen. Steel Frame Analysis with Flexible Joints. Journal of Constructional Steel Research. 1987, 8:161~202
    32 E. Attiogbe, G. Morris. Moment-Rotation Functions for Steel Connections. Journal of Structural Engineering. 1991, 117(6):1703~1718
    33 T. Q. Li, B. S. Choo, D. A. Nethercot. Connection Element Method for the Analysis of Semi-Rigid Frames. Journal of Constructional Steel Research. 1995, 32(2):143~171
    34 P. Avery, M. Mahendran. Large-Scale Testing of Steel Frame Structures Comprising Non-Compact Sections. Engineering Structures. 2000, 22(8): 920~936
    35 S. E. Kim, J. Lee. Improved Refined Plastic-Hinge Analysis Accounting for Local Buckling. Engineering Structures. 2001, 23(8):1031~1042
    36 S. E. Kim, J. Lee, J. S. Park. 3-D Second-Order Plastic-Hinge Analysis Accounting for Local Buckling. Engineering Structures. 2003, 25(1):81~90
    37 N. S. Trahair, S. L. Chan. Out-of-Plane Advanced Analysis of Steel Structures. Engineering Structures. 2003, 25(13):1627~1637
    38 彭达材, 陈绍礼, 关建祺. 香港钢结构规范 2005-不需要假定有效长度的二阶分析和设计法. 第四届海峡两岸及香港钢结构技术交流会论文集, 上海, 2006:1~10
    39 S. L. Chan, Z. H. Zhou. Pointwise Equilibrating Polynomial Element for Nonlinear Analysis of Frames. Journal of Structural Engineering. 1994, 120(6):1703~1717
    40 李国强, 沈祖炎. 考虑剪切变形的压杆刚度方程及应用. 同济大学学报. 1991, 19(2):131~138
    41 J. P. Papangelis, N. S. Trahair, G. J. Hancock. Elastic Flexural-Torsional Buckling of Structures by Computer. Computers and Structures. 1998, 68(1-3):125~137
    42 K. Wongkaew, W. F. Chen. Consideration of Out-of-Plane Buckling in Advanced Analysis for Planar Steel Frame Design. Journal of Constructional Steel Research. 2002, 58(5-8):943~965
    43 S. E. Kim, J. Lee. Improved Refined Plastic-Hinge Analysis Accounting for Lateral Torsional Buckling. Journal of Constructional Steel Research. 2002, 58(11):1431~1453
    44 S. E. Kim, M. H. Park, S. H. Choi. Direct Design of Three-Dimensional Frames Using Practical Advanced Analysis. Engineering Structures. 2001, 23(11):1491~1502
    45 S. E. Kim, S. H. Choi. Practical Advanced Analysis for Semi-Rigid Space Frames. International Journal of Solids and Structures. 2001, 38(50-51): 9111~9131
    46 J. Y. R. Liew, L. K. Tang. Advanced Plastic Hinge Analysis for the Design of Tubular Space Frames. Engineering Structures. 2000, 22(7):769~783
    47 K. J. Bathe, S. Bolourchi. Large Displacement Analysis of Three-Dimensional Beam Structures. International Journal for Numerical Methods in Engineering. 1979, 14(7):961~986
    48 R. S. Barsoum, R. H. Gallagher. Finite Element Analysis of Torsional and Lateral Stability Problems. International Journal for Numerical Methods in Engineering. 1970, 2(3):335~352
    49 Y. B. Yang, W. McGuire. Stiffness Matrix for Geometric Nonlinear Analysis. Journal of Structural Engineering. 1986, 112(4):853~877
    50 Y. B. Yang, W. McGuire. Joint Rotation and Geometric Nonlinear Analysis. Journal of Structural Engineering. 1986, 112(4):879~905
    51 S. Kitipornchai, S. L. Chan. Nonlinear Finite Element Analysis of Angle and Tee Beam-Columns. Journal of Structural Engineering. 1987, 113(4): 721~739
    52 F. G. A. Al-Bermani, S. Kitipornchai. Nonlinear Analysis of Thin-Walled Structures Using Least Element/Member. Journal of Structural engineering. 1990, 116(1):215~234
    53 H. Chen, G. E. Blandford. Thin-Walled Space Frames.Ⅰ: Large-Deforation Analysis Theory. Journal of Structural Engineering. 1991, 117(8):2499~2520
    54 A. Conci, M. Gattass. Natural Approach for Geometric Nonlinear Analysis of Thin-Walled Frames. International Journal for Numerical Methods in Engineering. 1990, 30(2):207~231
    55 L. H. Teh, M. J. Clarke. Co-Rotational and Lagrangian formulations forElastic Three-Dimensional Beam finite Elements. Journal of Constructional Steel Research. 1998, 48(2-3):123~144
    56 S. Rajasekaram, D. W. Murray. Finite Element Solution of Inelastic Beam Equations. Journal of the Structural division. 1973, 99(ST6):1025~1041
    57 J. L. Meek, W. J. Lin. Geometric and Material Nonliear Analysis of Thin-Walled Beam-Columns. Journal of Structural Engineering. 1990, 116(6): 1473~1490
    58 Y. L. Pi, N. S. Trahair. Nonlinear Inelastic Analysis of Steel Beam-Columns.Ⅰ: Theory. Journal of Structural Engineering. 1994, 120(7):2041~2061
    59 Y. L. Pi, N. S. Trahair. Nonlinear Inelastic Analysis of Steel Beam-Columns.Ⅱ: Applications. Journal of Structural Engineering. 1994, 120(7):2062~2085
    60 A. Conci, M. Gattass. Natural Approach for Thin-Walled Beam-Columns with Elastic-Plasticity. International Journal for Numerical Methods in Engineering. 1990, 29(8):1653~1679
    61 G. Shi, S. N. Atluri. Elasto-Plastic Large Deformation Analysis of Space-Frames: A Plastic-Hinge and Stress-Based Explicit Derivation of Tangent Stiffnesses. International Journal for Numerical Methods in Engineering. 1988, 26(3):589~615
    62 舒兴平, 沈蒲生. 空间钢框架结构的非线性全过程分析. 工程力学. 1997, 14(3):36~45
    63 郑廷银, 赵惠麟. 空间钢框架结构的改进双重非线性分析. 工程力学. 2003, 20(6):202-208
    64 J. Y. R. Liew, H. Chen, N. E. Shanmugam, W. F. Chen. Improved Nonlinear Plastic Hinge Analysis of Space Frame Structures. Engineering Structures. 2000, 22(10):1324-1338
    65 X. M. Jiang, H. Chen, J. Y. R. Liew. Spread-of-Plasticity Analysis of Three-Dimensional Steel Frames. Journal of Constructional Steel Research. 2002, 58(2):193-212
    66 K. J. Bath. Finite Element Procedures. Prentice Hall, 1996:522~528
    67 M. A. Crisfield. Non-linear Finite Element Analysis of Solids and Structures. Volume 1: Essentials. John Wiley & Sons, 1991:77~80 211~221
    68 M. A. Crisfield. Non-linear Finite Element Analysis of Solids and Structures. Volume 2: Advanced Topics. John Wiley & Sons, 1991:213~226 188~212
    69 A. Chajes, J. E. Churchill. Nonlinear Frame Analysis by Finite Element Methods. Journal of Structural Engineering. 1987, 113(6):1221~1235
    70 A. Neuenhofer, F. C. Filippou. Geometrically Nonlinear Flexibility-Based Frame Finite Element. Journal of Structural Engineering. 1998, 124(6): 704~711
    71 K. D. Hjelmstad, E. Taciroglu. Mixed Methods and Flexibility Approaches for Nonlinear Frame Analysis. Journal of Constructional Steel Research. 2002, 58(5-8): 967~993
    72 陈骥. 钢结构稳定理论与设计. 科学出版社, 2001:67~89
    73 王勖成, 邵敏. 有限单元法基本原理和数值方法. 第 2 版. 清华大学出版社, 1997:531~567
    74 C. Oran. Tangent Stiffness in Space Frames. Journal of the Structural Division. 1973, 99(ST6):987~1001
    75 A. Kassimali, R. Abbasnia. Large Deformation Analysis of Elastic Space Frames. Journal of Structural Engineering. 1991, 117(7):2069~2087
    76 李国强, 沈祖炎. 钢结构框架体系弹性及弹塑性分析与计算理论. 上海科学技术出版社, 1998:7~21 23~41
    77 S. Timoshenko, J. Gere. 材料力学. 胡人礼. 科学出版社, 1978:159~169 466~472
    78 S. A. Saafan. Nonlinear Behavior of Structural Plane Frames. Journal of the Structural Division. 1963, 89(ST4):557~579
    79 沈世钊, 陈昕. 网壳结构稳定性. 科学出版社, 1999:11~27
    80 S. L. Chan, J. X. Gu. Exact Tangent Stiffness for Imperfect Beam-Column Members. Journal of Structural Engineering. 2000, 126(9):1094~1102
    81 S. L. Chan, Z. H. Zhou. On the Development of a Robust Element for Second-Order ‘Non-Linear Integrated Design and Analysis (NIDA)’. Journal of Constructional Steel Research. 1998, 47(1-2):169~190
    82 L. H. Teh. Cubic Beam Elements in Practical Analysis and Design of Steel Frames. Engineering Structures. 2001, 23:1243~1255
    83 S. Rajasekaran, D. W. Murray. Finite Element Solution of Inelastic Beam Equations. Journal of the Structural Division. 1973, 99(ST6):1025~1041
    84 S. L. Chan, Z. H. Zhou. Non-linear Integrated Design and Analysis of Skeletal Structures by 1 Element per Member. Engineering Structures. 2000,22:246~257
    85 W. F. Chen, T. Atsuta. 梁柱分析与设计, 第二卷, 空间问题特性及设计. 周绥平, 刘西拉. 人民交通出版社, 1997:373~374 37~38 136~177 365
    86 J. Argyris. An Excursion into Large Rotations. Computer Methods in Applied Mechanics and Engineering. 1982, 32:85~155
    87 龙驭球, 包世华. 结构力学教程(上册). 高等教育出版社, 1988:336
    88 A. Suleman, R. Sedaghati. Benchmark Case Studies in Optimization of Geometrically Nonlinear Structures. Structural and Multidisciplinary Optimization. 2005, 30:273~296
    89 S. E. Kim. Practical Advanced Analysis for Steel Frame Design. PhD Dissertation of Purdue University. 1996:1~258
    90 J. G. Orbison, W. Mcguire, J. F. Abel. Yield Surface Applications in Nonlinear Steel Frame Analysis. Computer Methods in Applied Mechanics and Engineering. 1982, 33(1):557~573
    91 LRFD. Load and Resistance Factor Design Specification for Structural Steel Buildings. American Institute of Steel Construction, 1999
    92 J. Y. R. Liew, D. W. White, W. F. Chen. Second-Order Refined Plastic-Hinge Analysis for Frame Design. Part II. Journal of Structural Engineering. 1993, 119(11):3217~3237
    93 J. Y. R. Liew, H. Chen, N. E. Shanmugam. Inelastic Analysis of Steel Frames with Composite Beams. Journal of Structural Engineering. 2001, 127(2): 194~202
    94 Eurocode 3. Design of Steel Structures - Part 1-8: Design of Joints. prEN 1993-1-8. European Committee for Standardisation (CEN), 2003
    95 Eurocode 3. Design of Steel Structures - Part 1.1: General Rules and Rules for Buildings. ENV 1993-1-1. European Committee for Standardisation (CEN), 1992
    96 R. Bjorhovde, A. Colson, J. Brozzetti. Classification System for Beam-to-Column Connections. Journal of Structural Engineering. 1990, 116(11): 3059~3076
    97 R. Hasan, M. Kishi, W. F. Chen. A New Nonlinear Connection Classification System. Journal of Constructional Steel Research. 1998, 47:119~140
    98 S. Jalal. A Numerical Method for the Analysis of Steel Frames ConsidringConnection Flexibility. Universiti Sains Malaysia MS Thesis. 2003:1~148
    99 Y. Goto, S. Miyashita. Classification System for Rigid and Semirigid Connections. Journal of Structural Engineering. 1998, 124(7):750~757
    100 N. Kishi, W. F. Chen, Y. Goto, R. Hasan. Behavior of Tall Buildings with Mixed Use of Rigid and Semi-Rigid Connections. Computers & Structures. 1996, 61(6):1193~1206
    101 E. Attiogbe, G. Morris. Moment-Rotation Functions for Steel Connections. Journal of Structural Engineering. 1991, 117(6):1703~1718
    102 A. Reyes-Salazar, A. Haldar. Nonlinear Seismic Response of Steel Structures with Semi-Rigid and Composite Connections. Journal of Constructional Steel Research. 1999, 51:37~59
    103 B. S. Dhillon, J. W. O’Malley III. Interactive Design of Semirigid Steel Frames. Journal of Structural Engineering. 1999, 125(5):556~564
    104 J. Y. R. Liew, C. H. Yu, Y. H. Ng, N. E. Shanmugam. Testing of Semi-Rigid Unbraced Frames for Calibration of Second-Order Inelastic Analysis. Journal of Constructional Steel Research. 1997, 41(2-3):159~195
    105 C. H. Yu, J. Y. R. Liew, N. E. Shanmugam, Y. H. Ng. Collapse Behaviour of Sway Frames with End-Plate Connections. Journal of Constructional Steel Research. 1998, 48(2-3):169~188
    106 ANSYS 高级技术分析指南. ANSYS 中国
    107 Advanced Analysis Techniques Guide. ANSYS Documentation
    108 APDL Programmer’s Guide. ANSYS Documentation
    109 The UIDL Programmer’s Guide (ANSYS Release 6.1). ANSYS Inc.
    110 Guide to ANSYS User Programmable Features (ANSYS Release 6.1). ANSYS Inc.
    111 Guide to Interfacing with ANSYS (ANSYS Release 6.1). ANSYS Inc.
    112 Windows Installation and Configuration Guide. ANSYS Documentation
    113 GB50011-2001. 建筑抗震设计规范. 中国建筑工业出版社, 2001
    114 R. W. 克拉夫, J. 彭津. 结构动力学. 王光远等译. 科学出版社, 1981:2~3 108~111
    115 ANSYS, Inc. Theory Reference. ANSYS Documentation
    116 T. Yokoyama. Vibrations of a Hanging Timoshenko Beam under Gravity. Journal of Sound and Vibration. 1990, 141(2):245~258
    117 王焕定, 章梓茂, 景瑞. 结构力学(Ⅱ). 高等教育出版社, 2000:188~189
    118 李国强, 沈祖炎. 半刚性连接钢框架弹塑性地震反应分析. 同济大学学报. 1992, 20(2):123~128
    119 K. Zhu, F. G. A. Al-Bermani, S. Kitipornchai, B. Li. Dynamic Response of Flexibly Jointed Frames. Engineering Structures. 1995, 17(8):575~580
    120 E. M. Lui, A. Lopes. Dynamic Analysis and Response of Semirigid Frames. Engineering Structures. 1997, 19(8):644~654
    121 J. C. Awkar, E. M. Lui. Seismic Analysis and Response of Multistory Semirigid Frames. Engineering Structures. 1999, 21(5):425~441
    122 李东伟. 一种新型加劲软钢阻尼器性能与应用的试验研究. 哈尔滨工业大学硕士学位论文. 2004:1~63
    123 连尉安. 焊接工字形钢支撑低周疲劳性能及其应用研究. 哈尔滨工业大学博士学位论文. 2006:1~166
    124 M. N. Nader, A. Astaneh. Dynamic Behavior of Flexible, Semirigid and Rigid Steel Frames. Journal of Constructional Steel Research. 1991, 18(3): 179~192
    125 J. Y. R. Liew, W. F. Chen, H. Chen. Advanced Inelastic Analysis of Frame Structures. Journal of Constructional Steel Research. 2000, 55(1-3):245~265
    126 L. X. Fang, S. L. Chan, Y. L. Wong. Numerical Analysis of Composite Frames with Partial Shear-Stud Interaction by One Element per Member. Engineering Structures. 2000, 22(10):1285~1300
    127 T. K. Lee, A. D. E. Pan. Analysis of Composite Beam-Columns under Lateral Cyclic Loading. Journal of Structural Engineering. 2001, 127(2):186~193
    128 周奎. 高层建筑钢框架结构几何、材料非线性分析. 东南大学博士学位论文. 2001:
    129 S. G. Buonopane, B. W. Schafer. Reliability of Steel Frames Designed with Advanced Analysis. Journal of Structural Engineering. 2006, 132(2):267~276

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700