用户名: 密码: 验证码:
中国石蒜属(Lycoris Herb.)种间亲缘关系与居群分子标记研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
石蒜属(Lycoris Herb.)是石蒜科中的一个重要的属,该属全世界约20种,中国种类最多,约15种,广泛分布华南、华中、华东各省区,华东地区为其多样性分布中心。该属植物具有很高的观赏价值,鳞茎富含生物碱,具有多种药理活性作用。石蒜属同种异名或异种同名的现象严重,种间易杂交、天然杂交种多,有些种内形态和染色体核型变异丰富,鉴别石蒜物种、确定属內种间亲缘关系和研究种內遗传多样性显得特别重要。石蒜(L.radiata(L'Hér.) Herb.)作为石蒜属中分布最广、资源最丰富、观赏性最强的种类之一,其系统研究尚未进行。因此,本研究利用ISSR分子标记、trn L-F序列分析、高效液相色谱(HPLC)技术以及基于形态特征的数量分类方法从不同角度、不同方面研究我国原产的石蒜属种间亲缘关系、物种的系统位置以及分类问题。同时运用多种分子标记技术和数量分类学方法对石蒜居群DNA和形态多样性进行研究,主要结果总结如下:
     1.利用基于形态特征的数量分类方法对中国石蒜属13种2变种的种间亲缘关系进行研究,以中国水仙(Narcissus tazetta L.var.chinensis Roem.)为外类群。Q聚类结果显示石蒜属物种聚为两类,第一类包括安徽石蒜(L.anhuiensis Y.Hsu & G.J.Fan)、长筒石蒜(L.longituba Y.Hsu & G.J.Fan)、黄长筒石蒜(L.Jongituba var.flavo Y.Hsu & X.L.Huang)、中国石蒜(L.chinensis Traub.)、忽地笑(L.aurea(L'Hér.)Herb.)、乳白石蒜(L.albiflora Koidz.)、香石蒜(L.incarnata Comes cx C.Sprenger)、鹿葱(L.squamigero Maxim)和换锦花(L.sprengeri Comes ex Baker) 9个种;第二类由矮小石蒜(L.radiata(L' Hér.)Herb.var.pumila Grey)和石蒜(L.radiata(L' Hér.)Herb.)、玫瑰石蒜(L.rosea Traub & Moldenke)、稻草石蒜(L.straminea Lindl.)、江苏石蒜(L.houdyshelii Traub.)、红蓝石蒜(L.haywardii Traub.)组成,皆为秋出叶物种。中国水仙单独成一类。与经典分类结果基本相符。研究结果支持鹿葱、乳白石蒜、江苏石蒜、稻草石蒜、玫瑰石蒜和红蓝石蒜的杂交起源观点。但不支持安徽石蒜作为分类学意义上的种,认为将其作为长筒石蒜的变种或长筒石蒜与中国石蒜的杂交种更为合适。R聚类和主成分分析表明雄蕊与花被片的位置关系和鳞茎形状是划分人类群的重要指标。
     2.利用高效液相色谱(HPLC)对我国石蒜属13种1变种及其近缘植物中国水仙生物碱进行检测,根据生物碱成分的相似性采用Q聚类,石蒜属物种聚成两大类,该属大多数种的归类与基于形态特征的数量分类结果一致,但红蓝石蒜和忽地笑的聚类发生了变化。中国水仙的HPLC图谱与石蒜属植物明显有别,单独成一类。外形相似的中国石蒜与忽地笑,石蒜与矮小石蒜的HPLC图谱差异也较大。
     3.采用PCR产物直接测序法,测定了我国石蒜属13种2变种的叶绿体DNAtrnL-F序列,以中国水仙为外类群。结果表明:所测物种的序列全长在905~1036bp之间,经排序后两端切平,得到886bp的整齐序列,其中trnL(UAA)內含子长度为529bp,trnL(UAA)3'外显子至trnF(GAA)之间的基因间区长度为357bp。所测物种的变异位点14个,信息位点10个,占序列总长度1.13%,序列的G+C含量为32.9%。序列中出现4个碱基“ATAT”缺失/插入和7个碱基的置换(颠换6个,转换1个),用以区别石蒜属与其近缘植物水仙;trnL-F序列的177bp处和497bp处分别是香石蒜和矮小石蒜种特异性鉴别位点。基于trnL-F序列运用最大简约法获得供试样品的分子系统树:水仙属植物形成一个单系类群;石蒜属13种2变种可分为3类,多数种的归类与经典分类结果基本一致。结果还表明换锦花很可能作为红蓝石蒜、玫瑰石蒜的杂交母本;安徽石蒜可能是长筒石蒜的变种或以长筒石蒜为母本的杂交种。
     对石蒜13个居群和其变种矮小石蒜、近缘种玫瑰石蒜和红蓝石蒜的trnL-F序列也进行测定分析,结果表明:所测样品trnL-F序列存在一定变异,碱基突变以转换为主。石蒜种内不同居群(细叶型和宽叶型)trnL-F序列呈现一定差异,江苏江宁的石蒜居群trnL-F序列与玫瑰石蒜、红蓝石蒜的完全相同。
     4.采用简单重复序列间区(ISSR)分子标记,研究了中国原产的石蒜属13种1变种之间亲缘关系,以中国水仙为外类群。16个扩增清晰、多态性好的ISSR引物共扩增出253个位点,其中244个多态性位点,多态性位点百分率达96.44%。种间遗传距离以江苏石蒜与中国水仙的的最远,达0.8700,石蒜与矮小石蒜遗传距离最近,为0.2104。中国石蒜与忽地笑虽然花部性状极为相似,但DNA差异较大。UPGMA法将供试石蒜物种聚成2人类,除换锦花、鹿葱、香石蒜在人类土划分有所不同外,ISSR标记结果与传统形态分类、核型和RAPD标记结果基本相同;还与前文中基于形态特征的数量分类和HPLC聚类分析有较高相似处。
     5.将基于形态特征的数量分类、HPLC图谱聚类分析和ISSR分子标记中相同的一组供试样品的原始数据联合起来利用SPSS软件进行聚类分析,结果表明:(1)中国水仙与石蒜属植物亲缘关系远,在较高的聚合水平,中国水仙形成一个单系类群。(2)15份石蒜属植物被分成了两类,第一类除忽地笑和中国石蒜外,其它全为整齐花亚属物种;第二类是以石蒜和矮小石蒜为代表的石蒜亚属物种。(3)联合分析与单一分类方法获得的结果基本一致。即中国产石蒜属5个原种(长筒石蒜、中国石蒜、忽地笑、换锦花和矮小石蒜)的系统位置比较明确,玫瑰石蒜、鹿葱、红蓝石蒜和稻草石蒜等具有杂交起源的种其杂交种身份也得到证实,系统位置较为确定。然而,不支持安徽石蒜作为一个分类学意义上的种,它可能是长筒石蒜的变种或长筒石蒜与中国石蒜的杂交种。香石蒜和乳白石蒜的起源及系统位置还难以确定,有待进一步研究。
     6.用ISSR和RAPD标记分别对石蒜属4个种37份样品的基因组DNA的遗传多样性进行检测。16个ISSR和17个RAPD引物分别扩增出229和215条带,多态比率分别为85.59%和69.77%,ISSR检测出的多态性条带的能力优于RAPD;ISSR和RAPD标记检测同组样品的Nei's遗传相似系数范围分别为0.5459~0.9345(平均0.6836),0.6419~1.0000(平均0.7428)。两者相关系数r=0.8582,达极显著水平。ISSR和RAPD标记的分子聚类结果相近,两种标记均能准确地把不同来源的样品先按种聚类,石蒜种內的遗传多态性高于同一试验中忽地笑、中国石蒜、换锦花的种内多态性。种内不同采集地样品间存在一定的遗传差异。用POPGENE3.2分析的种间基因分化系数(Gst)与用AMOVA进行的遗传变异巢式方差分析所得结果基本一致。两种标记均可用于石蒜属植物居群的遗传多样性研究。
     7.石蒜有代表性的13个居群和其变种矮小石蒜、近缘种玫瑰石蒜和红蓝石蒜的数量分类研究结果与同一组植物样品基于trnL-F序列的聚类结果存在较高的相似性。石蒜居群之间外部形态、生长发育习性、次生代谢产物加兰他敏含量存在较大差异,这些差异与DNA差异之间有一定联系,石蒜具有较宽的遗传基础和丰富的遗传多样性。
     8.应用SRAP标记对中国13个省24个石蒜居群共89个样品进行检测,10对引物组合共获得218条带,其中173条为多态性条带,多态性百分比达79.36%。多态谱带比率以贵州3个居群的最高,达37.61%,其次是四川忠县居群(SC),为36.70%,多态谱带比率最低的是安徽广德居群(AH1),为25.69%。物种水平的总等位基因数(na)、有效等位基因数(ne)、基因多样性指数(h)、Shannon多样性指数(I)依次为1.7936、1.4131、0.2415和0.3664。AMOVA遗传变异巢式方差分析得出的居群间变异(96.05%)与物种水平遗传分化系数(Gst)0.9748、基因流(Nm)0.0129基本相符。居群间和样品间聚类结果皆显示,所有样品可分为两大类,第Ⅰ大类7居群中除连云港居群外,均来自西南或西北地区;第Ⅱ大类由分布华南、华中和华东地区的17个居群组成。SRAP遗传距离与经度、纬度、年均降雨量、年均温呈极显著正相关,相关系数依次为0.202~(**)0.248~(**)、0.194~(**)、0.171~(**)(r0.01=0.000~0.005,n=276):但与海拔没有显著相关。SRAP技术不仅能检测到石蒜种内、居群间丰富的遗传多态性,还能检测到居群内样品间的遗传差异。
     本研究采用多种方法对石蒜居群的遗传多样性进行了分析,其结果均揭示出石蒜种内存在较为丰富的遗传变异,根据多种研究结果我们将石蒜分为细叶型、宽叶型和中间类型3种类型。
The genus Lycoris(Amaryllidaceae) is comprised of about 20 species,and there are 15 species in China.They widely distribute in many provinces of China,and east China is the diversity center of them.The plants of Lycoris are endowed with medicinal and ornamental values.Alkoilds which are rich in bulbs of Lycoris,have pharmacological effects,for example,galanthamine have been used for the clinical treatment of Alzheimer's disease(AD) in recent years.It is common that different species having the same name or the same species having different names in Lycoris,which cause some confusion in germplasm collection,preservation,and utilization.Since some species are easy to hybridize,there are many natural hybrids.The morphological feature,chromosome number, and karyotype of several species of Lycoris vary in wide range at interspecific and intraspecific level.However,L.radiata(L' Hér.) Herb.as an ornamental and medicinal plant,its genetic diversity has not been studied.It is necessary to identify species with very similar outer characters,to research interspecific relationships of Lycoris and genetic diversity of L.radiata(L' Hér.) Herb.Thus,interspecific relationships and taxonomy of Lycoris were investigated by means of numerical taxonomy which based on the morphology,high-performance liquid chromatography(HPLC),inter-simple sequence repeats(ISSR) markers and cp DNA trn L-F sequences analysis,and genetic diversity of L.radiata were also studied with numerical taxonomy and DNA molecular markers in this paper.The main results were as follows:
     1.Based on the field observation and the data collected from references,Q cluster analysis for 38 characters of 13 native species and 2 varieties of Lycoris in China and one Narcissus tazetta var.chinensis were conducted.The results of cluster analysis showed that N.tazetta var.chinensis was a monophyletic group and 15 Lycoris species were classified as two groups,group one included L.anhuiensis,L.longituba,L.longituba var.flava,L. chinensis,L.aurea,L.albiflora,L.incarnata,L.squamigera,and L.sprengeri,group two consisted of L.radiata var.pumila,L.radiata,L.rosea,L.straminea,L.houdyshelii,and L. haywardii,which agree with the traditional taxonomic studies.The results supported the viewpoint that hybrid origin of L.squamigera,L.albiflora,L.houdyshelii,L.straminea,L. rosea,and L.haywardii.While L.anhuiensis as an independent species was not supported, it should be recognized as a variety of L.longituba or a hybrid between L.longituba and L. chinensis.The principle component analysis and R cluster analysis revealed that bulb shape and the position relation of the stamen and perianth can be used as the characters of Lycoris for major group division.
     2.13 native species and 1 variety of Lycoris in China and one N.tazetta var.chinensis were studied with HPLC technique.The result of Q clustering obtained according to the similarity of alkaloids indicated that all Lycoris species were divided into two major groups. The clustering result was generally consistent with that of numerical taxonomy which based on the morphology except for L.haywardii and L.aurea.N.tazetta var.chinensis formed a independent group due to obvious difference of HPLC chromatograms exited between N. tazetta var.chinensis and genus of Lycoris.The differences of HPLC chromatograms also existed between L.aurea and L.chinenesis,L.radiata and L.radiata var.pumila,which indicated there is a far phylogenetic distance between them.
     3.The cpDNA trnL-F sequence of 17 taxa representing 13 species and 2 varieties of Lycoris and N.tazaetta var.chinensis as one outgroup were determined by using direct sequencing of PCR product,and they were analyzed by means of the software of CLUSTRAL and MEGA.The length of trnL-F of all taxa was 905~1036bp,When the gaps were always treated as missing,there were 14 variable sites,10 were parsim-info ones, and account for 1.13%of the total length.The(G+C) content was 32.9%.At the intergeneric level,4 nucleotides inserteions or deletions and 7 substitutions(6 transversions and 1 transition) occurred.Three substitution sites which located on 22bp, 214bp,and 636bp were used to identify some species of Lycoris.L.incarnata and L. radiata var.pumila had its species-specific SNPs.Maximum-parsimony tree of 17 accessions were constructed based on trn L-F sequence by bootstrap test.N.tazetta var. chinensis was a monophyletic clade,three infrageneric clades of Lycoris were resolved.The trees suggested that L.anhuiensis can not be taken as an independent species,while it may be a variety or a hybrid of L.longituba,and that the maternal parents of L.rosea and L. haywardii are L.sprengeri.
     The trnL-F sequence of 13 populations of L.radiata,L.radiata var.pumila,L.rosea, and L.haywardii were conducted by using direct sequencing of PCR product.The result showed that minor variation of trnL-F among these taxa occurred and nucleotide substitution was mainly due to transition.There some difference of trnL-F sequences between narrow-leaf type and width-leaf type of L.radiata,while the trnL-F sequences of L.rosea,L.haywardii and Jiangsu,Jiangni population of L.radiata were the same.
     4.Interspecific relationships of 13 species and 1 variety of Lycoris were evaluated using inter-simple sequence repeat(ISSR) markers,N.tazaetta var.chinensis as outgroup. 16 primers produced 253 discernible DNA fragments,out of which 244 were polymorphic, and the percentage of polymorphic bands(PPB) was 96.44%.The genetic distance between L.houdyshelii and N.tazaetta var.chinensis is farthest(0.8700),while the genetic distance between L.radiata and L.radiata var.pumila is the nearest(0.2104).The DNA differences is obvious between L.chinesis and L.aurea although both of them have similar outer characters.All species of Lycoris were recognized as 2 major groups by UPGMA cluster analysis,which were basically consistent with that of by morphology, karyotype,and RAPD analysis,and also consistent with that of numerical taxonomy which based on the morphology and HPLC chromatograms cluster analysis of Lycoris except for the major group division of L.sprengeri,L.squamigera,and L.incarnata.
     5.Interspecific relationships of 13 native species and 1 variety of Lycoris in China were discussed by combined the data of numerical taxonomy which based on the morphology,HPLC chromatograms cluster analysis,and ISSR markers,N.tazetta var. chinensis as outgroup.The result indicated(1) N.tazetta var.chinensis was a monophyletic group,which displayed that far relationship between N.tazetta var.chinensis and gnenus of Lycoris.(2) Lycoris was divided into two groups,species in the first group were attributed to Symmanthus subgenus except for L.chinesis and L.aurea,while,species in the second group such as L.radiata,L.radiata var.pumilar were attributed to Lycoris subgenus.(3) Our results confirmed that phylogenetics of 5 primary species of Lycoris in China(L.longituba,L.chinensis,L.aurea,L.sprengeri,and L.radiata var.pwnilar).The status and phylogenetics of hybrid origin species such as L.rosea,L.squamigera,L. haywardii,L.straminea,and L.houdyshelii were supported.However,L.anhuiensis can not be taken as a distinct species,it may be a variety of L.longituba or derived from hybridization between L.longituba and L.chinensis.The status and phylogenetics of L. albiflora and L.incarnata was not resolved in this study.In conclusion,the results obtained by combined analysis were basically accordance with that of by numerical taxonomy which based on the morphology,HPLC chromatograms cluster analysis,and ISSR markers respectively.
     6.37 accessions of Lycoris collected from different location in China,including 18 L. radiata,10 L.chinensis,5 L.sprengeri and 4 L.aurea were investigated with the technique of RAPD and ISSR,respectively.The result showed that 229 and 215 DNA bands were amplified with 16 ISSR and 17 RAPD primers respectively,the percentage of polymorphic bands(PPB) in ISSR detection(85.59%) was higher than that in RAPD(69.77 %).The coefficient ranges ofinterspecific and intra-specific GS(genetic similarity) in ISSR and RAPD analysis with the same materials were 0.5459~0.9345(average 0.6836) and 0.6419~1.0000(average 0.7428),respectively.There was significant difference of correlation coefficient(P<0.01) between ISSR and RAPD(r = 0.8582).The similar molecular cluster results were obtained from RAPD and ISSR analysis,and showed that the genetic diversity of intraspecific was high,and the percentage of polymorphic bands (PPB) of L.radiata was the highest.The coefficient of gene differentiation(Gst) amonginterspecific consists with the result of molecular variance analysis(AMOVA). ISSR and RAPD marker are both efficient methods in revealinginterspecific or intra-specific genetic difference and diversity.
     7.13 populations ofL.radiata,L.radiata var.pumila,L.rosea,and L.haywardii were studied with numerical taxonomy and cpDNA trnL-F sequence analysis.The result obtained from Q cluster analysis is very similar to that from trnL-F sequence analysis. There were some differences in outer characters,content of galanthimine,and growth and develop habit among populations of L.radiata,and these differences was relation to that variation of trnL-F sequence.The results denoted that L.radiata has abundant genetic diversity.
     8.Genetic diversity and population genetic structure of L.radiata were examined with the technique of sequence-related amplified polymorphism(SRAP) 218 loci were identified with 10 SRAP primer combinations,out of which 173 were polymorphic and accounted for 79.36%of total genetic diversity at species level.The observed average number of alleles(ha),the effective number of alleles(he),Nei's gene diversity(h), and Shannon's information index(I) at species level were 1.7936,1.4131,0.2415,and 0.3664,respectively.The percentage of polymorphic loci(PPB) was the highest (37.61%) in Guizhou three populations(GZ1,GZ2,GZ3),Sichuan Zhongxian population(SC) was the second(36.70%),the lowest(25.69%) was in Anhui Guangde population(AH1) among populations of L.radiata.A large proportion of genetic variation(96.05%) resided among populations,while only 3.95%resided among samples within populations by Analysis of molecular variance(AMOVA).The result consisted with that of coefficient of gene differentiation(Gst = 0.9748) and Gene flow (Nm = 0.0129).These 24 populations of L.radiata surveyed were classified into two major groups.Group one included 7 populations which came from southwest or northwest of China,except for Jiangsu,Lianyungang population(JS3).Group two included the other 17 populations which distributed in from south to east China.Correlation analysis detected significant correlation between genetic distance and longitude,latitude,annual rainfall, annual average temperature.The coefficients were 0.202,0.248,0.194,and 0.171, respectively.There was no significant correlation between genetic distance and altitude. SRAP marker can detected not only genetic differences among populations,but also among samples within population.
     The results obtained with molecular markers and numerical taxonomy among populations of L.radiata showed that abundant genetic diversity existed in L.radiata, which can be classified as narrow-leaf type,width-leaf type,and intermediate type.
引文
1.Abdallah O M,Minor alakloids from Lycoris sanguinea[J].Phytochemistry,1995,39(2):477-478
    2.Bell C J,Ecker J H.Assignment of 30 microsatellite loci to the linkage map of Arabidopsis[J].Genomics,1994,19:137-144
    3.Berkov S,Sidjimova B,Evstatieva L,et al.Intraspecific variability in the alkaloid metabolism of Galanthus elwesii[J].Phytochemistry 2004,65:579-586
    4.Bose S,Flory W S.A study of phylogeny and karyotype evolution in Lycoris,Nucleus,1963,6(2):141-156
    5.Budak H,Shearman R C,Parmaksiz I,et al.Molecular characterization of Buffalograss germplasm using sequence-related amplified polymorphism markers[J].Theor Appl Genet,2004a,108:328-334
    6.Budak H,Shearman R C,Parmaksiz I,et al.Comparative analysis of seeded and vegetative biotype buffalograsses based on phylogenetic relationship using ISSRs,SSRs,RAPDs,and SRAPs[J].Theor Appl Genet,2004b,109:280-288
    7.Chase M W,Soltis D E,Olmstead R G,et al.ehylogenetics of seedplants:An analysis of nucleotide sequences from the plastid gene rbcL[J].Ann Missouri Bot Gard,1993,80:528-580
    8.Chung Myong.Clonnal and spatial genetic structure in a population of the endangered herb Lycoris sanginea var.koreana(Amaryllidaceae)[J]Genes & Genetic Systems.1999,74(2):61-66
    9.Clegg M T,Gaut B S,Learn G H,et al.Rates and patterns of chloroplast DNA evolution[J].Proc Natl Acad Sci USA,1994,91:6795-6801
    10.Curtis S E,Clegg M T.Molecular evolution of chloroplast DNA sequences[J].Mol Biol Evol,1984,1:291-301
    11.Dal-Bianco P,Maly J,Wober C,et al.Galanthamine treatment in Alzheimer's disease[J].J.Neural Tranam,1991,33(Suppl.):59-63
    12.Dendauw J,J De Riek,M De Loose,et al.Identifieation of 33 chinese rhododendron species using matk sequences and AFLP data.2002,ISHS Acta Horticulturae 572:XX International Eucarpia Symposium Section Ornamentals-Strategies for New Ornamentals Ⅱ
    13.Divaret I,Margale E,Thomas G.RAPD markers on seed bulks eficiently assess the genetic diversity of a Brassica oleracea L.collection[J].Theoretical and Applied Genetics,1999,98:1029-1035
    14.Dubouzet J G,Shinoda K.Phylogenetic analysis of the internal transcribed spacer region of Japanese Lilium species[J].Theor Appl Genet,1999,98:954-960
    15.Dubrcuil P,Rebourg C,Merlino M,et al.Evaluation of a DNA pool-sampling strategy for estimating the RFLP diversity of maize populations[J].Plant Molecular Biology Reporwr,1999,17:123-138
    16. Excoffier L. Analysis of molecular variance (AMOVA) version 1.55.1993.
    
    17. Ferriol M, Pico B, Nuez F. Genetic diversity of a germplasm collection of Cucurbita pepo using SRAP and AFLP markers[J]. Theor Appl Genet, 2003,107: 271- 282.
    
    18. Funk V, Cracraft J J. The implications of phylogenetic analysis of the comparative biology: the thirtieth annual systematic symposium. Ann Missouri Bot Gard, 1985, 72: 591-595
    
    19. Ge S, Hong D Y. Population genetic structure and conservation of an endangered conifer, Cathaya argyrophylla (Pinaceae)[J]. International Journal of Plant Science, 1998: 159:351-357
    
    
    20. Germano J, Klein A S. Species-specific nuclear and chloroplast single nucleotide polymorphisms to distinguish Picea glauca, P. mariana and P. rubens [J]. Theor Appl Genet, 1999, 99(1): 37-49
    
    21. Gilbert J E. Lewis R V, Wilkinson M J, Caligari P D S. Developing an appropriate strategy to assess genetic variability in plant germplasm collections [J].Theoretical and Applied Genetics, 1999, 98: 1125 -1131
    
    22. Guo Y K, Zheng J G, Zhang L, et al. Molecular cloning of a new lectin gene from Z. grandiflora [J]. DNA Sequence, 2003,14(4): 335-338
    
    23. Hao G, Yuan Y M, Hu C M, et al. Molecular phylogeny of Lysimachia (Myrsinaceae) based on chloroplast trnL-F and nuclear ribosomal ITS sequences [J]. Molecular Phylogenetics and Evolution 2004, 31:323-339
    
    24. Harvey A L. The pharmacology of galanthamine and its analogues[J]. Pharmac. Ther, 1995, 68(1): 113-128
    
    25. Hayashi A, Saito T, Mukai Y, et al. Genetic variations in Lycoris radiata var. radiate in Japan [J]. Genes Genet Syst, 2005, 80:199-212
    
    26. Henning W. Phylogenetic systematics[J]. Urbana: Univ Illionis Press, 1966, 34
    
    27. Hori T, Hayashi A, Sasanuma, et al. Genetic variations in the chloroplast genome and phylogenetic clustering of Lycoris species [J]. Genes Genet Syst, 2006,81: 243-253
    
    28. Hostettmann K, Marston A. Twenty years of research into medicinal plants: Results and perspectives [J]. Phytochemistry Reviews, 2002,1: 275-285
    
    29. Hsu P S, Kurita S, Yu Z S. et al. Synopsis of the genus Lycoris (Amaryllidaceae) [J]. SIDA, 1994,16 (2): 301-331
    
    
    30. Inariyama S. Cytological studiesin Lycoris[J], Rep Kihara Inst Biol Res, 1953, 6: 5-10
    
    31. Ingkaninan K, de Best C M, Heijden R vander, et al. High-performance liquid chromatography with on-line coupled UV, mass spectrometric and biochemical detection for identification of acetylcholinesterase inhibitors from natural products [J]. Journal of Chromatography A, 2000, 872: 61-73
    
    32. Ito M, Kawamoto A, Kita Y, et al. Phylogenetic relationships of Amaryllidaceae based on matK sequence data[J].J Plant Res,1999,112:207-216
    33.Jeffreys A J,Wilson V,T hein S L.Individual-specific "fingerprints" of human DNA[J].Nature,1985,316(6023):76-79.
    34.Jian S G,Tang T,Zhong Y,et al.Variation in inter-simple sequence repeat(ISSR) in mangrove and non-mangrove populations of Heritie ralittoralis(Sterculiaceae) from China and Australia[J].Aquatic Botany,2004,79:75-86
    35.Ji Z H,Meerow A W.Amaryllidaceae,In:Flora of China[M].Beijing:Press of Science,2000,24:264-273
    36.Johnson L A,Soltis D E.Phylogenetic inference in Saxifragaceae sensu stricto and Gilia (Polemoniaceae) using mark sequences[J].Ann Missouri Bot Gard,1995,82:149-175
    37.Jones K.Aspects of chromosome evolutionin higher plants[J].Adv Bot Res,1978,6:119-194
    38.Jorg E,Takeshi T,Yasuyuki K,et al.Biosynthesis of the Amaryllidaceae alkaloid galanthamine[J].Phytochemistry,1998,49(4):1037-1047
    39.Kim S,Park C W.Phylogenefic relationships in family Magnoliaceae inferred from ndh F sequence [J].American Journal of Botany,2001,88(4):717-728
    40.Kobayashi N,Handa T,Eto J,et al.Genetic diversity of Japanese wild evergreen azaleas in Kyushn(south main island of Japan)characterized by AFLP[A].SHS Acta Hortieulturae:XX International Euearpia Symposium Section Ornamentals-Strategies for New Ornamentals Ⅱ.2002,572
    41.Ko Mc.Choson Minjujui Inmin Konghwaguk Kunbagwon Tongbo,2000,CA 104:95324m.
    42.Kumar S,Tamura K,Jakobsen I B,et al.MEGA 3.1:molecular evolutionary genetics analysis software[J].Bioinformatics,2001,17:1244-1245
    43.Kurita S.Geocilinal change in the pollen ornamentation of Lycoris sanguinea Maxim.Var.sanguinea[J].J Jap Bot,1985,60:275-279
    44.Kurita S.Variation and evolution in the karyotype of Lycoris,Amaryllidaceae,General karyomorphological characteristics of the genus[J].Cytologia,1986,51:803-815
    45.Kurita S.Chromosome evolution in Lycoris[J].Proc.Jap.Soc.Plant Tax,1987a,4:8-9
    46.Kurita S.Variation and evolution in the karyotype of Lycoris,Amaryllldaceae Ⅲ intraspeciflc variation in the Karyotype of L.traubii Hayward[J].Cytolngia,1987b,52:117-128
    47.Kurita,S.Variation and evolution on the karyotype of Lycoris,Amaryllidaceae.Ⅳ.Intraspecific variation and evolution in the karyotype of L.radiata(L'Her.) Herb.and the origin of this triploid species.Cytologia,1987b,52,137-149.
    48.Kurita S.Variation and evolution in the karyotype of Lycoris,Amaryllidaceae Ⅱ Karyotype analysis of ten taxa among which seven are native to China[J].Cytologia,1987c,52:19-40
    49. Kurita S. Variation and evolution in the karyotype of Lycoris, Amaryllidaceae Ⅶ. Modes of Karyotype alteration within species and probable trend of Karyotype evolution in the genus[J]. Cytologia, 1988,53: 323-335
    
    50. Kurita S, Hsu P S. Hybrid compleses in Lycoris Amaryllidaceae[J]. Am.J. Bot, 1996, 89:207
    
    51. Lee N S, Kim M, Lee B S, et al. Isozyme evidence for the allotriploid origin of Lycoris flavescens (Amaryllidaceae) [J]. Plant Syst Evol, 2001,227: 227-234
    
    52. Li G, Quiros C F. Sequence-related amplified polymorphism (SRAP), a new marker system based on a simple PCR reaction: its application to mapping and gene tagging in Brassica[J]. Theor Appl Genet, 200,103: 455-461
    
    53. Li A, Ge S. Genetic variation and clonal diversity of Psammochloa villosa (Poaceae) detected by ISSR Markers[J]. Annals of Botany, 2001, 87: 585-590
    
    54. Li H Y, Ma G E, Xu Y, et al. Alkaloids of Lycoris guangxiensis[J]. Planta Medica, 1987, (3): 259-261
    
    55. Li J Alexander J H, Zhang D. Plraphyletic Syringa (Oleaceae): evidence from sequences of nuclear ribosomal DNA ITS and ETS regions [J]. Syst, 2002,27(2): 592-597
    
    56. Lin J Z, Yu Z Z, Hsu P S. Hybridization and breeding of Lycoris[A]. In : He, S A ed. Proc. Int. Symp. Bot Gard, 1990:557-568
    
    57. Lledo M D, Davis A P, Crespo M B, et al. Phylogenetic analysis of Leucojum and Galanthus (Amaryllidaceae) based on plastid matK and nuclear ribosomal spacer (ITS) DNA sequences and morphology [J]. Plant Syst Evol, 2004, 246: 223-243
    
    58. Mace E S, Gebhardt C G, Lester R N. AFLP analysis of genetic relationships in the tribe datureae [J]. Theor Appl Genet, 1999,99: 634-641
    
    59. Mark P, Miller. A windows program for the analysis of allozyme and molecular population genetic data (TFPGA). 2000, http:// herb.bio.nau.edu/~miller/
    
    60. Martin S F. In Brossi E. ed. The Alkaloids[M]. Academic Press. 1987, 30: 251
    
    61. Mayr E. The growth of biological thought [M]. Harvard University Press, Cambridge, Mass. 1982a
    
    62. Meerow A W. Clayton J R. Generic relationships among the baccate-fruited Amaryllidaceae(tribe Haemantheae) inferred from plastid and nuclear non-coding DNA sequences [J]. Plant Syst. Evol. 2004, 244: 141-155
    
    63. Meerow A W, Charles G L, Li Q B, et al. Phylogeny of the American Amaryllidaceae based on nrDNA ITS sequences [J]. Systematic Botany, 2000, 25(4): 708-726
    
    64. Meerow A W, Fay M F, Guy C L, et al. Systematics of Amaryllidaceae based on cladistic analysis of plastid rbcL and trnL-F sequence data [J]. Amer J Bot, 1999,86:1352-1345
    
    65. Niu W, Zhang D M. Evolution of 5S rRNA Genes in Ophiopogon xylorrhizus Wang et Dai and O. sylvicola Wang et Tang (Convallariaceae) [J]. Acta Botanica Sinica 2002,44 (3): 329-336
    66.Nkongolo K K,Deverno L,Michael P.Genetic validation and characterization of RAPD markers diferentiating black and red spruces:molecular certification of spruce trees and hybrids[J],Plant Syst Evol,2003,236:151-163
    67.Novikova I Y,Tulaganov A A,Structure of chemical compounds methods of analysis and process control physicochemical methods for the analysis of galanthamine(review)[J].Pharmaceutical Chemistry Journal,2002,36(11):623-627
    68.Ogawa T,Tarumoto I,Ma B,et al.Genome dirrerentiation in Lycoris species(Amaryllidaceae)identified by genomic in situ hybridization[J].Breeding Science,2005,55:265-269
    69.Ohnstead R G,Palmer J D.Chloroplast DNA systematics:A review of methods and data analysis[J].Amer J Bot,1994,81:1205-1224
    70.Palmer J D,Herbon L A.Plant mitochondrial DNA evolves rapidly in structure but slowly in sequence[J].J Mol Evol,1988,28:87-97
    71.Palmer J D.Plastid chromosomes:Structure and evolution.In:Bogorad L,Vasil I K,eds.Themolecular biology of plastids,Cell culture and somatic cell genetics of plants[M].Academic Press,San Diego,California,USA,1991,7A:5-53.
    72.Pang Y Z,Yao J H,Shen G A,et al..Molecular cloning of a new lectin gene from Zephyranthes Candid[J].Journal of southwest China normal university(Natural Science Edition),2002,27(3):433-436
    73.Pang Y Z,Yao J H,Shen G A,et al.Transgenic tobacco expressing Lycoris radiata agglutinin showed enhanced resistance to aphids[J].Acta Botanica Sinica,2004,46(7):767-772
    74.Park Y J,Her B G,Jeong S Y,et al.Effective and economical propagation method of Lycoris squmigera native to Korea[J].Korea Journal of Horticultural Science and Technology,1998,16(2):242-243
    75.Ran Y D,Keith R W,Hammeett,et al.Phylogenetic Analysis and Karyotype Evolution in the Genus Clivia(Amaryllidaceae)[J].Annals of Botany,2001,87:823-830
    76.Rieseberg L H,Gerber D.Hybridization in the Catalina Island Mountain Mahogany(Cercocarpus traskiae):RAPD evidence[J].Conservation Biology,1995,9:199-203
    77.Roder M S,Korzun V,Wendehake K,et al.A Microsatellite Map of Wheat[J].Genetics,1998,149:2007-2023
    78.Rogers S,Bendich A J.Ribosomal RNA genes in plants:variability in copy number and in the intergenic spacer[J].Plant Mol Boil,1987,9:509-520
    79.Roh M S,Kurita S,Zhao X Y,et al.Identification and classification of the genus Lycoris usinbg molecular markers[J].J.Kor.Hort.Sci,2002,43:120-132
    80.Saghai M A,Roof M A S,Biyashey R M,et al.Extraordinarily polymorphyic microsatellite DNA in barley: species diversity, chromosomal locations and population dynamics [J]. Proc Natl Sci, 1994, 91:5466-5470
    
    81. Sebastian H, Martz Z F, Chrissen E C, et al. Genetic variation of the endangered holoparasite Dactylanthus taylorii (Balanophoraceae)[J]. Journal of Biogeography, 2002, 29(56): 663-676
    
    82. Senior M L, Heun. Mapping maize microsatellites and polymerase chain reaction confirmation of the targeted repeats using a ct primor[J]. Genome, 1993, 36: 884-889
    
    83. Shi S D, Qiu Y X , Li E X, et al. Phylogenetic Relationships and Possible Hybrid Origin of Lycoris Species (Amaryllidaceae) Revealed by ITS Sequences [J]. Biochemical Genetics, 2006a, 44 (5): 198-208
    
    84. Shi S D, Qiu Y X, Wu L, et al. Interspecific relationships of Lycoris (Amaryllidaceae) inferred from inter-simple sequence repeat data [J]. Scientia Horticulturae, 2006b, 110: 285-291
    
    85. Stebbim G L. Chromosomal evolutionin higher plants [M]. London Edward Arnold Ltd, 1971
    
    86. Taberlet P, Gielly L, Pautou G, et al Universal primers for amplification of three non-coding regions of chloroplast DNA [J]. Plant Mol Bio. 1991,17:1105-1109
    
    87. Tae K-H, Ko S-C. A taxonomic study on the genus Lycoris (Amaryllidaceae)[J]. Korean Journal of Plant Taxonomy, 1996, 26(1): 19-35
    
    88. Thompson J D, Gibson T J, Plewniak F, et al. The CLUSTAL X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools [J]. Nucleic Acids Research, 1997, 25(24): 4876-4882
    
    89. Tomkins J P, Wood T C, Barnes I S, et al. Evaluation of genetic variation in the daylily (Hemerocallis spp.) using AFLP markers[J]. Theor Appl Genet, 2001,102: 489-496
    
    90. Traub H P, Moldenke H P. Amaryllidac : Tribe Amaryll[J]. Amer. Pl. Life Soc. California. 1949.
    
    91. Trusty J L, Olmstead R G, Bogler D J, et al. Using Molecular Data to Test a Biogeographic connection of the macaronesian genus bystropogon (Lamiaceae) to the New World: A Case of Conflicting Phylogenies[J]. Sys. Bot, 2004,29 (3): 702-715
    
    92. Uyeo S, Koboyashi S. Isolation and characterization of Lycoremine [J]. Pharm. Bull., 1953,(1): 39
    
    93. Uyeo S, Yanaihara N. Phenolic alkaloids occurring in Lycoris radiata [J]. J Chem Soc, 1959: 177
    
    94. Virk P S, Ford Lloyd B V, Jackson M T, et al. Use of RAPD for the study of diversity within plant germplasm collections [J]. Heredity, 1995, 74: 170-179
    
    95. Wallander E, Albert V A. Phylogeny andclassification of Oleaceae based on rps16 and trnL-F sequence data [J]. Am J Bot, 2000, 87(12): 1827-1841
    
    96. Wen J, Zimmer E A. Phylogeny and biogenography of Panax L. (the gingseng genus, Araliaceae): inferences from ITS sequences of nuclear Ribosomal DNA[J]. Mol Phylogen Evol, 1996, 6(2): 167-177
    97.Wolfe K H,Li W H,Sharp P M.Rates of nucleotides substitution vary greatly among plant mitochondrial chloroplast and nuclear DNAs[J].Proc Natl Acad Sci U.S.A.,1987,84:9054-9058
    98.Wu K S,Tanksley S D.Abundance polymorphisms and genetic mapping of microsatellites in rice[J].Mole Gen Genet,1993,241:225-235
    99.Yamagishi M,Abe H,Nakano M,et al.PCR-based molecular markers in Asiatic hybrid lily [J].Scientia Horticulturae,2002,96:225-234
    100.Yang W P,Oliveira A C,Godwin I,et al.Comparison of DNA marker technologies in characterizing plant genome diversity:variability in Chinese sorghums[J].Crop Sci,1996,36:1669-1676
    101.Yang Y,Huang S X,Zhao Y M,et al.Alkaloids from the Bulbs of Lycoris aurea[J].Helvetica Chimica Acta,2005,88:2550-2553
    102.Yeh F C,Yang R C,Boyle T B J.POPGENE,the user-friendly shareware for population genetic analysis,1997,http://www.ualberta.ca/-fyeh/fyeh/
    103.Zhang Z Y,Li D Z.Molecular phylogeny of section parrya of Pinus(Pinaceae) based on chloroplast matK gene sequence data[J].Acta Sinica,2004,46(2):171-179
    104.Zhang F M,Ge S.Data analysis in population genetics.I.Analysis of RAPD data with AMOVA[J].Biodiversity Science,2002,10:438-444
    105.Zhao X Y,Yao J H,Tang K X,et al.Molecular cloning and characterization of a novel lectin gene from Lycoris radiata[J].DNA Sequence,2003,14(3):223-326
    106.白史且,高荣,沈翼,等.假俭草遗传多样性的AFLP指纹分析[J].生物多样性,2002,10:45-49
    107.曹日强译.次生代谢作用[M].北京:科学出版社,1983,213-216
    108.曹进,叶兆波,车镇涛.广金钱草与金钱草指纹图谱比较[J].药物分析杂志,2006,26(9):1248-1250
    109.陈俊秋,慈秀芹,李巧明,等.樟科濒危植物思茅木姜子遗传多样性的ISSR分析[J].生物多样性,2006,14(5):410-420
    110.陈亮,山口聪,王平盛,等.利用RAPD进行茶组植物遗传多样性和分子系统学分析[J].茶叶科学,2002,22(1):19-24
    111.陈龙清,陈俊愉,郑用琏,等.用RAPD分析蜡梅自然居群的遗传变异[J].北京林业大学学报,1999,21(2):86-90
    112.陈向明,郑国生,张圣旺.牡丹栽培品种的RAPD分析[J].园艺学报,2001,28(4):370-372
    113.陈毓亨,白守梅,程克,等.南方红豆杉紫杉烷高含量植株系RAPD初步研究[J].植物学报,1999,41(8):829-832
    114.陈惠云,孙志栋,孙日飞,等.AFLP分子标记技术在名贵春兰鉴别中的应用[J].中国农学通 报,2007,23(2):70-73
    115.陈之端,分类学中的新生长点-植物分子系统学[J].植物杂志,2001(5):33-34
    116.戴思兰,陈俊愉,李文彬.菊花起源的RAPD分析[J].植物学报,1998,40(11):1053-1059
    117.戴天佑.金花石蒜组培苗与原生苗中加兰他敏之毛细管气相层析仪成份分析[D].台北:私立台北大学生药学研究所论文,2000,24-31
    118.邓传良,周坚.换锦花C-带的初步研究[J].生物学杂志,2004,21(2):18-19
    119.邓传良,周坚,卢龙斗,等.长筒石蒜种质资源的RAPD及ISSR研究[J].云南植物研究,2006,28(3):300-304
    120.邓传良.石蒜属植物系统学及长筒石蒜种质资源研究[D].南京林业大学博士论文,2005,44-54
    121.邓传良,周坚.石蒜属植物分支系统学分析[J].植物研究,2005,25(4):393-399
    122.丁士友,张春林,顾红雅,等.DNA水平上的植物系统学研究进展[J].西北植物学报,1996,16(4):446-456
    123.丁小余,王峥涛,徐珞珊,等.F型、H型居群的铁皮石斛rDNA ITS区序列差异及SNP现象的研究[J].中国中药杂志,2002,27(2):85-89
    124.丁小余,徐珞珊,王峥涛,等.束花石斛及其相似种的DNA分子鉴[J].中国中药杂志,2002,27(6):407-411
    125.董海娟,张尊建,余静.不同产地穿心莲药材色谱指纹图谱的比较研究[J].中成药,2006,28(3):321-324
    126.段运平,陈卫国,李明顺,等.利用SSR标记分析27个玉米群体的遗传关系[J].中国农业科学,2006,39(6):1102-1113
    127.范华均,肖小华,刘玉竹,等.微波辐射溶剂回流法提取石蒜中石蒜碱、力可拉敏和加兰他敏[J].中山大学学报(自然科学版),2006,45(3):46-53
    128.范华均,栾伟,李攻科.微波辅助提取/H PLC分析石蒜中的生物碱[J].分析测试学报,2006,25(3):27-30
    129.傅青,马建岗.达尔文进化论的挑战-分子进化的中性学说[J].生物学杂志,1994,59(3):1-3
    130.付立忠,魏海龙,李海波,等.香菇SRAP扩增体系的建立与优化[J].食用菌学报,2006,13(4):10-15
    131.高建平,王彦涵,乔春峰,等.中药南五味子及其混淆品绿叶五味子果实的ITS序列分析[J].中国中药杂志,2003,28(8):706-710
    132.高曾平,江佩芬,何斌.野生石蒜与其组织培养品的化学成分对比研究[J].北京中医药大学学报,1995,18(3):60-62
    133.葛永奇,邱英雄,丁炳扬,等.孑遗植物银杏群体遗传多样性的ISSR分析[J].生物多样性, 2003,11(4):276-287
    134.郭传友,黄坚钦,王正加,等.山核桃天然群体遗传结构的RAPD分析[J].南京农业大学学报,2006,29(3):12-17
    135.郭大龙,罗正荣.部分柿属植物SRAP-PCR反应体系的优化[J].果树学报,2006,23(1):138-141
    136.郭伽.三尖杉生物碱的生物合成研究现况[J].中草药,1984,15(8):31
    137.韩春艳,孙卫邦,高连明.濒危植物三棱栎遗传多样性的RAPD分析云南植物研究[J].2004,26(5):513-518
    138.韩荣兰,郝刚,张奠湘.于叶绿体DNA trnL内含子序列数据的檀香目科间系统发育关系的研究[J].热带亚热带植物学报,2004,12(5):393-398
    139.何树兰,束晓春,姚青菊,等.石蒜的组织培养[J].江苏林业科技,2003,30(4):18-20
    140.何平,袁小凤,田丽华,等.绣球花科中国溲疏属小花溲疏组的数量分类[J].西南师范大学学报(自然科学版),2000,25(4):429-438
    141.何子灿,钟扬,刘洪涛,等.中国猕猴桃属植物叶表皮毛微形态特征及数量分类分析[J].植物分类学报,2000,38(2):121-136
    142.洪山海,蔡楚傖.石蒜科生物碱的研究Ⅰ.中国水仙中的生物碱[J].药学学报,1962,9(9):548-553
    143.洪山海,李静芳,马广恩.石蒜科生物碱的研究Ⅳ.加兰他敏生产工艺及高含量植物的寻找[J].药学通报,1979,10(8):372-373
    144.洪山海,陈政雄,李静芬.石蒜科生物碱的研究Ⅱ.假石蒜碱的新分离法和石蒜碱高含量植物的寻找[J]..药学学报,1962b,9(12):719-724
    145.洪山海,马广恩.石蒜科生物碱的研究Ⅲ.紫花石蒜和其它两种石蒜中的生物碱及新生物碱紫花石蒜碱[J].药学学报,1964,11(1):1
    146.黄璐琦主编.分子生药学[M].北京:北京大学医学出版社,2006,244-273
    147.黄春洪,杭悦宇,周义锋等.我国盾叶薯蓣居群遗传结构分析[J].云南植物研究,2003,25(6):641-647
    148.黄家平,戴思兰.中国兰花品种数量分类初探[J].北京林业大学学报,1998,20(2):38-43
    149.胡庆和,何萍,林兆翔,等.石蒜内铵(AT-1840)综合治疗妇科晚期恶性肿瘤[J].浙江中西医结合杂志,1997,7(3):134-136
    150.胡剑峰,张铮,史刚荣.五味子属14种植物的数量分类学研究[J].淮北煤炭师范学院学报,2006,27(4):36-41
    151.贾献慧,周铜水,郑颖,等.石蒜科植物生物碱成分的药理学研究[J].中医药学刊,2001,19(6):573-574
    152.蒋诗琴,龙燕,龚培力.二氢石蒜碱的降压及抗脑缺血作用[J].郧阳医学院学报,2004,23(2):122
    153.季春峰.石蒜属资源开发与利用[J].中国野生植物资源,2002,21(6):14
    154.井上诚.石蒜科生物碱调节细胞增殖的作用(2)[J].国外医学中医中药分册,2005,27(4):243
    155.#12
    156.金雅琴.石蒜叶生长规律和内源激素的动态研究[A].南京林业大学,2002,2-15
    157.柯丽霞,孙叶根,郑艳,等.石蒜属三种植物的核型研究[J].安擞师范大学学报,1998,21(4):343-348
    158.李爱荣,周坚.中国石蒜叶片的生长周期及其发育过程的研究.植物学通报,2005,22(6):680-686
    159.李晨东,唐前瑞,陈德富,等.不同来源红檵木材料的RAPD分析及分类学探讨[J].园艺学报,2002,29(3):358-362
    160.李春香,陆树刚.龙骨星蕨与膜叶星蕨的关系:来自叶绿体rbcL、rps4和trnL-trnF、rps4-trnS 序列的证据[J].生物多样性,2005,13(2):174-179
    161.李春香,陆树刚,杨群.滇南桫椤的系统位置:来自叶绿体trnL内含子和DNA trnL-F间隔区序列的证据[J].云南植物研究,2004,26(5):519-523
    162.李春香,陆树刚.云南铁角蕨与泸山铁角蕨的关系:来自叶绿体rbcL、trnL-F、rps4-trnS序列的证据[J].植物分类学报,2006,44(3):296-303
    163.李海生,陈桂珠.海南岛红树植物海桑遗传多样性的ISSR分析[J].生态学报,2004,24(8):1656-1662
    164.李玉锋,颜钫,唐琳等.化学计量学方法应用于贝母化学特征指纹图谱的研究[J].中药材,2006,29(3):216-218
    165.李军,郭晏海,秦雷梅.DNA随机扩增多态性分析技术在枸杞道地药材鉴别中的应用[J].中医药研究,2002,18(3):48-49
    166.李严,张春庆.新型分子标记-SRAP技术体系优化及应用前景分析[J].中国农学通报,2005,21(5):108-112
    167.李丽,郑晓鹰,柳李旺.用SRAP标记分析黄瓜品种遗传多样性及鉴定品种[J].分子植物育种,2006,4(5):702-708
    168.李敏,王琦,付福友.不同品种郁金的SRAP研究[J].中草药,2006,37(8):1255-1258
    169.李萍,蔡朝晖,邵俊波.5S-rRNA基因间区序列变异用于金银花药材道地性研究初探[J].中草药,2001,32(9):834-837
    170.李霞,熊远福,蒋利华,等.荧光法测定石蒜中加兰他敏含量[J].作物研究,2006,20(2):149-150
    171.李玉萍,余丰,汤庚国.遮光和栽培密度对石蒜生长及切花品质的影响[J].南京林业大学学 报(自然科学版),2004,28(3):93-95
    172.李作洲,龚俊杰,王瑛,等.水杉孑遗居群AFLP遗传变异的空间分布[J].生物多样性,2003,11(4):265-275
    李晓贤,周浙昆.单子叶植物高级分类阶元系统演化:matK、rbcL和18S rDNA序列的证据[J].植物分类学报,2007,45(2):113-133
    173.梁红健,刘敏,钟志宇.中国部分兰花品种RAPD分析[J].园艺学报,1996,23(4):365-370
    174.林伯年,徐林娟,贾春蕾.RAPD技术在杨梅属植物分类研究中的应用[J].园艺学报,1999,76(4):221-226
    175.林定勇,李哖.石蒜属球根花卉之分类、形态、生长与开花[J].中国园艺,1993,39(2):67-72
    176.林巾箴,俞志洲,徐炳声,等.红蓝石蒜和中国石蒜的种间杂交[J].广西植物,1988,8(2):165-168
    177.林田,刘灶长,李天菲,等.不同激素配比对红花石蒜小鳞茎及茎尖的分化培养的影响[J].上海农业学报,2006,22(4):45-47
    178.刘青林,陈俊愉.梅花亲缘关系RAPD研究初报[J].北京林业大学学报,1999,21(2):81-85
    179.刘月光,滕永勇,潘辰,等.应用SRAP标记对莲藕资源的聚类分析[J].氨基酸和生物资源,2006,28(1):29-32
    180.刘立军,蒙祖庆,邢秀龙,等.苎麻基因组SRAP扩增体系的优化研究[J].分子植物育种,2006,4(5):726-730
    181.刘琰,徐炳声.石蒜属的核型研究[J].植物分类学报,1989,27(4):257-264
    182.刘志高,童再康,储家淼,等.乳白石蒜组织培养[J].浙江林学院学报,2006,23(3):347-350
    183.栾伟.石蒜中加兰他敏的微波辅助提取、分离和分析的研究[A].中山大学硕士学位论文,2004,5-9
    184.罗素兰,长孙东亭.雪花莲外源凝集素基因及其应用[J].生物学通报,2001,36(12):9-10
    185.马广恩,李惠寅,黄慧珠,等.石蒜科生物碱的研究Ⅺ.中国石蒜生物碱和抗癌成分的分离与鉴定[J].中草药,1987;18(8):6-9
    186.马小军,汪小全,徐昭玺,等.人参不同栽培群体遗传关系的RAPD分析[J].植物学报,2000,42(6):587-590
    187.毛汉书.花卉品种数量分类方法,见:陈俊愉主编,中国花卉品种分类学[M].北京:中国林业出版社,2000,45-53
    188.明军,张启翔.亲缘关系相近的梅花品种AFLP DNA指纹分析[J].北京林业大学学报,2004,26(5):31-35
    189.牟少华.我国部分鸢尾属(Iris)植物系统位置研究[D].中国林业科学研究院博士论文,2005
    190.聂刘旺,张定成,柳李旺,等.安徽产石蒜属植物三种酶同工酶的分析[J].生物学杂志,2003,20(2):27-29
    191.聂刘旺,张定成,张海军,等.安徽黄精属五种植物的同工酶分析[J].安徽师范大学学报,1999,22(1):29-31
    192.彭锐,李采森,李隆云。石斛的分子生物学鉴定-基于RAPD分析[J].西南农业大学学报(自然科学版),2004,26(4):437-440
    193.祁建民,李维明,林荔辉,等.黄麻种质资源数量分类研究[J].作物学报,1996,22(5):587-594
    194.钱文成,张桂华,陈飞雪,等.SRAP在检测黄瓜基因组多态性中的特征[J].遗传,2006,28(11):1435-1439
    195.秦民坚,黄芸,杨光,等.射干及类似药用植物叶绿体rbc L基因序列分析[J].药学学报,2003,38(2):147-152
    196.秦卫华,周守标,汪恒英,等.石蒜属植物的研究进展[J].安徽师范大学学报,2003,26(4):385-390
    197.秦卫华,周守标.中国石蒜属植物系统学研究[A].安徽师范大学硕士学位论文,2004,20-23
    198.邱英雄,傅承新,何云芳.乐昌含笑不同类型鉴定的ISSR-PCR分析[J].2002,38(6):49-52
    199.邱英雄,胡绍庆,陈跃磊,等.ISSR-PCR技术在桂花品种分类研究中的应用[J].园艺学报,2004,31(4):529-532
    200.屈良鹄,陈月琴.生物分子分类检索表-原理与方法[J].中山大学学报(自然科学版),1999,38(1):1-6
    201.任秀芳,周守标,储小慧,等.我国石蒜属六种植物花粉形态的研究[J].安徽师大学报(自然科学版),1994,17(1):49-54
    202.任羽,王得元,张银东,等.辣椒SRAP-PCR反应体系的建立与优化[J].分子植物育种,2004,2(5):689-693
    203.阮成江,何祯祥,周长芳.植物分子生态学[M].北京:化学工业出版社,2005,67-70
    204.阮龙喜.石蒜科植物生物碱的一些研究进展[J].药学通报,1988,23(8):453
    205.石福臣,陆兆华,李立芹.中国东北落叶松属植物rbcL基因的序列分析及系统演化[J].植物研究,2001,21(3):371-374
    206.史树德.石蒜属种间关系和杂交起源的研究[D].杭州:浙江大学博士学位论文,2005,33-41
    207.舒璞,袁昌齐,佘孟兰,等.中国柴胡属药用植物的数量分类研究(Ⅰ)[J].西北植物学报,1998,18(2):277-283
    208.宋葆华,陈之端,汪小全,等.中国苋属nrDNA的ITS序列分析及其系统学意义.植物学报,2000,42(11):1184-1189
    209.宋葆华,李法曾.trnK基因5′端内含子区序列在榆科(广义)系统发育研究中的应用[J].植物分类学报,2002,40(2):125-132
    210.索志立,张会金,张治明,等.紫斑牡丹与牡丹种间杂交后代的DNA分子证据[J].云南植物研究,2005,27(1):42-48
    211.苏应娟,王艇,陈国培,等.基于trnL-F序列数据利用贝叶斯法推测罗汉松科的系统发育[J].中山大学学报(自然科学版),2004,43(6):32-36
    212.苏应娟,王艇,郑博,等.根据cpDNA trnL-F非编码区序列变异分析黑桫椤海南和广东种群的遗传结构与系统地理[J].生态学报,2004,24(5):914-919
    213.唐绍清,杜林方,王燕.山茶属金花茶组金花茶系的AFLP分析[J].武汉植物学研究,2004,22(1):44-48
    214.唐绍清,苏何玲,李光照.8种蜘蛛抱蛋属植物ITS区序列及其系统学意义[J].广西师范大学学报(自然科学版),2003,21(4):86-90
    215.唐韬.石蒜治牛瘤胃积食有疗效[J].贵州畜牧兽医,2002,26(2):33
    216.唐东芹.桂花品种数量分类研究[J].南京林业大学学报,1998,22(1):37-42
    217.王光萍,陈英,周坚,等.长筒石蒜鳞片诱导和植株再生[J].植物生理学通讯,2005,41(4):457-460
    218.王慧中,王玉东,周晓云,等.兰属14种植物遗传多样性RAPD及AFIP分析[J].实验生物学报,2004,37(6):482-486
    219.王磊.石蒜属植物花期调控技术及开花生理研究[D].南京:南京林业大学博士学位论文,2004,45-68
    220.王仁师.关于石蒜属(Lycoris)的生态地理[J].西南林学院学报,1990,10(1):41-48
    221.王艇,苏应娟,郑博,等.红豆杉科及相关类群叶绿体rbc L基因与trn L-trn F间隔区序列的分支分析[J].中山大学学报(自然科学版),2002,41(4):70-74
    222.王艇,苏应娟,郑博,等.中国桫椤科植物叶绿体trnL内含子和trnL-trnF基因间隔区序列的系统发育分析[J].热带亚热带植物学报,2003,11:137-142
    223.王献,张启翔,杨秋生.利用AFLP技术研究紫薇的亲缘关系[J].北京林业大学学报,2003,27(1):59-63
    224.汪小全.银杉的遗传多样性及系统位置的研究-兼论松科的分子系统学[D].北京:中国科学院植物研究所系统与进化植物学开放研究实验室博士学位论文,1997,66
    225.王晓燕,黄敏仁,韩正敏.石蒜属植物中加兰他敏的分离提取及其应用[J].南京林业大学学报(自然科学版),2004,28(4):79-83
    226.王晓燕,黄敏仁,韩正敏.微波辅助提取石蒜属植物忽地笑中加兰他敏的研究[J].南京中医药大学学报,2005,21(6):374-375
    227.王亚玲,李勇,张寿洲,等.用matK序列分析探讨木兰属植物的系统发育关系[J].植物分类学报,2006,44(2):135-147
    228.王亚玲,张寿洲,崔铁成.trnL内含子及trnL-trnF间隔区序列在木兰科系统发育研究中的应 用[J].西北植物学报,2003,23(2):247-252
    229.王传堂,张建成,杨新道,等.花生序列相关扩增多态性(SRAP)标记的研究[J].花生学报,2005,34(3):11-15
    230.王莹,赵华斌,郝家胜.分子系统学的理论、方法及展望[J].安徽师范大学学报(自然科学版),2005,28(1):84-88
    231.王献,张启翔,杨秋生,等.利用AFLP技术研究紫薇的亲缘关系[J].北京林业大学学报,2005,27(1):59-63
    232.王勇,刘宁,宁凤瑞,等.乌头碱型C19去甲二萜生物碱的结构多样性[J].中草药,2004,35(3):350
    233.文雁成,王汉中,沈金雄,等.SRAP和SSR标记构建的甘蓝型油菜品种指纹图谱比较[J].中国油料作物学报,2006,28(3):233-239
    234.吴芳丽,李爱珍,毛慧芳.RP-HPLC测定石蒜中加兰他敏含量[J].中国中药杂志,2005,30(7):523-525
    235.吴勐,郭保林,斯金平,等.厚朴DNA分子标记的研究-正品的RAPD研究[J].药学学报,2001,36(5):386-389
    236.吴寿金,赵泰,秦永琪.现代中草药成分化学[M].北京中国医药科技出版社,2002,849-852
    237.吴彦,周守标,万安.石蒜属植物多糖组成的分析比较研究[J].广西植物,2005,25(3):264-268
    238.吴征镒.新华本草纲要(第一册)[M].上海:上海科技出版社,1988,506
    239.武志朴,杨文香,刘大群,等.小麦基因组SRAP扩增体系的初步研究[J].河北农业大学学报,2005,28(3):66-69.
    240.武雯,蔡友铭,邹惠渝,等.利用RAPD分子标记研究石竹与香石竹的遗传多样性[J].南京林业大学学报(自然科学版),2003,27(4):72-74
    241.肖培根.莨菪类药物的资源利用[J].中草药,1985,16(6):19
    242.肖培根.新编中药志(第一卷)[M].北京工业出版社,2001,289-293
    243.肖艳,彭菲,王清,等.黄花石蒜的组织培养研究[J].湖南中医学院学报,2006,26(1):27-28
    244.徐炳声,黄少甫.长筒石蒜的染色体核型分析[J].植物分类学报,1984,22(1):43-45
    245.徐炳声,林巾箴,俞志洲,等.从花粉的生活力和杂交后的结实率评价石蒜属内的种间关系[J].遗传学报,1986,13(5):369-376
    246.徐炳声,林巾箴,俞志洲,等.换锦花和中国石蒜的种间杂交[J].园艺学报,1986,13(4):283-284
    247.徐凤霞.木兰族和含笑族的系统学关系—基于叶绿matK基因序列分析[J].西北植物学报,2003,23(7):1169-1172
    248.徐垠,胡之壁,黄秀兰,等.石蒜属.裴鉴,丁志遵主编.中国植物志[M].北京:科学出版社,1985,16(1):18-27
    249.杨俊波,李洪涛,杨世雄,等.四个DNA片段在山茶属分子系统学研究中的应用[J].云南植物研究,2006,28(2):108-114
    250.杨明博,杨勃,杨九艳,等.鄂尔多斯高原不同降雨量梯度中间锦鸡儿(Caragana davazamcii Sancz)种群的遗传结构[J].生态学报,2006,26(12):4027-4032
    251.杨文利,张钢民.金粉蕨属系统位置.来自rbc L序列的证据[J].河北农业大学学报,2005,28(2):36-50
    252.杨郁,黄胜雄,赵毅民.黄花石蒜中的黄酮类成分[J].天然产物研究与开发,2005,17(5):539-541
    253.喻朝阳,王晓琳.生物碱提取与纯化技术应用进展[J].化工进展,2006,25(3):259-263
    254.于晓英,吴铁明,彭尽晖,等.萱草种质资源扩增片段长度多态性鉴别与分类的研究Ⅱ.5个萤草材料的AFLP分析[J].湖南农业大学学报(自然科学版),2002,28(1):76-77
    255.袁娥,汤庚国.石蒜属植物快速繁殖技术研究与综合评价[A].南京林业大学硕士学位论文,2003
    256.袁昌齐,刘守炉,姚淦,等.加兰他敏原料植物石蒜调查简报[J].中草药,1981,12(4):39-40
    257.袁菊红,孙视,夏冰,等.石蒜属植物的活性成分和分子生物学研究进展[J].中国医学生物技术应用杂志,2005,4:6-12
    258.袁建国,邱英雄,余久华,等.百山祖冷杉的ISSR分析优化和遗传多样性初步研究[J].浙江大学学报(农业与生命科学版),2005,31(3):277-282
    259.袁涛.中国牡丹部分种与品种(群)亲缘关系的研究[D].北京林业大学博士论文,1998
    260.曾明,严继舟,张汉明,等.RAPD技术在葛属药用植物分类和鉴定中的应用[J].中草药,2000,31(8):620-622
    261.张宏意,陈月琴,廖文波.南方红豆杉不同居群遗传多样性的RAPD研究[J].西北植物学报,2003,23(11):1994-1997
    262.张俊梅,王明新,申雅维,等.石蒜科生物碱的研究Ⅻ.薄层色谱鉴别石蒜生物碱和高效液相色谱法测定加兰他敏的含量[J].药物分析杂志,1999,19(6):399-403
    263.张露,蔡友铭,诸葛强,等.石蒜属种间亲缘关系RAPD分析[J].遗传学报,2002,29(10):915-921
    264.张露,曹福亮.石蒜属植物栽培技术研究进展[J].江西农业大学学报,2001,23(3):375-378
    265.张铭,黄华荣,廖苏梅,等.石斛属RAPD分析及鉴定铁皮石斛的特异性引物设计[J].中国中药杂志,2001,26(7):442-447
    266.张书芬,傅廷栋,李媛媛,等.SRAP标记分析甘蓝型油菜多态性[J].华北农学报,2006,21(1):50-54.
    267.张萍,董玉芝,魏岩,等.利用ISSR标记对新疆白梭梭居群的遗传多样性分析[J].云南植物研究,2006,28(4):359-362
    268.张茜,杨瑞,王钦,等.基于叶绿体DNA trnT-trnF序列研究祁连圆柏的谱系地理学[J].植 物分类学报,2005,43(6):503-512
    269.张田,李作洲,刘亚令,等.猕猴桃属植物的cpSSR遗传多样性及其同域分布物种的杂交渐渗与同塑[J].生物多样性,2007,15(1):1-22
    270.张军,武耀廷,郭旺珍,等.棉花微卫星标记的PAGE/银染快速检测[J].棉花学报,2000,12(5):267-269
    271.张英,黄明辉,柏干荣,等.三七18S rRNA,matK基因序列和HPLC化学指纹图谱分析研究[J].药品评价,2005,2(1):23-29
    272.张英涛,刘支芝,艾铁民.松果菊属3种药用植物的DNA分子鉴别研究[J].中国中医药信息杂志,2002,9(5):11-12
    273.张志勇,杨俊波,李德铢.由5个DNA片段推断极度濒危植物五针白皮松的系统位置[J].植物学报,2003,45(5):530-535
    274.张尊建,王源园,李茜.五种石斛的指纹图谱研究[J].中国药科大学学报,2003,34(6):534-540
    张莉俊,秦红梅,王敏,等.二月兰形态性状的变异分析[J].生物多样性,2005,13(6):535-545
    275.章群,聂湘平,施苏华,等.连香树科及其近缘植物matK序列分析和系统学意义[J].生态科学,2003,22(2):113-115
    276.赵惠恩,汪小全,陈俊愉,等.基于核糖体DNA的ITS序列和叶绿体trn T-trn L及trn L-trn F基因间区的菊花起源与中国菊属植物分子系统学研究[J].分子植物育种,2003,1(5/6):597-604
    277.赵卫国,潘一乐,张志芳.桑属植物ITS序列研究与系统发育分析[J].蚕业科学,2004,30(1):11-13
    278.赵卫国,张志芳,潘一乐,等.桑树trnL-trnF基因间隔区序列的特点及分析[J].蚕业科学,2002,28(2):83-86
    279.周春玲,戴思兰.菊属部分植物的AFLP分析[J].北京林业大学学报,2002,24(5):71-75
    280.周世良,FUNAMOTO T,文军.工业六道木属六道木组种间关系的AFLP分析和黄花六道木中国分布新记录的认定[J].云南植物研究,2004,26(4):405-412
    281.周守标,余本祺,罗琦,等.石蒜属植物花粉形态及分类研究[J].园艺学报,2005,32(5):914-917
    282.周荣汉,段金廒.植物化学分类学[M].上海:上海科学技术出版社,2005,70-71
    283.周颂东,何兴金,葛颂.基于trnK基因的葱属植物分子系统研究[J].西北植物学报,2006,26(5):906-914
    284.庄伟建,林治良,苏金为.中国水仙两个地方品种的核型和Giemsa C带的研究[J].福建农业学报,1999,14(1):51-57
    285.朱锦,诸葛强,余水生,等.石蒜组培繁殖技术的研究[J].浙江林业科技,2002,22(4):45-48
    286.邹喻苹,葛颂,王晓东.系统与进化植物学中的分子标记[M].北京:科学出版社,2001
    287.邹喻苹,葛颂.新一代分子标记SNPs及其应用[J].生物多样性,2003,11(5):370-382

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700