用户名: 密码: 验证码:
牛亚科家畜基于结构基因的分子进化特征与分子钟学说检验
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
运用典型群简单随机抽样的方法,分别采集牛亚科家畜普通牛(Bos taurus)、瘤牛(Bos indicus)、牦牛(Bos grunniens)、大额牛(Bos frontalis)、沼泽型亚洲水牛(Bubalus bubalis)和河流型亚洲水牛(Bubalus bubalis)共6个牛种的血液样本,避免具有相同血统来源的个体一起进入样本。结合PCR扩增技术和DNA直接测序技术,在测定6个牛种生长激素(Growth hormone,GH)基因、肌肉生长抑制素(Myostatin,MSTN)基因和线粒体细胞色素b(Cytochrome b,Cyt b)基因共3个结构基因编码区全序列的基础上,分析各基因的单核苷酸多态性(Single Nucleotide Polymorphism,SNP)和分子进化特征;引用其他牛种的同类序列资料,以非参数检验法检验Cyt b基因编码区核苷酸序列以及氨基酸序列的相对进化速率,提出肯定或否定分子钟假说的部分客观资料。结果表明:
     1.在GH基因和MSTN基因编码区域,在6个牛种中分别确定了16个和24个SNP位点,而且无论是在种内还是在种间,均表现为二等位基因;在Cyt b基因编码区域,在6个牛种中共确定了220个SNP位点,绝大多数位点(约占94.55%)表现为二等位基因,5%的位点表现为三等位基因,仅有0.55%的位点表现为四等位基因。
     2.3个结构基因编码区的单倍型多样性和核苷酸多样度在不同牛种中没有显示出完全的一致性,代表了各牛种不同基因遗传多样性程度的变化轨迹;6个牛种3个结构基因的总单倍型多样性和总核苷酸多样度却表现出一致性的变化,反映出牛亚科家畜Cyt b基因、MSTN基因和GH基因的遗传多样性水平依次降低。
     3.无论是在牛种内还是在牛种间,各结构基因编码区序列间的碱基组成差异都较小;碱基替换大都发生在密码子的第3位点,少部分发生在第1位点,第2位点最保守;碱基替换中存在转换偏奇,转换/颠换比在GH基因编码区为4.6,在MSTN基因编码区为2.8,在Cyt b基因编码区为5.4。
     4.GH基因、MSTN基因和Cyt b基因编码区都存在密码子使用偏好性,GH基因中发现了25个偏好性密码子,MSTN基因中发现了30个偏好性密码子,Cyt b基因中发现了27个偏好性密码子;在核基因GH基因和MSTN基因中,发现了11个共同的偏好性密码子;在核外mtDNA Cyt b基因中发现了与核基因共享的5个偏好性密码子,并且都是编码相同的氨基酸。
     5.在GH基因、MSTN基因和Cyt b基因中,大多数位点间的替代都是同义突变,非同义突变(错义突变)位点远远少于同义突变位点;同义与非同义替代发生的速率比全部小于或等于1,表明牛亚科家畜3个结构基因在进化过程中均不受达尔文正向选择的影响,少数位点受到负向选择的作用,是净化选择的结果。进一步说明3个结构基因仍然保持着非常重要的生物学功能。
     6.基于GH基因编码区序列构建的分子进化树分析表明,沼泽型水牛与河流型水牛聚为一类,它们与普通牛、瘤牛、牦牛以及大额牛之间的遗传分化已经十分明显。普通牛、瘤牛、牦牛、大额牛共同拥有一条相同的核苷酸序列,推测这一共享的序列可能是普通牛、瘤牛、牦牛和大额牛GH基因编码区的共同祖先序列,其它的核苷酸序列可以看作是在此基础上发生的随机突变类型(主要是遗传漂变的影响)。
     7.基于MSTN基因编码区序列构建的分子进化树表明,沼泽型水牛与河流型水牛之间的分化也已明显,而它们与普通牛、瘤牛、牦牛、大额牛间分化则更为明显。普通牛、瘤牛、牦牛、大额牛序列间没有显示出完全的分化,它们也没有共同拥有相同的核苷酸序列。除了个别牛种共享少数序列以外,其余的单倍型序列都是各牛种所特有的类型。
     8.从Cyt b基因序列揭示的牛亚科动物系统发生关系来看,牛亚科家畜可划分为家牛属、准野牛属、牦牛属和亚洲水牛属4个属,它们之间的分化十分明显;家牛属与准野牛属、牦牛属和水牛属之间的亲缘关系逐渐降低。
     9.从母系起源的角度来看,我国大额牛种群存在明显的分化,它可能具有十分独特的起源。虽然大额牛有部分单倍型序列与普通牛或瘤牛聚为一类,但是它不可能起源于普通牛或瘤牛,这种现象应该可以视为大额牛与普通牛及瘤牛之间曾经拥有过共同的祖先序列,并且在漫长的进化历程中仍然保留着祖先序列的基本特征。大额牛与印度野牛有着十分密切的关系,它们在较早的世代具有共同的母系起源,并且有可能是现已灭绝的某种野生牛的后代。
     10.从母系遗传的角度来看,雷琼牛仅起源于瘤牛应该是确信无疑的,它也是我国迄今为止发现的少数具有单一起源的瘤牛型黄牛品种。瘤牛进化网络关系分析表明,雷琼牛与亚洲其它地区瘤牛可能是在不同的地点由野生的瘤原牛独立驯化而来的,推测中国南方某些地区在史前也应该是一个独立的瘤原牛驯化中心。
     11.分子钟检验的结果说明,接受或者拒绝分子钟假说与所检测物种亲缘关系的远近无明显相关性,分子钟假说在一定的物种范围内是存在的;与基于氨基酸序列的检验结果相比较,基于核苷酸序列的检验结果更易于拒绝分子钟假说。
     12.对长期进化而言,既无基因亦无基因产物以绝对恒定速率变化,试图寻找具有通用分子钟的基因或蛋白质都是徒劳的,即分子钟只在一定的范围内存在,并且不具有通用性。
Blood samples of six domestic species of Bovinae were collected from Bos taurus, Bos indicus, Bos grunniens, Bos frontalis, Swamp buffalo(Bubalus bubalis) and Water buffalo(Bubalus bubalis) using simple random sampling method in typical colony which avoiding the same bloodline into the samples. Single nucleotide polymorphisms and molecular evolution characters were analyzed basing on complete coding sequence of growth hormone gene, myostatin gene and mt DNA cytochrome b gene from six bovine species combinating PCR technology and direct DNA sequencing technology. Non-parameter test was used to testing relative evolution rate of nucleotide sequences and amino acid sequences of Cyt b gene together with cited sequences of other bovine species which provide partial evidences for molecular clock hypothesis. The conclusions indicated as follows:
     1. Sixteen and twenty-four SNP sites were determined from coding region of GH gene and MSTN gene of six bovine species respectively. These SNP sites all showed two-allele model whether within species or between species. Two hundred and twenty SNP sites were determined from coding region of Cyt b gene, most sites showed two-allele model, 5% sites showed three-allele model and only 0.55% sites showed four-allele model.
     2. There was no complete accordance between haplotype polymorphism and nucleotide polymorphism of three structure genes in different bovine species which represented the variation track of genetic diversity extent of different gene. There was accordant variation between totall haplotype polymorphism and nucleotide polymorphism of three structure genes of six bovine species, which reflected the decreased polymorphisms gradually of Cyt b gene, MSTN gene and GH gene of domestic species of Bovinae.
     3. There was little difference in base composition of coding region sequences of structure gene whether within species or between species. Most base substitution arised in the third codon, few arised in the first codon and the second codon was the most conservative. Transition biased was observed and the ratio of transition to transversion were 4.6, 2.8 and 5.4 in GH gene, MSTNgene and Cyt b gene respectively.
     4. Codon usage biased arised in the coding region of GH gene, MSTN gene and Cyt b gene. There were twenty-five, thirty and twenty-seven biased codons in GH gene, MSTN gene and Cyt b gene respectively. Eleven biased codons were found in GH gene and MSTN gene. Five biased codons were shared between exo-nucleus mtDNA Cyt b gene and nucleus gene, which coding the same amino acid.
     5. Most substitutions were synonymous and nonsynonymous (missense mutation) was greatly less than synonymous in the coding region of GH gene, MSTN gene and Cyt b gene. The ratio of synonymous and nonsynonymous substitution was all less or equal to one, which manifesting that three structure genes of domestic species of Bovinae were not affected by Darwin positive selection in the process of evolution and few site was affected by negative selection which was the result of purifying selection. These results further demonstrated that three structure genes still retain important biological functions.
     6. Molecular tree basing on GH gene coding sequence showed that swamp buffalo and water buffalo clustered and there was obvious differentiation between these two buffalo together with very obvious differentiation between these two buffalos and Bos taurus, Bos indicus, Bos grunniens, Bos frontalis. These four bovine species shared an identical sequence, which maybe an ancestral sequence of them and other sequences could be regarded as the random mutation type deriving from it (mainly affected by genetic drift).
     7. Molecular tree based on coding sequence of MSTN gene showed that there was not only obvious differentiation between swamp buffalo and water buffalo but also more obvious differentiation between these two buffalos and Bos taurus, Bos indicus, Bos grunniens, Bos frontalis. No complete differentiation appeared among Bos taurus, Bos indicus, Bos grunniens, Bos frontalis and no shared nucleotide sequence among them. Except few shared sequence between few bovine species, the rest haplotypes were specific types of different bovine species.
     8. The phylogenetic relationship revealed by Cyt b gene showed that domestic species of Bovinae could be divided into four genus with obvious differentiation which including Bos, Bibos, Poephagus and Bubalus. The phylogenetic relationship between Bos and Bibos, Poephagus, Bubalus decreased gradually.
     9. There was obvious differentiation of gayal population in China from maternal origin and it maybe possess a special origin. Although part haplotypes of Bos frontalis clustered with haplotypes of Bos taurus and Bos indicus, it couldn’t origin from Bos taurus or Bos indicus. This phenomenon could be regarded as that Bos frontalis, Bos taurus and Bos indicus once shared identical ancestral sequences. The basic characters of these ancestral sequences were still retained in Bos frontalis in the process of long evolution. There was very close relationship between Bos frontalis and Bos gaurus, which showed that they might share the same maternal origin in an anterior time and maybe the progeny of a kind of extinct wild bovine species.
     10. It was sure that Leiqiong cattle origined from Bos indicus from maternal genetics. Leiqiong cattle was also few cattle breed of zebu type possessing single origin. Network relationships of Bos indicus showed that Leiqiong cattle and other Asian zebu might be domesticated independently from wild Bos nanadicus in different locality. It was deduced that there was an independent domesticated center of Bos nanadicus in antiquity in the south of China.
     11. The result from molecular clock testing showed that there was no obvious relevance between accepting or refusing molecular clock hypothesis and phylogenetic relationship of tested species. Molecular clock hypothesis existed in some extent of species. It was easy to refusing molecular clock hypothesis basing on the tested result from nucleotide sequence compared with the result from amino acid sequence.
     12. There was no gene or the product of gene variing in a stable rate absolutely in long evolution. Searching of popular molecular clock of gene or protein was in vain, that was to say, molecular clock only existed in some extent and possessed no generality.
引文
[1]中国畜禽遗传资源状况编委会.中国畜禽遗传资源状况.北京:中国农业出版社,2004,12-23.
    [2]郑丕留.我国家畜品种及其生态特征.北京:农业出版社,1980.
    [3]中国牛品种志编写组.中国牛品种志.上海:上海科学技术出版社,1988,19-22,102.
    [4] Gerald Wiene,Han Jianlin,Long Ruijun. The yak(2th edition). Thailand:RAP Publication,2003,5-8.
    [5]蔡立.中国牦牛.北京:中国农业出版社,1992,45-47.
    [6]中国农业科学院兰州畜牧研究所编.牦牛科学研究论文集.兰州:甘肃民族出版社,1990,27-30.
    [7]中国牦牛学编写委员会.中国牦牛学.成都:四川科学技术出版社,1989,4-74.
    [8]赵开典,欧茶海,黄玉路等.云南省珍稀畜种资源——独龙牛保护与研究工作现状及对策.黄牛杂志,2003,29(2):71-74.
    [9]谢成侠编著.中国养牛羊史(附养鹿简史).农业出版社,1985,6-7,18.
    [10]常洪主编.家畜遗传资源学纲要.北京:中国农业出版社,1995,14-15.
    [11]耿社民,常洪,秦国庆等.亚洲部分牛种间类缘关系的研究.黄牛杂志,1994,20(增刊):10-12.
    [12]雷初朝,陈宏,胡沈荣. Y染色体多态性与中国黄牛起源和分类研究.西北农业学报,2000,9(4):43-47.
    [13]雷初朝,陈宏,杨公社等.中国部分黄牛品种mtDNA遗传多态性研究.遗传学报,2004,31(1):57-62.
    [14]蔡欣,陈宏,雷初朝等.从Cyt b基因全序列分析中国10个黄牛品种的系统进化关系.中国生物化学与分子生物学报,2006,22(2):168-171.
    [15] Cai X,Chen H,Lei C Z et al. mtDNA diversity and genetic lineages of eighteen cattle breeds from Bos Taurus and Bos indicus in China. Genetica,2007,131(2):175-183.
    [16] Lai S J,Liu Y P,Liu Y X et al. Genetic diversity and origin of Chinese cattle revealed by mtDNA D-loop sequence variation. Molecular Phylogenetics and Evolution,2006,38:146-154.
    [17]蔡欣,陈宏,雷初朝等.中国17个黄牛品种mtDNA变异特征与多态性分析.中国生物化学与分子生物学报,2007,23(8):666-674.
    [18]瓦格勒,王建新(译).中国农书.商务印书馆,1936,594-648.
    [19] Mason I L. A world dictionary of livestock breeds,types and varieties.(4th edition). CAB International,1996.
    [20] Payne W J A. Diffusion of cat tle throughout Asia. In:Tropical Cattle: Origins,Breeds and Breedinng Policy,1995,15-22.
    [21]郭经恂.牛.中国农业百科全书(畜牧业卷),1996,433-437.
    [22]常洪,耿社民,武彬等.中国黄牛源流考之一(下).黄牛杂志,1991,17(1):3-9.
    [23]郭爱扑.黄牛、牦牛和它们杂种后代犏牛染色体的比较研究.畜牧兽医学报,1983,10(2):133-143.
    [24] Yu Y,Nie L,He Z Q et al. Mitochondrial DNA variation in cattle of South China:origin and introgression. Animal Genetics,1999,30(4):245-250.
    [25] Jia S G,Chen H,Zhang G X et al. Genetic variation of mitochondrial D-loop region and evolution analysis in some Chinese cattle breeds. Journal of Genetics and Genomics,2007,34(6):510-518.
    [26]房兴堂,周艳,陈宏等.中国黄牛mtDNA D-loop遗传多样性及起源.动物学报,2007,53(5):928-933.
    [27]王毓英,曹红鹤,庞之洪等.中国部分黄牛血液蛋白多态性与其遗传关系的研究.畜牧兽医学报,1991,22(4):296-302.
    [28] Christian D. Silk roads or steppe roads ? The silk roads in world history. J World History,2000,11(1):1-26.
    [29]张仲葛,黄惟一.祖国的畜牧与畜产资源.上海永祥印书馆,1953.
    [30]陈幼春,王毓英,常洪等.中国黄牛的分类.见:中国黄牛生态种特征及其利用方向.北京:中国农业出版社,1990,3-13.
    [31]侯石柱.西藏考古大纲.拉萨:西藏人民出版社,1991.
    [32] Olsen S J. Fossil ancestry of the yak,its cultural significance and domestication in Tibet. Proceedings of the Academy of Natural Science,Philadelphia,1990,142: 73-100.
    [33]钱燕文.饲养动物的起源-生物史.第5分册.北京:科学出版社,1979.
    [34]钟金城,陈智华,宇向东等.牦牛品种的聚类分析.西南民族学院学报(自然科学版),2001,27(1):92-94.
    [35]涂正超,张亚平,邱怀.中国牦牛线粒体脱氧核糖核酸多态性及遗传分化.遗传学报,1998,25:205-212.
    [36]钟金城,赵素君,陈智华等.牦牛品种的遗传多样性及其分类研究.中国农业科学,2006,39(2):389-397.
    [37]钟金城,陈智华,赵素君等.牦牛生态类型的分类.生态学报,2006,26(7):2068-2072.
    [38]赖松家,王玲,刘益平等.中国部分牦牛品种线粒体DNA遗传多态性研究.遗传学报,2005,32(5):463-470.
    [39] Lai S J,Chen S Y,Liu Y P et al. Mitochondrial DNA sequence diversity and origin of Chinese domestic yak. Animal Genetics,2007,38:77–80.
    [40] Corbet G B. The mammals of the palaearetic region:a taxonomic review. London and Ithaca:British Museum,1978.
    [41] Lydekker R. Wild oxen,sheep and goats of all lands,living and extinct. London:Rowland Ward,1898.
    [42] Ritz L R,Glowatzki-Mullis M L,MacHugh D E et al. Phylogenetic analysis of the tribe Bovini using mic rosatellites. Animal Genetics,2000,31:178-1851.
    [43]李齐发,李艳华,赵兴波等.牛亚科MHC-DRB3基因exon2的序列变异分析.农业生物技术学报,2005,13(4):441-446.
    [44]李齐发,李隐侠,赵兴波等.牦牛线粒体DNA细胞色素b基因序列测定及其起源、分类地位研究.畜牧兽医学报,2006,37(11):1118-1123.
    [45]李齐发,李隐侠,赵兴波等.牦牛线粒体DNA D-loop区序列测定及其在牛亚科中分类地位的研究.畜牧兽医学报,2008,39(1):1-6.
    [46]郭松长,刘建全,祁得林等.牦牛的分类学地位及起源研究:mtDNA D-loop序列的分析.兽类学报,2006,26(4):325-330.
    [47] MacGregor R. The domestic buffalo. Veterinary Record,1941,53(31):443-450.
    [48] Epstein H. Domestic animals of China. Commonwealth Agricultural Bureaux:Farnham Royal,Bucks,England,1969.
    [49] Zeuner F E. A history of domesticated animals. Hutchinson:London,1963.
    [50]梅森主编(王铭农,李群泽等译).驯化动物的进化.南京:南京大学出版社,1991:58-70.
    [51]邹介正,王铭农,牛家藩等编著.中国古代畜牧兽医史.北京:中国农业科技出版社,1994.
    [52]徐旺生.中国家水牛的起源问题研究(上).四川畜牧兽医,2005,3:56.
    [53]徐旺生.中国家水牛的起源问题研究(中).四川畜牧兽医,2005,4:57.
    [54]徐旺生.中国家水牛的起源问题研究(下).四川畜牧兽医,2005,5:58.
    [55]薛祥煦,李晓晨陕西水牛化石及中国化石水牛的地理分布和种系发生.古脊椎动物学报,2000,38(3):218-231.
    [56]史荣仙,付茂忠,赖松家等.长江流域水牛血红蛋白多态性研究.遗传,1995,17(1):7-11.
    [57]史荣仙,赖松家,郑维明等.中国水牛血红蛋白多态性及命名研究.南京农业大学学报,1995,18(3):94-99.
    [58]史荣仙,左福元,赖松家.中国水牛血液蛋白多态性研究Ⅲ.水牛血液蛋白多态性遗传分析.四川农业大学学报,1996,14(4):595-598.
    [59]王冬蕾,常洪,杨军香等. 8个亚洲水牛群体的遗传结构分析.遗传,2007,29(9):1103-1109.
    [60]刘若余,张伟,金大春等.温州水牛线粒体DNA D-loop遗传多态性分析.中国牛业科学,2007,33(1):1-3.
    [61] Lei C Z,Zhang W,Chen H et al. Independent maternal origin of Chinese swamp buffalo(Bubalus bubalis). Animal Genetics,38:97-102.
    [62]齐国强,昝林森,张桂香等.中国部分地方水牛品种mtDNA D-loop区遗传多样性与起源研究.畜牧兽医学报,2008,39(1):7-11.
    [63] Walker E P,Warnick F, Hamlet S T. Mammals of the World. The Johns Hopkins press,Balttmore. 1968,1431.
    [64]单祥年,陈宜峰,罗丽华等.大额牛核型分析.遗传,1980,2(5):25-27.
    [65] Winter H,Mayr B,Schleger W et al. Karyotyping red blood cell and haemoglobin typing of the mithun(Bos f rontalis),its wild ancestor and its hybrids. Res Vet Sci,1984,36(3):276-283.
    [66]兰宏,雄习昆,林世英等.云南黄牛和大额牛mtDNA多态性研究.遗传学报,1993,20(5):419-423.
    [67] Nie L,Yu Y,Zhang X Q et al. Genetic diversity of cattle in south China as revealed by blood protein electrophoresis. Biochemical Genetics,1999,37(7/8):257-265.
    [68] Tu Z C,Nie L,Yu Y et al. Blood protein polymorphism in B.frontalis,B.grunniens,B.taurus and B.indicus. Biochemical Genetics,2000,38(11/12):413-416.
    [69] Ma G L,Chang H,Li S P et al. Phylogenetic relationships and status quo of colonies forgayal based on analysis of cytochrome b gene partial sequences. Journal of Genetics and Genomics,2007,34(5):413-419.
    [70]李世平,常洪,马国龙等.从细胞色素b基因全序列探讨大额牛的分子系统发生.遗传,2008,30(1):65-70.
    [71] Simpson G G. Principles of classification and a classification of mammals. Bull Am Mus Nat Hist,1945,85:1-350.
    [72] Ansell W F H. Family artiodactyla. Washington D C:Smithsonian Institution Press,1971,1-93.
    [73] Vaughan T A. Mammalogy. Saunders,Philadelphia,Pennsylva,1978.
    [74]常洪,苗泽荣编.黄牛育种.北京:中国环境科学出版社,1988.
    [75] Miyamoto M M,Tanhauser S M,Laipis P J. Systematic relationships in the Artiodacty tribe Bovini(family Bovidae),as determined from mitochondrial DNA sequences. Syst Zool,1989,38(4):342-349.
    [76] Wall D A,Davis S K,Read B M. Phylogenetic relationships in the subfamily Bovinae(Mammalia: Artiodactyla)based on ribosomal DNA. J Mammal,1992,73:262-275.
    [77] Janecek L L,Honeycutt R L,Adkins R M et al. Mitochondrial gene sequences and the molecular systematics of the artiodactyl subfamily Bovinae. Mol Phylogenet Evol,1996,6(1):107-119.
    [78] Hassanin A,Douzery E J P. The tribal radiation of the family Bovidae (Artiodactyla)and the evolution of the mitochondrial cytochrome b gene. Mol Phylogenet Evol,1999,13(2):227-243.
    [79] Hassanin A,Ropiquet. Molecular phylogeny of the tribe Bovini(Bovidae, Bovinae)and the taxonomic status of the Kouprey,Bossauveli Urbain 1937. Mol Phylogenet Evol,2004,33:896-907.
    [80]王玲.中国牦牛线粒体DNA多态性及遗传分化研究.雅安:四川农业大学,2004.
    [81] Kraus F,J arecki L,Miyamoto M M et al . Mispairing and compensational changes during the evolution of mitochondrial ribosomal RNA. Mol Biol Evol,1992,9(4):770-774.
    [82] Ward T J,Bielawski J P,Davis S K et al . Identification of domestic cattle hybrids in wild cat tle and bison species:a general approach using mtDNA markers and the paramet ric bootstrap. Animal Conservation,1999,2(1):51-57.
    [83]樊宝良,李宁,吴常信.依据乳蛋白基因序列构建反刍动物种系发育树的研究.遗传学报,2000,27(6):485-497.
    [84]蔡欣,陈宏,雷初朝等.中国3个牛种cyt b基因多态性及其系统发育研究.西北农林科技大学学报(自然科学版),2007,35(2),43-52.
    [85] Gu Z L,Zhao X B,Li N et al. Complete sequence of the yak(Bos grunniens)mitochondrial genome and its evolutionary relationship with other ruminants. Mol Phylogenet Evol,2007,42(1):248-255.
    [86]潘宝平.生物进化理论的新进展.生物学通报,2002,37(2),8-10.
    [87]孙毅,张伟.分子生物学与进化的新理论.生物学杂志,2004,21(5),16-17.
    [88] Li W H,Graur D. Foundamentals of molecular evolution:Sunderland,Massachusetts:Sinauer Associates,INC Publishers,1991.
    [89] Kimura M. Evolntionary rate of molecular evolution considered from the standpoint of population genedics. Nature,London,1968,217:624-626.
    [90] Kimura M. The Neutral theory of molecular evolntion. Combridge University Press,Combridge,1983.
    [91] Zuckerkandl E,Pauling L. Evolutionary divergence and convergence in proteins. In:Evolving Genes and Proteins,New York:Academic Press,1965,97-166.
    [92] Dickerson R E. The structure of cytochrome c and the rates of molecular evolution. Journal of Molecular Evolution,1971,1:26-45.
    [93] McLaughlin P J,Dayhoff M O. Eukaryotes versus Prokaryotes:An estimate of evolutionary distance. Science,1970,168:1469-1471.
    [94] Kimura M,Ohta T. Eukaryotes-prokaryotes divergence estimated by 5S ribosomal RNA sequences. Nature,1973,243:199-200.
    [95] Sarich V M,Wilson A C. Quantitative immunochemistry and the evolution of primate albumins:micro-complement fixation. Science,1966,154:1563-1566.
    [96] Wilson A C,Carlson S S and White J J. Biochemical evolution. Annu Rev Bilchem,1977,46:573-639.
    [97] Li W H,Ellsworth D L,Krushkal J et al. Rates of mucleotide substitution in primates and rodents and the generation-time effect hypothesis. Mol Phylogenet Evol,1996,5:182-187.
    [98] Tajima F. Simple methods for testing molecular clock hypothesis. Genetics,1993,135:599-607.
    [99] Takezaki N. The trees generated by distance methods of phylogenetic reconstruction. Mol BiolEvol,1998,15:727-737.
    [100] Tourasse N J and Li W H. Performance of the relative-rate test under nonstationary models of nucleotide substitution. Mol Bio Evol,1999,16:1068-1078.
    [101] Masatoshi Nei,Sudhir Kumar著,吕宝忠等译.分子进化与系统发育.北京:高等教育出版社,2002.
    [102] Mark P. Inferring the historical patterns of biological evolution. Nature,1999,401:877-884.
    [103] Michael S Y L,Jason S A. Molecular clocks and the origin(s) of modern amphibians. Mol Phylogenet Evol,2006,40:635-639.
    [104] Mario J F P and Richard A N. Dates from the molecular clock:how wrong can we be? Trends in Ecology and Evolution,2006,22(4):180-184.
    [105] Francisca C A,Cibele R B,Pedro C E. Phylogeny and temporal diversification of Calomys(Rodentia, Sigmodontinae):Implications for the biogeography of an endemic genus of the open/dry biomes of South America. Mol Phylogenet Evol,2007,42:449-466.
    [106] Alain V,Denis M,Magali S et al. A review on SNP and other types of molecular markers and their use in animal genetics. Genet Se1 Evol,2002,(34):275-305.
    [107] Lander E S. The new genomics:glabal views of biology. Science,1996,274:536-539.
    [108]萨姆布鲁克J,弗时奇E F,罗尼阿蒂斯T著,金冬雁等译.分子克隆实验指南(第二版).北京:科学出版社,1999,325-340.
    [109] Gordon D F,Quick D P,Erwin C R et al. Nucleotide sequence of the bovine growth hormone chromosomal gene. Molecular and Cellular Endocrinology,1983,33:81-95.
    [110] Tay G.K and Iaschi S P A,Bellinge R H S et al. The development of sequence-based-typing of myostatin(GDF-8)to identify the double muscling phenotype in the goat. Small Ruminant Research,2004,52:1-12.
    [111] Anderson S,Bruijn M H,Coulson A R et al. Complete sequence of bovine mitochondrial DNA:Conserved features of the mammalian mitochondrial genome. J Mol Biol,1982,156(4):683-717.
    [112] Thompson J D,Higgins D G and Gibsn T J. CLUSTAL W:improving the sensitivity of progressive multiple sequence alignment through sequence weighting,position-specific gap penalties and weight matrix choice. Nucleic Acids Research,1994,22:4673-4680.
    [113] Kumar S,Tamura K,Nei M. MEGA3:Integrated software for Molecular EvolutionaryGenetics Analysis and sequence alignment. Briefings in Bioinformatics,2004,5:150-163.
    [114] Nickson D A,Tobe V O,Taylor S L et al. Polyphred:antomating the detection and genotyping of single nucleotide substitutions using fluorescence-based re-sequencing. Nucleic Acids Research,1997,25(14):2745-2751.
    [115] Rider M J,Taylor S L,Tobe V O et al. Automating the identification of DNA variation using quality based fluorescence re-sequencing:analysis of human mitochondrial genome. Nucleic Acids Research,1998,26(4):967-973.
    [116] Wang D G,Fan J B,Siao C J et al. Large-scale identification mapping and genotyping of single nucleotide polymorphisms in the human genome. Science,1998,280:1077-1082.
    [117] Bensasson D,Zhang D X,Hewitt G M. Frequent as similation of mitochondrial DNA by grasshopper nuclear genomes. MolBiol Evol,2000,17(3):406-415.
    [118] Cummins J. Mitochondrial DNA and the Y chromosome:parallels and paradoxes. Reprod Fertil Dev,2001,13(7-8):533-542.
    [119] Dubu Y H G,Riley F L. Hybridization between the nuclear and kinetoplast DNA’s of Leishmania enriettii and between nuclear and mitochondrial DNA’s of mouse liver. Proc Natl Acad Sci USA,1967,57:790-797.
    [120] Bensasson D,Zhang D X. Mitochondrial pseudogenes:evolution’s misplaced witnesses. Trends in Ecology and Evolution,2001,16(6):314-322.
    [121] Yao J,Aggrey S E,Zadworny D et al. Sequence variations in the bovine growth hormone gene characterized by single-strand conformation polymorphins(SSCP)analysis and their association with milk production traits in holsteins. Genetics,1996,144:1809-1816.
    [122] Lagziel A,Soller M. DNA sequence of SSCP haplotypes at the bovine growth hormone(bGH)gene. Animal Genetics,1999,30:362–365.
    [123] Unanian M M,Barreto C C,Freitas A R et al. Associations between growth hormone gene polymorphism and weight traits in Nellore bovines. Revista Brasileira de Zootecnia,2000,29:1380–1386.
    [124] Ge W,Davis M E,Hines H C et al. Association of single nucleotide polymorphisms in the growth hormone and growth hormone receptor genes with blood serum insulin-like growth factor I concentration and growth traits in Angus cattle. Journal of Animal Science,2003,81:641–648.
    [125] Fries R,Eggen A,Womack J E. The bovine genome map. Mammalian Genome,1993,4:405.
    [126]欧江涛,钟金城,赵益新等.牦牛生长激素基因的测序和多态性研究.黄牛杂志,2003,29(2),9-12.
    [127]高雪,徐秀容,许尚忠等.中国地方黄牛GH基因遗传多态性研究.畜牧兽医学报,2005,36(10),991-995.
    [128]高雪,徐秀容,许尚忠等.影响牛生长发育性状的GH基因遗传效应分析.中国农业科学,2006,39(3),606-611.
    [129] Forsyth I A,Wallis M. Growth hormone and prolactin-molecular and functional evolution. Journal of Mammary Gland Biology and Neoplasia,2002,7(3):291-312.
    [130] Mcperron A C,Lacoler A M,Lee S J . Regulation of skeletal musclemass in mice by a new TGF2βsuperfamily member. Nature,1997,387:83-90.
    [131] Charlier C,Coppieters W,Farnir F et al . The mh gene causing double-muscling in cattle maps to bovine Chromosome 2. In:Mammalian Genome 6,1995,788-792.
    [132] Dunner S,Charlier C,Farnir F et al . Towards interbreed IBD fine mapping of the mh locus:double-muscling in the Asturiana de los Valles breed involves the same locus as in the Belgian Blue cattlebreed. In:Mammalian Genome 8,1997,430-435.
    [133] Kambadur R. Mutations in myostatin(GDF28)in double-muscled Belgian Blue and Piedmontese cattle. Genome Research,1997,7(9):910-916.
    [134] Grobet L. Molecular definition of an allelic series of mutations disrupting the myostatin function and causing double-muscling in cattle. Mammalian genome,1998,9(3):210-213.
    [135] Alexandra C M and Lee S J. Double muscling in cattle due to mutation in the myostation gene. Proc Natl Acad Sci USA,1997,94:12457-12461.
    [136] Cappuccio I,Marchitelli C,Serracchioll A et al. A G 2T transversion introduces astop codon at the mh locus in hypertrophic marchigiana beef subjects. Animal Genetics,1998,29(suppl. 1):51.
    [137]孙少华,李雪梅,魏学蕊等.牛肌肉生长抑制素基因的检测、分型研究(简报).河北农业大学学报,2001,24(3):113-114.
    [138]孙少华,李雪梅,魏学蕊等.牛肌肉生长抑制素(MSTN)基因的检测、分型研究.中国农业科技导报,2001,3(6):66-67.
    [139]孟和,张永春,陈卫红等.蒙古牛肌肉生长抑制素基因编码序列检测分析.上海交通大学学报(农业科学版),2004,22(4):339-342.
    [140] Smith M F and Patton J L. Variation in mitochondrial cytochrome b sequence in naturalpopulations of south American akodontine rodents. Mol Bio Evol,1991,8(1):85-103.
    [141] Tanaka-Ueno T,Matsui M,Sato T et al. Phylogenetic relationships of brown frogs with 24 chromosomes from Far East Russia and Hokkaido assessed by mitochondrial cytochrome b gene sequences. Zoo Sci,1998,15:289-294.
    [142] Briolay J,Galtier N,Brito R M et al. Molecular phylogeny of cyprinidae inferred from cytochrome b DNA sequences. Mol Phylogenet Evol,1998,9:100-108.
    [143]赖松家,刘延鑫,李学伟等.四川黄牛品种线粒体DNA遗传多样性研究.畜牧兽医学报,2005,36(9):887-892.
    [144] Gray M W,Burger G,Lang B E. Mitochondrial evolution. Science,1999,283:1476-1481.
    [145] Saccone C,Gissi C,Lanave C et al . Evolution of the mitochondrial genetic system:an overview. Gene,2000,261(1):153-159.
    [146] Sharp P M,Tuohy T M,Mosurski K R. Codon usage in yeast:Clustal analysis clearly differentiates highly and lowly expressed genes. Nucleic Acids Research,1986,14:5125-5143.
    [147] Nei M,Gojobori T. Simple methods for estimating the numbers of synonymous and nonsynonymous nucleotide substitutions. Mol Biol Evol,1986,3:418-426.
    [148] Rozas J J,Sanchez-BelBarrio J C,Messeguer X et al . DnaSP,DNA polymorphism analyses by the coalescent and other methods. Bioinformatics,2003,19:2496-2497.
    [149] Clement M,Derington J and Posada D. TCS:estimating gene genealogies. Version 1.18. Brigham Young University,Provo,Utah,2004.
    [150] Felsenstein J. Confidence limits on phylogenies:an approach using the bootstrap. Evolution,1985,39:783-791.
    [151] Hedges S B,Bezy R L and Maxson L R. Phylogenetic relationships and biogeography of Xantuslid lizards,inferred from mitochondrial DNA sequences. Mol Bio Evol,1991,8:767-780.
    [152] Knight A and Mindell D P. Substitions bias,weighting of DNA sequence evolution and the phylogenetic positions of fea’s viper. Syst Biol,1993,42(1):18-31.
    [153] Ikemura T. Correlation between the abundance of Escherichia coli transfer RNAs and the occurrence of the respective codons in its protein genes. J Mol Biol,1981,146:1-21.
    [154] Ikemura T. Codon usage and tRNA content in multicellular organisms. Mol Biol Evol,1985,2:13-34.
    [155] Hughes A L and Nei M. Pattern of nucleotide substitution at major histocompatibility complex classⅠloci reveals overdomonant selection. Nature,1988,335:167-170.
    [156] Lee Y H,Ota T and Vacquier V D. Positive selection is a general phenomenon in the evolution of abalone sperm lysin. Mol Biol Evol,1995,12:231-238.
    [157] Suzuki Y. New methods for detecting positive selection at single amino acid sites. Journal of Molecular Evolution,2004,59:11-19.
    [158] Lalthantluanga R,Barnabas J. Hemoglobin alpha chain allelic variants in gayal(Bos gaurus frontalis). Folia Biochimica et Biologica Graeca,1974,11:65-69.
    [159] Lalthantluanga R,Gulati J M,Barnabas J. Hemoglobin genetics in bovines and equines. Indian J Biochem Bio-phys,1975,12:51-57.
    [160]单祥年,陈宜峰,罗丽华等.我国黄牛属(Bos)五个种的染色体比较研究.动物学研究,1980,1(1):75-79.
    [161] Huque K S,Rahman M M,Jalil M A. Study on the growth pattern of gayals(Bos frontalis)and their crossbred calves. Asian-Aust J Anim Sci,2001,14(9):1245-1249.
    [162] Verkaar E L C,Nijman I J,Beeke M et al. Maternal and paternal lineages in cross-breeding bovine species. Has wisent a hybrid origin? Mol Biol Evol,2004,21(7):1165-1170.
    [163] Nyunt M M,Win N. Mithan(Bos frontalis)in Myanmar. Rep Soc Res Native Livestock,2004,21:19-22.
    [164] Tanaka K,Mannen H,Kurosawa Y et al. Cytogenetic analysis of mithan in Myanmar. Rep Soc Res Native Livestock,2004,21:123-127.
    [165]杨关福,张细权,李加琪等.徐闻黄牛和海南黄牛血液蛋白的遗传多样性.华南农业大学学报,1996,17(2):23-27.
    [166]聂龙,陈永久,王文等.海南黄牛和徐闻黄牛线粒体DNA的多态性及其品种分化关系.动物学研究,1996,17(3):269-274.
    [167]王朝锋,雷初朝,陈宏等.雷琼牛mtDNA D-loop遗传多态性研究.黄牛杂志,2005,31(5):14-15.
    [168]常洪,耿社民,武彬等.中国黄牛源流考之一(下).黄牛杂志,1991,1:3-9.
    [169]陈幼春,曹红鹤.中国黄牛品种多样性及其保护.生物多样性,2001,9(3):275-283.
    [170] Cai X,Chen H,Wang S et al. Polymorphisms of two Y chromosome microsatellites in Chinese cattle. Genet Sel Evo,2006,38(5):525-534.
    [171] Laird C D,McConaughy B L and McCarthy B J. Rate of fixation of nucleotide substitutions in evolution. Nature,1969,224:149-154.
    [172] Kohne D E. Evolution of higher-organism DNA. Quart Rev Biophys,1970,3:327-375.
    [173] Easteal S,Collet C and Betty D. The mammalian molecular clock. R G Landes,Austin,TX,1995.
    [174] Nei M. Molecular population genetics and evolution. North-Holland,Amsterdam,The Netherlands,1975.
    [175] Britten R J. Rates of DNA sequence evolution differ between taxonomic groups. Science,1986,231:1393-1398.
    [176] Wu C I and Li W H. Evidence for higher rates of nucleotide substitution in rodents than in man. Proc Natl Acad Sci USA,1985,82:1741-1745.
    [177] Easteal S. Generation time and the rate of molecular evolution. Mol Biol Evol,1985,2:450-453.
    [178] Easteal S. Rate constancy of globin gene evolution in placental mammals. Proc Natl Acad Sci USA,1988,85:7622-7626.
    [179] Easteal S. The pattern of mammalian evolution and the relative rate of molecular evolution. Genetics,1990,124:165-173.
    [180] Li W H,Gouy M,Sharp P M et al. Molecular phylogeny of Rodentia,Lagomorpha,Primates,Artiodactyla and Carnivora and molecular clocks. Proc Natl Acad Sci USA,1990,87:6703-6707.
    [181] Janke A,Feldmaier-Fuchs G,Thomas W K et al. The marsupial mitochondrial genome and the evolution of placental mammals. Genetics,1994,137:243-256.
    [182] Sarich V M and Wilson A C. Immunological time scale for hominid evolution. Science,1967,158:1200-1203.
    [183] Margoliash E. Primary structure and evolution of cytochrome c. Proc Natl Acad Sci USA,1963,50:672-679.
    [184] Fitch W M. Evidence suggesting a non-random character to nucleotide replacements in naturally occuring mutations. J Mol Biol,1967,26:499-507.
    [185] Gu X and Li W H. Higher rates of amino acid substitution in rodents than in humans. Mol Phylogenet Evol,1992,1:211-214.
    [186] Takezaki N,Rzhetsky A and Nei M. Phylogenetic test of the molecular clock and linearizedtree. Mol Biol Evol,1995,12:823-833.
    [187] Li P and Bousquet J. Relative-rate test for nucleotide substitutions between two lineages. Mol Biol Evol,1992,9:1185-1189.
    [188] Felsenstein J. Phylogenies from molecular sequences:Inference and reliability. Annu Rev Genet,1988,22:521-565.
    [189] Yang Z. Maximum likelihood phylogenetic estimation from DNA sequences with variable rates over sites:Approximate methods. J Mol Evol,1994,39:306-314.
    [190] Yang Z and Kumar S. Approximate methods for estimating the pattern of nucleotide substitution rates among sites. Mol Biol Evol,1996,13:650-659.
    [191] Yang Z. PAML:Phylogenetic analysis by maximum likelihood,ver 2.0. University College London,London,1999.
    [192] Maxam A M and Gilbert W. A new method for sequencing DNA. Proc Natl Acad Sci USA,1977,74:560-564.
    [193] Sanger F,Air G M,Barrell B G et al. Nucleotide sequence of bacteriophageΦX174 DNA. Nature,1977,265:687-695.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700