用户名: 密码: 验证码:
水稻分蘖和叶片相关性状的QTL分析及突变体基因定位
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
人们依赖稻米作为主要口粮使水稻成为最重要的粮食作物之一,较小的基因组、已知的基因组序列以及易于农杆菌介导的遗传转化和与其它禾谷类植物的共线性使水稻占据了单子叶模式植物的位置。正是水稻在社会生活中如此重要的地位,在生物研究中如此优秀的品质,人们对水稻的优良种质的筛选和各类生物学过程机理的研究从未停止过,尤其是关系水稻产量形成和稳定的各种性状和生物学过程。这其中,分蘖和光合无疑非常重要,分蘖和光合过程的稳定及相关各类性状的正常发展对水稻最终产量起着无可替代的作用。同时,分子生物学的快速发展为研究某类性状或生物学现象提供了成熟便捷的解决方案。突变体库构建、QTL分析和图位克隆等平台的成熟与广泛流行,促使水稻的生物学研究步入了一个崭新的时期。正是基于这样的背景,本研究利用目前已经非常成熟的QTL分析,对关系水稻最终产量形成的分蘖和光合相关性状—叶片耐光氧化力进行了QTL定位研究,以期明晰这些性状的遗传特性,为分子育种提供可资利用的分子标记;本研究还借助本试验室庞大的水稻突变体库,鉴定出了多个少分蘖和叶色突变体,并采用图位克隆策略对引发这些突变体表型变异的基因进行了分子定位,为将来深入研究分蘖和光合相关性状的分子机理奠定了基础。以下为本研究所进行的相关研究、目前所取得的研究进展及研究意义的简要概述:
     1本研究利用两份在粳稻日本晴EMS化学诱变库中发现的两个少蘖突变体rcn8和rcn9为实验材料。两者最高分蘖数都在4个以下,株高较野生型未发生显著改变,此外,rcn9还伴有少量斑点锈。遗传分析表明,这两份rcn突变体分别受一对隐性基因控制;与7个已知的少蘖突变体进行等位性分析表明,两者皆属于新发现的少蘖突变体,并命名为rcn8和rcn9。将两者再分别与93-11杂交,建立了两个F_2分离群体。根据已公布的水稻SSR标记及水稻基因组序列设计SSR引物,利用分离群体进行了连锁分析,将这两个隐性少分蘖基因分别定位于第1染色体的长臂(119.6 cM)和第6染色体的短臂(63.6 cM)上,为进一步对RCN8和RCN9基因的克隆和功能研究奠定了基础;
     2茎蘖消长动态是水稻发育过程中重要的生理现象,同时茎蘖数也是重要的农艺指标。本研究利用非条件及发育QTL分析方法研究水稻茎蘖消长的遗传控制。利用由127和120个株系组成,分别来源于窄叶青8号和京系17及春江06和台中本地1号的两个DH群体为材料(分别称为DH-1和DH-2群体),以多个时期的茎蘖数为指标进行相关非条件及发育QTL定位,并对两个群体的定位结果进行全基因组比较QTL定位。DH-1群体定位到条件与非条件QTL共44个,分布于第3和12条染色体以外的其他10条染色体上;DH-2群体定位条件和非条件QTL共计70个,除第7染色体外其他11条染色体均有分布。通过全基因组比较QTL定位,在两个群体间共计确定了10对(共26个)处于相似的物理位置可能为相同QTL的位点,其中有6对(14个)位点均在相同时期内被检测到,很可能包含有控制茎蘖数的主效数量基因。发育QTL的分析结果表现出了丰富的时空性,并能够在不同程度上解释影响茎蘖数的非条件QTL的变化。本实验虽然在不同群体的相似物理区域定位到了同类型的QTL,但显著性、效应值和贡献率差异较大,因此这些QTL的精确位置及基因本质还需深入研究;
     3为进一步研究分蘖的分子机理,本研究选取了一个来源于窄叶青8号和京系17花药培养获得的DH群体中的株系DH78,该株系植株表现明显的少分蘖表型,但株高也显著降低,能够正常结实。利用DH78与亲本京系17的F_2群体中87个突变型单株进行了突变基因初步定位,将突变基因DFT1定位于第2染色体上。利用进一步扩大的群体,最终将DFT1基因所在染色体区间缩小为91kb,序列注释表明该区域包含有有14个开放阅读框。更为有趣的是DFT1基因位点与本实验室之前进行的双氮条件分蘖数和株高QTL定位研究中定位到的两个QTL座位ph2-3和tp2-2处于相同区域。而DFT1和ph2-3及tp2-2之间的关系则还需要进一步的研究;
     4高位分蘖是水稻生产中常见的现象,同时高位分蘖与水稻的驯化也存在密切的联系。本实验利用来源于窄叶青8号和京系17及春江06和台中本地1号的两个DH群体为材料(即DH-1和DH-2群体),对水稻高位分蘖的遗传特征进行了研究。采用复合区间作图法,在DH-1群体中共定位到3个QTL座位qHOT3、qHOT6-1和qHOT8,分别位于第3、6和8染色体;对DH-2群体的QTL定位共检测到相关位点2个,分别位于第6和12染色体。同时,在两个群体中分别检测到3对和7对上位性互作位点。虽然比较QTL定位表明在两个群体中并未定位到区间一致的QTL座位,但两个群体均在第6染色体定位到QTL座位说明水稻第6染色体对高位分蘖具有重要的影响;
     5通过对一个水稻淡黄叶突变体材料ygl3进行遗传分析,表明它是受到一个单隐性基因控制。为了定位该突变基因,本实验利用ygl3和中花11的F_2群体进行基因初步定位,将其定位于水稻第二号染色体短臂的SSR标记RM6874和RM5764之间。进一步扩大群体后最终将YGL3定位在位于BAC克隆OSJNBb0088N06上的STS标记STS2和STS6之间约60kb的区间内。对这一区域进行基因预测分析发现,其中包含一个与叶绿素合成相关的基因—谷氨酸tRNA合成酶基因。对该基因测序发现突变体较野生型相比有三个碱基(GAG)的缺失,导致了一个氨基酸(Glu)的缺失,因此很可能是该基因的突变引起了黄绿叶的表型变异;
     6依托本实验室庞大的突变体资源,本研究还对另一个黄绿叶突变体ygl4进行了基因定位。借助成熟的图位克隆策略和ygl4与台中本地1号配组获得的1116株F_2突变单株,最终将控制ygl4突变表型的隐性基因YGL4定位于第1染色体SSR标记SSR1与RM297间250kb的区间内,基因注释表明该区间还有一个叶绿体发育相关的类囊体膜磷蛋白,因此将其确定为候选基因,对该基因的测序研究正在进行之中;
     7利用由127个株系组成,来源于籼稻品种窄叶青8号和粳稻品种京系17的加倍单倍体群体,以耐性指数和敏感性指数为指标,采用QTL Mapper 1.6统计软件进行水稻耐光氧化反应特性的QTL定位和上位性分析,共检测到控制耐性指数的1个加性效应QTL,位于第3染色体上;控制敏感性指数的加性效应QTL 5个,分别位于第1、1、6、8和9染色体上。还检测到3对影响耐性指数的加性×加性上位性互作效应QTL,5对敏感性指数的上位性QTL。同时还对41个常见亲本进行了光氧化实验筛选。
     本研究利用目前较为流行的QTL分析和图位克隆策略对水稻分蘖及光合相关性状进行了研究,并取得一定的成果,对目前取得的研究结果还需要进一步的深入研究才能服务于水稻分子育种,并深化对分蘖控制、叶绿素合成和叶绿体膜发育分子机理的理解。
People depend on rice as a major food resourse makes rice one of the most important crops,and what's more,a small genome size,a known genome sequence,easy for Agrobacterium-mediated genetic transformation and genome synteny between rice and other grasses make rice a model monocotyledon plant.Because of this importance of rice in social life and biological research,the screening for elite germplasm and research on various biological processes have never stopped;especially rice yield-related traits and biological processes.Among these biological processes,tillering and photosynthesis are undoubtedly very important;tiller number and photosynthetic-related characters show great association with rice yield.At the same time,the rapid development of molecular biology provides a mature and convenient solution for studying certain traits or biological phenomenons.Construction of mutant library,QTL analysis and map-based cloning,and other platforms are mature and widely popular,so that the biology of rice entered a new period.Based on such a background,QTL analysis for tiller number and photooxidiation tolerance was carried out to clarify,the genetic characteristics of these traits and to provide available molecular markers for the practice of molecular breeding. Relying on huge number rice mutants in our lab,we identified a number of few-tillering and leaf color-related mutants,and map-based cloning strategy was used to mapping the caused genes.All these researches shed light on the study on molecular mechanism of tillering and photosynthesis.The following is a brief introduction of the relevant research, the progress and the significance of these studies:
     1 In the present study,in order to systematically dissect the genetic mechanism of rice tilling for the super rice standard mould and the model system of branching development, two ethyl methane sulfonate-induced rice(Oryza sativa L.) reduced -culm-number(rcn) mutants from the progeny of Nippobare(O.sativa ssp. japonica),namely rcn8 and rcn9,were used.Their maximum tillers were both less than 4.In addition,rcn9 had another major feature of rust-spotted leaves.Allelic tests between these two mutants and seven other recessive few-tiller mutants revealed that they were previously unknown loci.Genetic analysis showed that the rcn traits were all controlled by a pair of different recessive genes,designated as RCN8 and RCN9,respectively.Two F_2 populations derived from crosses between the rcn8 or rcn9 mutants and 93-11 was constructed.Linkage analysis using two rcn F_2 mapping populations with published simple sequence repeat markers demonstrated that the RCN8 and RCN9 genes were mapped on the long arm of chromosome 1(119.6 cM) and the short arm of chromosome 6(63.6 cM),respectively. The results of the present study were beneficial to map-based Cloning and functional analysis of the RCN8 and RCN9 genes.
     2 Culm-tillering dynamic is used as a vital agronomic index and is a very important physiology phenomenon in rice development.The objective of this study was to investigate the genetic basis of the culm-tillering dynamic of rice.Two different DH populations,one was derived from a cross between japonica rice JX17 and indica rice ZYQ8,including 127 lines and the other with 120 lines was derived from a cross between japonica rice CJ06 and indica rice TN1(herein designated as DH-1 and DH-2,respectively) were used for unconditional,and developmental quantitative trait locus(QTL) mapping of culm-tiller-number at different growing stages. The whole genome comparative QTL mapping was also conducted.44 conditional and unconditional QTL were detected in 10 chromosomes except chromosomes 3 and 12 from DH-1 population,while When 70 conditional and unconditional QTL were detected on 11 chromosomes except chromosome 7 from DH-2 population. And through whole genome comparative mapping,10 pairs of 26 QTL which were located in the similar physical regions were also identified.The results also showed that 6 pairs of 14 QTL loci were detected in the same development stage,and there may be major quantitative trait loci within these QTL.Although we identified resemblant QTL in the similar physical region in these two DH populations,because of the inconsistent magnitude,further investigation is still needed for the exact position and the essential of the gene.
     3 In this study,a line DH78 form a double haploid(DH) population derived from a ZYQ8(indica)/JX17(japonica) crossed by anther culture was used.DH78 exhib ited dwarfism and a less-tiller(dft) character.The gene(DFT1) was mapped to chromosome 2 using a F_2 population of DH78/JX17,and more interestingly,the genomic region of DFT1 was coincided with the mapping region of the small-LOD peak,QTL ph2 and tp2,that was identified at low-nitrogen in a research carried out in our lab before.Further backcrossing and fine-mapping successfully delimited the DFT1 locus to a 91 kb region with 14 open reading frames(ORFs).
     4 High order tillering(HOT) is a common phenomenon in rice production,while high order tillering is an important sydrome of rice domestication.Two different DH populations,one was derived from a cross between JX17 and ZYQ8 and the other derived from a cross between CJ06 and TN1(herein designated as DH-1 and DH-2, respectively) were used to study genetic characteristics of high order tillering.Using composite interval mapping,3 QTL qHOT3,qHOT6-1 and qHOT8,located on chromosomes 3,6 and 8 respectively were identified in DH-1 population;and in DH-2 population,2 QTL were detected,which were located on chromosomes 6 and 12.Meanwhile,3 and 7 pairs of epistatie loci affecting HOT were mapped in DH-1 and DH-2,respectively.Although,no identical QTL was identified by comparative mapping,gene/genes affecting HOT must exist in chromosome 6 because QTL was detected in this chromosome by QTL mapping in both two populations.
     5 A rice mutant ygl3 with yellow leaf was isolated and found to be controlled by a recessive gene genetic analysis.Used F_2 population derived from cross between ygl3 and Zhonghual 1 as primary mapping population,YGL3 was mapped between SSR marker RM6874 and RM5764 on the short arm of the chromosome 2.Further more,enlarged mapping population makes the gene successfully narrowed down to a interval between STS marker STS2 and STS6 on the BAC clone OSJNBb0088N06,the physics distance was about 60 kb.Annotation reveald a chlorophyll synthesis-related gene Glutamyl-tRNA synthetase gene was in this region, Sequence analysis suggested a 3 bp deletion(GAG) which led to a deletion of an amino(Glu) might associate with the mutation phonetype.
     6 In present study,another yellow-green mutant ygl4 was characterized.Through map-based cloning strategy,YGL4 was located on a 250 kb region between simple sequence repeat(SSR) maker SSR1 and RM297 in chromosome 1 using 1116 mutantion individuals in a F_2 population derived from the cross ygl4/TN1.Sequence annotation suggested a candidate gene - thylakoid membrane phosphoprotein gene which was chloroplast development related,and the sequence analysis was undertaken.
     7 A double haploid(DH) population including 127 lines,derived from a cross between indica rice(Oryza sativa L.) Zhaiyeqing 8 and japonica rice Jingxi 17 was used to detect quantitative trait loci of tolerance to photooxidation.One QTL controlling tolerance index(TI) was detected on chromosome 1 and five QTL controlling sensitive index(SI) for photooxidation tolerance were mapped on chromosomes 1,1,6,8 and 9,respectively.Meanwhile eight pairs of epistatie loci affecthag TI and SI were also detected(three pairs for TI and five pairs for SI).Besides, 41 rice varieties were identified for photooxidation tolerance and sensitive index.
     In this study,QTL analysis and map-based cloning strategy were used to study rice tillering and photosynthesis-related traits,and certain results were achieved.The current findings need further study to serve rice molecular breeding,and deepen the understanding of the molecular mechanism of the tillering control,biosynthesis of chlorophyll and the development of chloroplast membrane.
引文
[1]Khush GS.Green revolution:the way forward[J].Nat Rev Genet,2001,2(10):815-822.
    [2]袁隆平.超级杂交水稻育种研究的进展[J].中国稻米,2008,(1):1-3.
    [3]Peleman JD,van der Voort JR.Breeding by design[J].Trends Plant Sci,2003,8(7):330-334.
    [4]万建民.作物分子设计育种[J].作物学报,2006,32(3):455-462.
    [5]International Rice Genome Sequencing Project.The map-based sequence of the rice genome [J].Nature,2005,436(7052):793-800.
    [6]Kadam GS,Ramiah K.Symbolizatin of genes in rice[J].Indian J Genet Plant Breed,1943,3(1):7-27.
    [7]Nagao S,Takahashi M.Genetical studies on rice plant.ⅩⅩⅦ.Trial construction of twelve linkage groups of Japanese rice[J].J Fac Agric Hokkaido Univ,1963,53(1):72-130.
    [8]Yu J,Hu S,Wang J,et al.A draft sequence of the rice genome(Oryza.sativa L.ssp.indica)[J].Science,2002,296(5565):79-92.
    [9]Hiei Y,ohta S,Komari T,et al.Efficient transformation of rice(Oryza saliva L.) mediated by Agrobacterium and sequence analysis of the boundaries of the T-DNA[J].Plant J,1994,6(2):271-282.
    [10]Bennetzen JL,Ma J.The genetic colinearity of rice and other cereals on the basis of genomic sequence analysis[J].Curr Opin Plant Biol,2003,6(2):128-133.
    [11]Itoh J,Nonomura K,Ikeda K,et al.Rice plant development:from zygote to spikelet[J].Plant Cell Physiol,2005,46(1):23-47.
    [12]Kurata N,Miyoshi K,Nonomura K,et al.Rice mutants and genes related to organ development,morphogenesis and physiological traits[J].Plant Cell Physiol,2005,46(1):48-62.
    [13]Han B,Xue YB.Genome-wide intraspecific DNA-sequence variations in rice[J].Curr Opin Plant Biol,2003,6(2):134-138.
    [14]Xue YB,Li JY,Xu ZH.Recent highlights of the China Rice Functional Genomics Program [J].Trends Genet,2003,19(7):390-394.
    [15]Wang YH,Li J.The plant architecture office(Oryza sativa)[J].Plant Mol Biol,2005,59(1):75-84.
    [16]庄杰云,郑康乐.分子遗传学[M].钱前,程式华.水稻遗传学和功能基因组学.2006,科学出版社,北京.pp184-219.
    [17]庄杰云.水稻DNA分子标记的特点与应用[J].中国稻米,2008,(1):3-7.
    [18]Zhang Z,Deng Y,Tan J,et al.A genome-wide microsatellite polymorphism database for the indica and japonica rice[J].DNA Res,2007,14(1):37-45.
    [I9]Shen Y J,Jiang H,Jin JP,et al.Development ofgenome-wide DNA polymorphism database for map-based cloning of rice genes[J].Plant Physiol,2004,135(3):1198-1205.
    [20]Nasu S,Suzuki J,Ohta R,et al.Search for and analysis of single nucleotide polymorphisms (SNPs) in rice(Oryza sativa,Oryza rufipogon) and establishment of SNP markers[J].DNA Res,2002,9(5):163-171.
    [21]Mackay I,Powell W.Methods for linkage disequilibrium mapping in crops[J].Trends Plant Sci,2007,12(2):57-63.
    [22]向太和.水稻苯达松敏感致死基因的分子标记定位及在遗传育种上的应用[D].2002,浙江大学,博士学位论文.
    [23]Grodzieker T,Williams J,Sharp P,et al.Physical mapping of temperature-sensitive mutations of adenoviruses[J].Cold Spring Harb Symp Quant Biol,1974,39(1):439-446.
    [24]Causse MA,Fulton TM,Cho YG,et al.Saturated molecular map of the rice genome based on an interspecific backcross population[J].Genetics,1994,138(4):1251-1274.
    [25]Helentjaris T,Slocum M,Wright S,et al.Construction of genetic linkage maps in maize and tomato using restriction fragment length polymorphisms[J].Theor Appl Genet,1986,72(6):761-769.
    [26]Hauge BM,Hanley SM,Cartinhour S,et al.An integrated genetic/RFLP map of the Arabidopsis thaliana genome[J].Plant J,1993,3(5):745-754.
    [27]Williams JG,Kubelik AR,Livak KJ,et al.DNA polymorphisms amplified by arbitrary primers are useful as genetic markers[J].Nucleic Acids Res,1990,18(22):6531-6535.
    [28]Welsh J,McClelland M.Fingerprinting genomes using PCR with arbitrary primers[J].Nucleic Acids Res,1990,18(24):7213-7218.
    [29]Orita M,Sekiya T,Hayashi K.DNA sequence polymorphisms in Alu repeats[J].Genomics,1990,8(2):271-278.
    [30]Weising K,Atkinson RG,Gardner RC.Genomie fingerprinting by microsatellite-primed PCR:a critical evaluation[J].PCR Methods Appl,1995,4(2):249-255.
    [31]Caetano-Anollés G,Gresshoff PM.Generation of sequence signatures from DNA amplification fingerprints with mini-hairpin and mierosatellite primers[J].Biotechniques,1996,20(6):1044-10448,11050,11052.
    [32]Vos P,Hogers R,Bleeker M,et al.AFLP:a new technique for DNA fingerprinting[J].Nucleic Acids Res,1995,23(21):4470-4414.
    [33]Arencibia A,Gentinetta E,Cuzzoni.E,et al.Molecular analysis of the genome of transgenic rice(Oryza sativa L.) plants produced via particle bombardment or intact cell electroporation [J].Molecular Breeding,1998,4(2):99-109.
    [34]Gray IC,Campbell DA,Spurt NK.Single nucleotide polymorphisms as tools in human genetics [J].Human Molecular Genetics,2000,9(16):2403-2408.
    [35]Olson M,Hood L,Cantor C,et al.A common language for physical mapping of the human genome[J].Science,1989,245(4925):1434-1435.
    [36]Paran I,Michelmore RW.Development of reliable PCR-based markers linked to downy mildew resistance genes in lettuce[J].Theor Appl Genet,1993,85(8):985-993.
    [37]Konieczny A,Ausubel FM.A procedure for mapping Arabidopsis mutations using co-dominant ecotype-sPecific PCR-based markers[J].Plant J,1993,4(2):403-410.
    [38]Neff MM,Neff JD,Chory J,et al.dCAPS,a simple technique for the genetic analysis of single nucleotide polymorphisms:experimental applications in Arabidopsis thaliana genetics [J].Plant J,1998,14(3):387-392.
    [39]McCouch SR,Teytelman L,Xu Y,et al.Development..and mapping of 2240 new SSR markers for rice(Oryza sativa L.)[J].DNA Res,2002,9(6):199-207.
    [40]Tantz D.Hypervariability of simple sequences as a general source for polymorphic DNA markers[J].Nucleic Acids Res,1989,17(16):6463-6471.
    [41]Zietkiewics E,Rafalski A,Labuda D.Genome fingerprinting by simple sequence repeat (SSR)-anchcred polymerase chain reaction amplification[J].Genome,1994,20(2):176-183.
    [42]方宣钧,吴为人,唐纪良.作物DNA标记辅助育种[M].2000,科学出版社,北京.pp18-31.
    [43]Jung KH,An G,Ronald PC.Towards a better bowl of rice:assigning function to tens of thousands of rice genes[J].Nat Rev Genet,2008,9(2):91-101.
    [44]Till B J,Cooper J,Tai TH,et al.Discovery of chemically induced mutations in rice by TIL-LING [J].BMC Plant Biol,2007,7:19.
    [45]Suzuki T,Eiguchi M,Kumamaru T,et al.MNU-induced mutant pools and high performance TILLING enable finding of any gene mutation in rice[J].Mol Genet Genomics,2007:
    [46]Li AH,Zhang YF,Wu CY,et al.Screening for and genetic analysis on T-DNA-inserted mutant pool in rice[J].Yi Chuan Xue Bao,2006,33(4):319-329.
    [47]郭龙彪,储成才,钱前.水稻突变体与功能基因组学[J].植物学通报,2006,23(1):1-13.
    [48]Nakamura H,Hakata M,Amano K,et al.A genome-wide gain-of function analysis of rice genes using the FOX-hunting system[J].Plant Mol Biol,2007,65(4):357-371.
    [49]An G,Jeong DH,Jung KH,et al.Reverse genetic approaches for functional genomics of rice[J].Plant Mol Biol,2005,59(1):111-123.
    [50]An G,Lee S,Kim SH,et al.Molecular genetics using T-DNA in rice[J].Plant Cell Physiol,2005,46(1):14-22.
    [51]An S,Park S,Jeong DH,et al.Generation and analysis of end sequence database for T-DNA tagging lines in rice[J].Plant Physiol,2003,133(4):2040-2047.
    [52]滕胜,郭龙彪.生物信息学[M].钱前,程式华.水稻遗传学和功能基因组学.2006,科学出版社,北京.pp422-517.
    [53]Jeon JS,Lee S,Jung KH,et al.T-DNA insertional mutagenesis for functional genomics in rice[J].Plant J,2000,22(6):561-570.
    [54]Chin HG,Choe MS,Lee SH,et al.Molecular analysis of rice plants harboring an Ac/Ds transposable element-mediated gene trapping system[J].Plant J,1999,19(5):615-623.
    [55]Kumar CS,Wing RA,Sundaresan V.Efficient insertional mutagenesis in rice using the maize En/Spm elements[J].Plant J,2005,44(5):879-892.
    [56]Tsugane K,Mackawa M,Takagi K,et al.An active DNA transposon nDart causing leaf variegation and mutable dwarfism and its related elements in rice[J].Plant J,2006,45(1):46-57.
    [57]Jeong DH,An S,Kang HG,et al.T-DNA insertional mutagenesis for activation tagging in rice[J].Plaat Physiol,2002,130(4):1636-1644.
    [58]Hirochika H.Contribution of the Tos17 retrotransposon to rice functional genomics[J].Curr Opin Plant Biol,2001,4(2):118-122.
    [59]Wu JL,WU C,Lei C,et al.Chemical- and irradiation-induced mutants of indica rice IR64for forward and reverse genetics[J].Plant Mol Biol,2005,590):85-97.
    [60]朱旭东,陈红旗,罗达,等.水稻中花11辐射突变体的分离与鉴定[J].中国水稻科学,2003,17(3):205-210.
    [61]Upadhyaya NM,Zhou XR,Zhu QH,et al.An iAc/Ds gene and enhancer trapping system for insertional mutagenesis in rice[J].Funcl Plant Biol,2002,29:547-559.
    [62]Kolesnik T,Szeverenyi I,Bachmann D,et al.Establishing an efficient Ac/Ds tagging system in rice:large-scale analysis of Ds flanking sequences[J].Plant J,2004,37(2):301-314.
    [63]Greco R,Ouwerkerk PB,De Kam R J,et al.Transpositional behaviour of an Ac/Ds system for reverse genetics in rice[J].Theor Appl Genet,2003,108(1):10-24.
    [64]Park SH,Jun NS,Kim CM,et al.Analysis of gene-trap Ds rice populations in Korea[J].Plant Mol Biol,2007,65(4):373-384.
    [65]Jiang SY,Bachmann D,La H,et al.Ds insertion mutagenesis as an efficient tool to produce diverse variations for rice breeding[J].Plant Mol Biol,2007,65(4):385-402.
    [66]Wu C,Li X,Yuan W,et al.Development of enhancer trap lines for functional analysis of the rice genome[J].Plant J,2003,35(3):418-427.
    [67]Sallaud C,Meynard D,van Boxtel J,et al.Highly efficient production and characterization of T-DNA plants for rice(Oryza sativa L.) functional genomics[J].Theor Appl Genet,2003,106(8):1396-1408.
    [68]Sallaud C,Gay C,Larmande P,et al.High throughput T-DNA insertion mutagenesis in rice:a first step towards in silico reverse genetics[J].Plant J,2004,39(3):450-464.
    [69]Chen S,Jin W,Wang M,et al.Distribution and characterization of over 1000 T-DNA tags in rice genome[J].Plant J,2003,36(1):105-113.
    [70]Sha Y,Li S,Pei Z,et al.Generation and flanking sequence analysis of a rice T-DNA tagged population[J].Theor Appl Genet,2004,108(2):306-314.
    [71]Hsing YI,Chern CG,Fan MJ,et al.A rice gene activation/knockout mutant resource for high throughput functional genomics[J].Plant Mol Biol,2007,63(3):351-364.
    [72]Miyao A,Tanaka K,Murata K,et al.Target site specificity of the Tos17 retrotransposon shows a preference for insertion within genes and against insertion in retrotransposon-rich regions of the genome[J].Plant Cell,2003,15(8):1771-1780.
    [73]Jiang H,Guo LB,Qian Q.Recent progress on rice genetics in China[J].J Integr Plant Biol,2007,49(6):776-790.
    [74]曾大力,曹立勇,高振宇,等.水稻功能基因组研究[M].钱前,程式华.水稻遗传学和功能基因组学.2006,科学出版社,北京.pp290-421.
    [75]Song WY,Wang GL,chen LL,et al.A receptor kinase-like protein encoded by the rice disease resistance gene,Xa21[J].Science,1995,270(5243):1804-1806.
    [76]Li XY,Qian Q,Fu Z,et al.Control of tillering in rice[J].Nature,2003,422(6932):618-621.
    [77]Yano M,Katayose Y,Ashikari M,et al.Hdl,a major photoperiod sensitivity quantitative trait locus in rice,is closely related to the Arabidopsis flowering time gene CONSTANS[J].Plant Cell,2000,12(12):2473-2484.
    [78]Tanaka T,Antonio BA,Kikuchi S,et al.The Rice Annotation Project Database(RAP-DB):2008 update[J].Nucleic Acids Res,2008,36(Database issue):D1028-1033.
    [79]Sax K.The association of size differences with seed-coat pattern and pigmentation in PHASEOLUS VULGARIS[J].Genetics,1923,8(6):552-560.
    [80]Millicent E,Thoday JM.Gene flow and divergence under disruptive selection[J].Science,1960,131(3409):1311-1312.
    [81]Lander ES,Botstein D.Mapping mendelian factors underlying quantitative traits using RFLP linkage maps[J].Genetics,1989,121(1):185-199.
    [82]Zeng ZB.Precision mapping of quantitative trait loci[J].Genetics,1994,136(4):1457-1468.
    [83]朱军.数量性状基因定位的混合线性模型分析方法[J].遗传,1998,20(增刊):137-138.
    [84]Zhu J.Analysis of conditional genetic effects and variance components in developmental genetics[J].Genetics,1995,141(4):1633-1639.
    [85]叶子弘,朱军.数量性状发育遗传模型及其分析方法的研究进展[J].遗传,2001,23(1):65-68.
    [86]Yan JQ,Zhu J,He CX,et al.Molecular dissection of development behavior of plant height in rice[J].Genetics,1998,150(3):1257-1265.
    [87]Yan JQ,Zhu J,He CX,et al.Quantitative trait loci analysis for the developmental behavior of tiller number in rice[J].Theor Appl Genet,1998,97(2):267-274.
    [88]何慈信,朱军,严菊强,等.水稻穗干物质重发育动态的QTL定位[J].中国农业科学,2000,33(1):27-35.
    [89]何慈信,朱军,严菊强,等.水稻叶挺长发育动态的QTL分析[J].中国水稻科学,2000,14(4):2-7.
    [90]樊龙江,石春海,吴建国,等.籼稻糙米厚度的发育遗传研究[J].遗传学报,2000,27(10):870-877.
    [91]Shi CH,Wu JG,Fan LJ,et al.Developmental genetic analysis of brown rice weight under different environmental conditions in indica rice[J].Acta Botanica Sinica,2001,43(6):603-609.
    [92]石春海,吴建国,樊龙江,等.不同环境条件下稻米透明度的发育遗传分析[J].遗传学报,2002,29(1):56-61.
    [93]石春海,吴建国,朱军,等.籼稻精米重量性状的发育遗传分析[J].浙江大学学报(农业与生命科学版),2001,27(5):14-19.
    [94]Yano M,Sasaki T.Genetic and molecular dissection of quantitative traits in rice[J].Plant Mol Biol,1997,35(1-2):145-153.
    [95]Li C,Zhou A,Sang T.Rice domestication by reducing shattering[J].Science,2006,311(5769):1936-1939.
    [96]Takahashi Y,.Shomura A,Sasaki T,.et al.Hd6,a rice quantitative trait locus involved in photoperiod sensitivity,encodes the α subunit of protein kinase CK2[J].Proc Natl Acad Sci USA,2001,98(14):7922-7927.
    [97]Kojima S,Takahashi Y,Kobayashi Y,et al.Hd3α,a rice ortholog of the Arabidopsis FT gene,promotes transition to flowering downstream of Hd1 under short-day conditions[J].Plant Cell Physiol,2002,43(10):1096-1105.
    [98]Doi K,Izawa T,Fuse T,et al.Ehdl,a B-type response regulator in dee,confers short-day promotion of flowering and controls FT-like gene expression independently of Hd1[J].Genes Dev,2004,18(8):926-936.
    [99]Ashikari M,Sakakibara H,Lin S,et al.Cytokinin oxidase regulates rice grain production[J].Science,2005,309(5735):741-745.
    [100]Ren ZH,Gao JP,Li LG,et al.A rice quantitative trait locus for salt tolerance encodes a sodium transporter[J].Nat Cenet,2005,37(10):1141-1146.
    [101]Nishimura A,Ashikari M,Lin S,et al.Isolation of a rice regeneration quantitative trait loci gene and its application to transformation systems[J].Proc Natl Acad Sci U S A,2005,102(33):11940-11944.
    [102]Ueda T,Sato T,Hidema J,et al.qUFR-10,a major quantitative trait locus for ultraviolet-B resistance in rice,encodes cyclobutane pyrimidine dimer photolyase[J].Genetics,2005,171(4):1941-1950.
    [103]Konishi S,Izawa T,Lin SY,et al.An SNP caused loss of seed shattering during rice domestication [J].Science,2006,312(5778):1392-1396.
    [104]Sweeney MT,Thomson MJ,Pfeil BE,et al.Caught red-handed:Rc encodes a basic helix-loop-helix protein conditioning red pericarp in rice[J].Plant Cell,2006,18(2):283-294.
    [105]Fan C,Xing Y,Mao H,ctal.GS3,a major QTL for grain length and weight and minor QTL for grain width and thickness in rice,encodes a putative transmembrane protein[J].Theor Appl Genet,2006,112(6):1164-1171.
    [106]Perata P,Voesenek LA.Submergence tolerance in rice requires Sub1A,an ethylene-response-factor-like gene[J].Trends Plant Sci,2007,12(2):43-46.
    [107]Song XJ,Huang W,ShiM,et al.A QTL for rice grain width and weight encodes a previously unknown RING-typo E3 ubiquitin ligase[J].Nat Genet,2007,39(5):623-630.
    [108]Khush GS.New plant type of rice forincreasing the genetic yield potential[M].Nanda JS.Rice Breeding and Genetics.2000,.Science Publishers,New Hampshire,the U.S.A,.pp99-108.
    [109]Steeves TA,Sussex IM.Patterns in plant development[M].1989,Cambridge University Press,Cambridge,U.K.pp124-146.
    [110]钱前,胡兴明,马丽莲.水稻产量性状的分子育种[M].钱前.水稻基因设计育种.2007,科学出版社,北京.pp79-86.
    [111]巩鹏涛,李迪.植物分枝发育的遗传控制[J].分子植物育种,2005,3(2):151-162.
    [112]Booker J,Chatfield S,Leyser O.Auxin acts in xylem-associated or medullary cells to mediate apical dominance[J].Plant Cell,2003,15(2):495-507.
    [113]Turnbull CGN,Raymond MAA,Dodd IC,et al.Rapid increase in cytokinin concentration in lateral buds of chick pea during release of apical dominance[J].Planta,1997,202(3):271-276.
    [114]Bangerth F.Response of cytokinin concentration in xylem exude of beans(Phaseolus vulgaris L.) plants to decapition and auxin treatment and relationship to apical dominance[J].Planta,1994,194(3):439-442.
    [115]Eklof S.Auxin-cytokinin interactions in wild-type and transgenic tobacco[J].Plant Cell Physiol,1997,38(3):225-235.
    [116]Stirnberg P,van De Sande K,Leyser HM.MAX1 and MAX2 control shoot lateral branching in Arabidopsis[J].Development,2002,129(5):1131-1141.
    [117]Xu YB,Shenm AT.Diallel analysis of tiller number at different growth stages in rice[J].Theor Appl Genet,1991,83(2):243-249.
    [118]Wu P,Zhang G,Huang N.Identification of QTLs controlling quantitative characters in rice using RFLP markers[J].Euphytica,1996,89(3):349-354.
    [119]Wu WR,Li WM,Tang DZ,et al.Time-related mapping of quantitative trait loci underlying tiller number in rice[J].Genetics,1999,151(1):297-303.
    [120]梁康迳,林文雄,王雪仁,等.籼型三系杂交水稻茎蘖数的发育遗传研究[J].中国农业科学,2002,35(9):1033-1039.
    [121]任翔,翁清妹,祝莉莉,等.水稻分蘖能力QTL的定位[J].武汉大学学报(理学版),2003,49(4):533-537.
    [122]毛传藻,程式华.水稻农艺性状定位精确性及其影响因素的分析[J].农业生物技术学报,1999,7(4):386-393.
    [123]阮成江,何祯祥,钦佩.我国农作物QTL定位研究的现状和进展[J].植物学通报,2003,20(1):10-22.
    [124]李学勇,钱前,李家洋.水稻分蘖的分子机理研究[J].中国科学院院刊,2003,18(4):274-276.
    [125]唐家斌,曾万勇,马炳田,等.水稻寡分蘖突变体的遗传分析和基因定位[J].中国科学C辑,2001,31(3):208-212.
    [126]王永胜,王景,林慧贤,等.一种水稻分蘖突变体的初步分析(简报)[J].热带亚热带植物学报,2001,9(4):341-344.
    [127]王永胜,王景,王金发,等.水稻极度分蘖突变体的分离和遗传学初步研究[J].作物学报,2002,28(2):235-239.
    [128]Jiang ZX,Wang SQ,Deng QM,et al.Genetic analysis and molecular tagging on a novel excessive tillering mutant in rice[J].Yi Chuan Xue Bao,2006,33(4):339-344.
    [129]Jiang H,Guo LB,Xue DW,et al.Genetic analysis and gene-mapping of two reduced-culm-number mutants in rice[J].Journal of Integrative Plant Biology,2006,48(3):341-347.
    [130]Stirnberg P,Furner LJ,Ottoline Leyser HM.MAX2 participates in an SCF complex which acts locally at the node to suppress shoot branching[J].Plant J,2007,50(1):80-94.
    [131]Booker J,Auldridge M,Wills S,et al.MAX3/CCD7 is a carotenoid cleavage dioxygenase required for the synthesis of a novel plant signaling molecule[J].Curr Biol,2004,14(14): 1232-1238.
    [132]Sorefan K,Booker J,Haurogne K,et al.MAX4 and RMS1 are orthologous dioxygenase-like genes that regulate shoot branching in Arabidopsis and pea[J].Genes Dev,2003,17(12):1469-1474.
    [133]Bennett T,Sieberer T,Willett B,et al.The Arabidopsis MAX pathway controls shoot branching by regulating auxin transport[J].Curr Biol,2006,16(6):553-563.
    [134]Ishikawa S,Maekawa M,Arite T,et al.Suppression of tiller bud activity in tillering dwarf mutants of rice[J].Plant Cell Physiol,2005,46(1):79-86.
    [135]Zou J,Chen Z,Zhang S,et al.Characterizations and fine mapping of a mutant gene for high tillering and dwarf in rice(Oryza sativa L.)[J].Planta,2005,222(4):604-612.
    [136]Zou J,Zhang S,Zhang W,et al.The rice HIGH-TILLERING DWARF1 encoding an ortholog of Arabidopsis MAX3 is required for negative regulation of the outgrowth of axillary buds[J].Plant J,2006,48(5):687-698.
    [137]Arite T,Iwata H,Ohshima K,et al.DWARF10,an RMS1/MAX4/DAD1 ortholog,controls lateral bud outgrowthin rice[J].Plant J,2007,51(6):1019-1029.
    [138]Takeda T,Suwa Y,Suzuki M,et al.The OsTB1 gene negatively regulates lateral branching in rice[J].Plant J,2003,33(3):513-520.
    [139]Luo D,Carpenter R,Copsey L,et al.Control of organ asymmetry in flowers of Antirrhinum [J].Cell,1999,99(4):367-376.
    [140]Jones JW,Adair CR.A "lazy" mutation in rice[J].J Hered 1938,29(8):315-318.
    [141]Kaufman PB,Brock TG,Song I,et al.How cereal grass shoots perceive and respond to gravity[J].Amer J Bot,1987,74(9):1446-1457.
    [142]Yoshihara T,Iino M.Identification of the gravitropism-related rice gene LAZY1 and elucidation of LAZY1-dependent and-independent gravity signaling pathways[J].Plant Cell Physiol,2007,48(5):678-688.
    [143]Li P,Wang Y,Qian Q,et al.LAZY1 controls rice shoot gravitropism through regulating polar auxin transport[J].Cell Res,2007,17(5):402-410.
    [144]Yu B,Lin Z,Li H,et al.TAC1,a major quantitative trait locus controlling tiller angle in rice[J].Plant J,2007,52(5):891-898.
    [145]周劲松,梁国华.水稻分蘖性状的分子遗传研究进展[J].江西农业学报,2006,18(1):80-84.
    [146]Khush.The breeding of super rice[R].1991,IRRI,Annual Reporter.
    [147]程式华,廖西元,闵绍楷.中国超级稻研究:背景、目标和有关问题的思考[J].中国稻米,1998,(1):3-5.
    [148]Taiz L,Zeiger E.Plant Physiology[M].2006,Sinauer Associates,Sunderland,Mass.U.S.A. pp111-143.
    [149]Gothandam KM,Kim ES,Cho H,et al.OsPPR1,a pentatricopeptide repeat protein of rice is essential for the chloroplast biogenesis[J].Plant Mol Biol,2005,58(3):421-433.
    [150]Beck CF.Signaling pathways from the chloroplast to the nucleus[J].Planta,2005,222(5):743-756.
    [151]Koussevitzky S,Nott A,Mockler TC,et al.Signals from chloroplasts converge to regulate nuclear gene expression[J].Science,2007,316(5825):715-719.
    [152]Eckhardt U,Grimm B,Hortensteiner S.Recent advances in chlorophyll biosynthesis and breakdown in higher plants[J].Plant Mol Biol,2004,56(1):1-14.
    [153]Beale SI.Green genes gleaned[J].Trends Plant Sci,2005,10(7):309-312.
    [154]何冰,刘玲珑,张文伟,等.植物叶色突变体[J].植物生理学通讯,2006,42(1):1-9.
    [155]Tanaka R,Tanaka A.Tetrapyrrole biosynthesis in higher plants[J].Annu Rev Plant Biol,2007,58:321-346.
    [156]Jung KH,Hur J,Ryu CH,et al.Characterization of a rice chlorophyll-deficient mutant using the T-DNA gene-trap system[J].Plant Cell Physiol,2003,44(5):463-472.
    [157]Zhang H,Li J,Yoo JH,et al.Rice Chlorina-1 and Chlorina-9 encode Ch1D and Ch1I subunits of Mg-chelatase,a key enzyme for chlorophyll synthesis and chloroplast development [J].Plant Mol Biol,2006,62(3):325-337.
    [158]Lee S,Kim JH,Yoo ES,et al.Differential regulation of chlorophyll a oxygenase genes in rice[J].Plant Mol Biol,2005,57(6):805-818.
    [159]布坎南BB,格鲁依森姆W,琼斯RL.植物生物化学与分子生物学[M].瞿礼嘉,顾红雅,白书农,赵进东,陈章良.译.科学出版社,北京.pp462-506.
    [160]Wu Z,Zhang X,He B,et al.A chlorophyll-deficient rice mutant with impaired chlorophyllide esterification in chlorophyll biosynthesis[J].Plant Physiol,2007,145(1):29-40.
    [161]Hortensteiner S.Chlorophyll degradation during senescence[J].Annu Rev Plant Biol,2006,57:55-77.
    [162]Jiang H,Li M,Liang N,et al.Molecular cloning and function analysis of the stay green gene in rice[J].Plant J,2007,52(2):197-209.
    [163]Park SY,Yu JW,Park JS,et al.The senescence-induced staygreen protein regulates chlorophyll degradation[J].Plant Cell,2007,19(5):1649-1664.
    [164]Kusaba M,Ito H,Morita R,et al.Rice NON-YELLOW COLORING1 is involved in light-harvesting complex Ⅱ and grana degradation during leaf senescence[J].Plant Cell,2007,19(4):1362-1375.
    [165]Cha KW,Lee YJ,Koh HJ,et al.Isolation,characterization,and mapping of the stay green mutant in rice[J].Theor Appl Genet,2002,104(4):526-532.
    [166]Sato Y,Morita R,Nishimura M,et al.Mendel's green cotyledon gene encodes a positive regulator of the chlorophyll-degrading pathway[l].Proc Natl Acad Sci U S A,2007,104(35):14169-14174.
    [167]Nott A,Jung HS,Koussevitzky S,et al.Plastid-to-nucleus retrograde signaling[J].Annu Rev Plant Biol,2006,57:739-759.
    [168]朱长甫,陈星,王英典.植物类胡萝卜素生物合成及其相关基因在基因工程中的应用[J].植物生理与分子生物学报,2004,30(6):609-618.
    [169]Bartley GE,Scolnik PA.Plant carotenoids:pigments for photoprotection,visual attraction,and human health[J].Plant Cell,1995,7(7):1027-1038.
    [170]Tracewell CA,Vrettos JS,Bautista JA,et al.Carotenoid photooxidation in photosystem Ⅱ[J].Arch Biochem Biophys,2001,385(1):61-69.
    [171]Olson JA,Krinsky NI.Introduction:the colorful,fascinating word of the carotenoids:important physiologic modulators[J].FASEB J,1995,9(15):1547-1550.
    [172]Fang J,Chai C,Qian Q,et al.Mutations of genes in synthesis of the carotenoid precursors of ABA lead to preharvest sprouting and photo-oxidation in rice[J].Plant J,2008,54(2):177-189.
    [173]Wurtzel ET,Luo RB,Yatou O.A simple approach to identify the first rice mutants blocked in carotenoid biosynthesis[J].J Exp Bot,2001,52(354):161-166.
    [174]Sugimoto H,Kusumi K,Tozawa Y,et al.The virescent-2 mutation inhibits translation of plastid transcripts for the plastid genetic system at an early stage of chloroplast differentiation [J].Plant Cell Physiol,2004,45(8):985-996.
    [175]Sugimoto H,Kusumi K,Noguchi K,et al.The rice nuclear gene,VIRESCENT 2,is essential for chloroplast development and encodes a novel type of guanylate kinase targeted to plastids and mitochondria[J].Plant J,2007,52(3):512-527.
    [176]Agrawal GK,Yamazaki M,Kobayashi M,et al.Screening of the rice viviparous mutants generated by endogenous retrotransposon Tos17 insertion.Tagging of a zeaxanthin epoxidase gene and a novel ostatc gene[J].Plant Physiol,2001,125(3):1248-1257.
    [177]Sakamoto W,Ohmori T,Kageyama K,et al.The Purple leaf(Pl) locus of rice:the Pl~w allele has a complex organization and includes two genes encoding basic helix-loop-helix proteins involved in anthocyanin biosynthesis[J].Plant Cell Physiol,2001,42(9):982-991.
    [178]Hu J,Anderson B,Wessler SR.Isolation and characterization of rice R genes:evidence for distinct evolutionary paths in rice and maize[J].Genetics,1996,142(3):1021-1031.
    [179]Yamanouchi U,Yano M,Lin H,et al.A rice spotted leaf gene,Spl7,encodes a heat stress transcription factor protein[J].Proc Natl Acad Sci U S A,2002,99(11):7530-7535.
    [180]Zeng LR,Qu S,Bordeos A,et al.Spotted leaf11,a negative regulator of plant cell death and defense,encodes a U-box/armadillo repeat protein endowed with E3 ubiquitin ligase activity [J].Plant Cell,2004,16(10):2795-2808.
    [181]Mori M,Tomita C,Sugimoto K,et al.Isolation and molecular characterization of a Spotted leaf 18 mutant by modified activation-tagging in rice[J].Plant Mol Biol,2007,63(6):847-860.
    [182]叶荣国.带叶色标记杂交水稻三系不育系的选育[J].浙江农业科技,1999,(6):254-256.
    [183]赵海军,吴殿星,舒庆尧,等.携带白化转绿型叶色标记光温敏核不育系玉兔S的选育及其特征特性[J].中国水稻科学,2004,18(6):41-47.
    [184]沈圣泉,舒庆尧,包劲松,等.实用转绿型叶色标记不育系白丰A的应用研究[J].中国水稻科学,2004,18(1):36-40.
    [185]周黎军,敖光辉,肖神,等.水稻早世代稳定的遗传分析[J].中国水稻科学,2005,19(5):399-405.
    [186]周黎军,吴先军,李仕贵.水稻早世代稳定特异性研究[J].作物学报,2005,31(6):677-685.
    [187]周黎军,李爱仙,吴先军,等.早世代稳定水稻的ISSR标记[J].遗传学报,2005,32(10):1074-1081.
    [188]Thomas H,Howarth CJ.Five ways to stay green[J].Journal of Experimental Botany,2000,51(Special Issue):329-337.
    [189]Iwata N,Takamure I,Wu HK,et al.List of genes for various traits(with chromosome and main literature)[J].Rice Genet Newsl,1995,12:61-93.
    [190]Murray MG,Thompson WF.Rapid isolation of high molecular weight plant DNA[J].Nucleic Acids Res,1980,8(19):4321-4325.
    [191]Akagi H,Yokozeki Y,Inagaki A,et al.Micron,a microsatellite-targeting transposable element in the rice genome[J].Mol Genet Genomics,2001,266(3):471-480.
    [192]Lander ES,Green P,Abrahamson J,et al.MAPMAKER:an interactive computer package for constructing primary genetic linkage maps of experimental and natural populations[J].Genomics,1987,1(2):174-181.
    [193]Li Y,Qian Q,Zhou Y,et al.BRITTLE CULM1,which encodes a COBRA-like protein,affects the mechanical properties of rice plants[J].Plant Cell,2003,15(9):2020-2031.
    [194]Xiao J,Li J,Yuan L,et al.Identification of QTLs affecting traits of agronomic importance in a recombinant inbred population derived from a subspecific rice cross[J].Theor Appl Genet 1996,92(2):230-244.
    [195]Li ZK,Pinson SR,Park WD,et al.Epistasis for three grain yield components in rice(Oryza sativa L.)[J].Genetics,1997,145(2):453-465.
    [196]Miyamoto N,Goto Y,Matsui M,et al.Quantitative trait loci for phyllochron and tillering in rice[J].Theor Appl Genet,2004,109(4):700-706.
    [197]吴平.应用RFLP标记分析水稻株高与分蘖的遗传相关性[J].中国科学(C辑),1996,26(3):264-270.
    [198]Hu CH.An X-ray induced panicle-degenerating mutant in rice[J].Jpn J Breed 1961,11(1):19-23.
    [199]Itoh JI,Hasegawa A,,Kitano H,et al.A recessive heterochronic mutation,plastochronl,shortens the plastochron and elongates the vegetative phase in rice[J].Plant Cell,1998,10(9):1511-1522.
    [200]Purugganan MD,Rounsley SD,Schmidt RJ,et al.Molecular evolution of flower development:Diversification of the plant MADS-box regulatory gene family[J].Genetics 1995,140(1):345-356.
    [201]Bonhomme.F,Sommer H,Bernier G,et al.Characterization of SaMADS D from Sinapis alba suggests a dual function of the gene:in inflorescence development and floral organogenesis [J].Plant Mol Biol,1997,34(4):573-582.
    [202]Komatsu M,Maekawa M,Shimamoto K,et al.The LAX1 and FRIZZY PANICLE 2 genes determine the inflorescence architecture of rice by controlling rachis-branch and spikelet development[J].Dev Biol,2001,231(2):364-373.
    [203]Donald CM.The breeding of crop ideotypes[J].Euphytica,1968,17(3):385-403.
    [204]Gravois KA,Helms RS.Path analysis of rice yield and yield components as affected by seeding rate[J].Agron J,1992,84(1):1-4.
    [205]Sparnaaij LD,Bos I.Component analysis of complex characters in plant breeding Ⅱ.proposed method for quantifying the relative contribution of individual components to variation of the complex character[J].Euphytica,1993,70(3):225-235.
    [206]Piepho HP.A simple procedure for yield component analysis[J].Euphytica,1995,84(1):43-48.
    [207]Wu GW,Wilson LT,McClung AM.Contribution of rice tillers to dry matter accumulation and yield[J].Agron J,1998,90(3):317-323.
    [208]Tivet F,Da Silveira Pinheiro B,De Raie Ssac M,et al.Leaf blade dimensions of rice(Oryza sativa L.and Oryza glaberrima Steud.) relationships between tillers and the main stem[J].Ann Bot,2001,88(3):507-511.
    [209]郭龙彪,罗利军,邢永忠,等.汕优63重组自交系群体重要农艺性状遗传分析和利用[J].作物学报,2002,28(5):644-649.
    [210]黄耀,高亮之,金之庆,等.水稻群体茎蘖动态的计算机模拟模型[J].生态学杂志,1994,13(4):27-32,26.
    [211]苏祖芳,张娟,王辉斌,等.水稻群体茎蘖动态与成穗率和产量形成关系的研究[J].江苏农业研究,1997,18(1):37-41.
    [212]王夫玉,黄丕生.水稻群体茎蘖消长模型及群体分类研究[J].中国农业科学,1997,30(1):58-65.
    [213]Li ZK,Paterson AH,Pinson SRM,et al.RFLP facilitated analysis of tiller and leaf angles in rice(Oryza sativa L.)[J].Euphytica 1999,109(2):79-84.
    [214]孟亚利,曹卫星,柳新伟,等.水稻茎蘖动态的模拟研究[J].南京农业大学学报,2003,26(2):1-6.
    [215]孙成明,庄恒扬,杨连新,等.FACE水稻茎蘖动态模型[J].应用生态学报,2006,17(8):1448-1452.
    [216]朱立煌,何平.水稻分子连锁图谱及重要性状的基因定位[J].复旦学报(自然科学版),1998,37(4):509-512.
    [217]杨长登,郭龙彪,李西明,等.水稻抗恶苗病微效QTL的定位[J].中国水稻科学,2006,20(6):657-659.
    [218]Wang DL,Zhu J,Li ZK,et al.Mapping QTLs with epistatie effects and QTL x environment interactions by mixed linear model approaches[J].Theor Appl Genet,1999,99(8):1255-1264.
    [219]McCouch SR,Cho YG,Yano M,et al.Report on QTL nomenclature[J].Rice Genetics Newsletter,1997,14:11-14.
    [220]Cui KH,Peng SB,Ying YZ,et al.Molecular dissection of the relationships among tiller number plant height and heading date in dee[J].Plant Production Science,2004,7(3):309-318.
    [221]Yang G,Xing Y,Li S,et al.Molecular dissection of developmental behavior of tiller number and plant height and their relationship in dee(Oryza sativa L.)[J].Hereditas,2006,143(2006):236-245.
    [222]张林青,马爱京.高产水稻群体茎蘖组成和叶面积指数及其关系的研究[J].云南农业大学学报,2004,19(2):179-183.
    [223]李冬霞,隗溟,廖学群.水稻不同节位和数量分蘖对经济产量的作用[J].西南农业大学学报(自然科学版),2006,28(3):366-368,372.
    [224]杨桂兰,苏昌龙,杨黎,等.杂交稻准两优527以肥控蘖超高产栽培试验[J].贵州农业科学,2007,35(2):36-39.
    [225]何平,李晶昭,朱立煌.影响永稻花药培养力的数量性状基因座位间的互作[J].遗传学报,1999,26(5):524-528.
    [226]周桂芳,张玉志,高向达,等.水稻不同时期分蘖与成穗质量的研究[J].垦殖与稻作,2004,(6):17-18.
    [227]周汉良.水稻中位蘖成穗与高产利用研究[J].河北农业大学学报,1994,17(4):48-53.
    [228]黄志刚,屠乃美.水稻强化栽培体系的研究现状[J].作物研究,2004,(5):339-341,345.
    [229]秦鹏.不同节位再生稻再生特性研究[D].2006,湖南农业大学,硕士学位论文.
    [230]伏军.中国野生稻与稻的远源杂交[M].2000,湖南科学技术出版社,中国,湖南.pp7-9.
    [231]Vaughan D.The wild relatives of rice[M].1994,IRRI,Manila,Philippines.pp54-55;64-65.
    [232]赵孔南.植物辐射遗传育种研究进展[M].1990,原子能出版社,北京.pp179-219.
    [233]吴殷星,夏英武,舒庆尧.植物叶绿素突变体的研究及应用探讨[J].中国农学通报,1995,11(4):36-39.
    [234]Wettstein DV,Kahn A,Nielsen OF,et al.Genetic Regulation of Chlorophyll Synthesis Analyzed with Mutants in Barley[J].Science,1974,184(4138):800-802.
    [235]Buttery.BR,Buzzell RL.The relationship between chlorophyll content and rate of photosynthesis in soybeans[J].Can J Plant Sci 1977,57(1):1-5.
    [236]Marx CA.Developmental mutants in some annual seed plants[J].Annu Rev Ptant Physiol 1983,34:389-417.
    [237]Kirchhoff WR,HaII AE,Thomson WW.Gas exchange,carbon isotope discrimination,and chloroplast ultrastructure of a chlorophyll-deficient mutant of cowpea[J].Crop Sci,1989,29(1):109-115.
    [238]胡忠,彭丽萍,蔡永华.一个黄绿色的水稻细胞核突变体[J].遗传学报,1981,8(3):256-261,289.
    [239]吴跃进,王学栋,吴敬德,等.水稻温敏型叶绿素突变体遗传及超微结构研究[J].安徽农业大学学报,1991,18(4):258-262.
    [240]Jodon NE.Inheritance and linkage relationships of a cholrophyil mutation in rice[J].J Am Soc Agron 1994,32(5):342-346.
    [241]夏英武,吴殿星,舒庆尧.植物诱变育种技术的研究进展及其新的领域[J].核农学通报,1995,16(1):39-42.
    [242]Tomoko A,Tomoki M,Shigeko S.Chlorophyll-deficient mutants of rice demonstrated the deletion of DNA fragment by heavy-ion irradiation[J].J Rsddat Res,2002,43(supplement):S157-S161.
    [243]刘友杰.激光诱发褪绿突变体及其遗传表现[J].应用激光,1988,8(4):177-187.
    [244]Kim YK,Lee JY,Cho HS,et al.Inactivation of organellar glutamyl-and seryl-tRNA synthetases leads to developmental arrest of chloroplasts and mitochondria in higher plants[J].J Biol Chew.,2005,280(44):37098-37106.
    [245]Liu W,Fu Y,Hu G,et al.Identification and fine mapping of a thermo-sensitive chlorophyll deficient mutant in dee(Oryza sativa L.)[J].Planta,2007,226(3):785-795.
    [246]焦德茂.水稻光合生理特性的遗传改进与高产育种途径[J].水稻文摘,1993,12(4):1-4.
    [247]Toyama S,Hibi S.Studies on ultra-structure and function photosynthetic apparatus in dee cells.Ⅲ.Photooxidative damage of chloroplasts in rice seedlings[J].Japan J Crop Sci,1988,57(1):225-233.
    [248]Hetefington SE,He J,Smile RM.Photoinhibition at low temperature in chilling-sensitivity and resistant plants[J].Plant Physiol,1989,90(4):1609-1615.
    [249]Powles S.Photoinhibition of photosynthesis induced by visible light[J].Annu Rev Plat Physio,1984,35:15-44.
    [250]陈冬梅,梁义元,肖美秀,等.早晚季不同水稻籽粒灌浆表现及其与耐光氧化特性的关系研究[J].中国生态农业学报,2006,14(1):37-41.
    [251]陈冬梅,梁康迳,林文雄,等.水稻耐光氧化反应特性和品质性状的表现及其相关性研究[J].福建农业学报,2002,17(1):1-5.
    [252]陈以峰,张金渝,汤日圣,等.水稻光氧化的激素调控[J].江苏农业科学,1995,(3):13-15.
    [253]季本华,焦德茂.光抑制条件下不同水稻品种叶片的PSⅡ光化学效率和CO_2交换特性的差异[J].中国水稻科学,1998,12(2):109-114.
    [254]李霞,严建民,季本华,et al.光氧化和遮荫条件下水稻的光合生理特性的品种差异[J].作物学报,1999,25(3):301-308.
    [255]陈志雄,梁康迳,林文雄,等.水稻耐光氧化反应特性的遗传规律[J].福建农林大学学报(自然科学版),2002,31(1):1-4.
    [256]焦德茂,顾行影,季本华,等.水稻耐光氧化种质资源的简易筛选鉴定技术[J].中国水稻科学,1991,5(3):133-136.
    [257]Faniz G,Della DC,Bagnuie C.A nondestructive determination of leaf chlorophyll in Vitis vinifera[J].Ann Appl Biol,1991,119(1):203-209.
    [258]许大垒,张玉忠,张荣铣.植物光合作用的光抑制[J].植物生理学通讯,1992,28(4):237-243.
    [259]焦德茂,李霞,黄雪清,等.不同高产水稻品种生育后期叶片光抑制、光氧化和早衰的关系[J].中国农业科学,2002,35(5):487-492.
    [260]陈冬梅,林文雄,梁义元,等.早晚季不同耐光氧化特性水稻品种籽粒灌浆关键酶活性变化[J].应用生态学报,2005,16(12):2373-2378.
    [261]张春来,焦德茂,童红玉.不同水稻品种的光氧化差异及活性氧清除剂的效应[J].中国水稻科学,1993,7(3):175-178.
    [262]傅春霞,李黄振,谭秀云,等.水稻籼粳杂种光合作用对强光适应力的比较研究[J].中国水稻科学,1990,4(3):136-138.
    [263]陈冬梅,肖美秀,粱义元,等.早晚季水稻耐光氧化反应特性及其与品质稳定性的关系[J].中国农学通报,2005,21(6):71-74,266.
    [264]焦德茂,季本华,童红玉,等.水稻耐光抑制种质的简易筛选技术的原理和应用[J].作物学报,1994,20(3):322-326.
    [265]季本华,焦德茂.不同温光条件下籼粳稻叶片的光抑制和光氧化表现[J].植物学报,2001,43(7):714-720.
    [266]Jiao DM,Li X.Cultivar differences in photosynthetic tolerance to photooxidation and shading in rice(Oryza sativa L.)[J].Photosynthetica,2001,39(2):167-175.
    [267]欧志英,彭长连,林桂珠,等.超高产水稻组合‘培矮64S/E32'的耐光氧化特性及其机理[J].植物学通报,2003,211(5):558-556.
    [268]王荣富,张云华,钱立生,等.超级杂交稻两优培九及其亲本的光氧化特性[J].应用生态学报,2003,14(8):1309-1312.
    [269]欧志英,彭长连,林桂珠.超高产水稻培矮64S/E32及其亲本叶片的光氧化特性和遗传特点[J].作物学报,2004,30(4):308-314.
    [270]黄雪清,焦德茂.转C4光合酶基因水稻株系的抗光氧化特性[J].植物生理学报,2001,27(5):393-400.
    [271]李霞,焦德茂,戴传超,等.转育PEPC基因的杂交水稻的光合生理特性[J].作物学报,2001,27(2):137-143.
    [272]Yoshimura S,Yaraanouchi U,Katayose Y,et al.Expression of Xal,a bacterial blight-resistance gene in rice,is induced by bacterial inoculation[J].Proc Natl Acad Sci U S A,1998,95(4):1663-1668.
    [273]Ashikari M,Wu J,Yano M,et al.Rice gibberellin-insensitive dwarf mutant gene Dwarf 1encodes the alpha-subunit of GTP-binding protein[J].Proc Natl Acad Sci U S A,1999,96(18):10284-10289.
    [274]Wang ZX,Yano M,Yamanouehi U,et al.The Pib gene for rice blast resistance belongs to the nucleotide binding and leueine-rich repeat class of plant disease resistance genes[J].Plant J,1999,19(1):55-64.
    [275]Bryan GT,Wu KS,Farrall L,et al.A single amino acid difference distinguishes resistant and susceptible alleles of the rice blast resistance gene Pi-ta[J].Plant Cell,2000,12(11): 2033-2046.
    [276]Yamamuro C,Ihara Y,Wu X,et al.Loss of function of a rice brassinosteroid insensitivel homolog prevents internode elongation and bending of the lamina joint[J].Plant Cell,2000,12(9):1591-1606.
    [277]Sasaki A,Itoh H,Gomi K,et al.Accumulation of phosphorylated repressor for gibberellin signaling in an F-box mutant[J].Science,2003,299(5614):1896-1898.
    [278]Jeon JS,Jang S,Lee S,et al.leafy hull sterile1 is a homeotic mutation in a dee MADS box gene affecting rice flower development[J].Plant Cell,2000,12(6):871-884.
    [279]Izawa T,Oikawa T,Tokutomi S,et al.Phytoehromes confer the photoperiodic control of flowering in rice(a short-day plant)[J].Plant J,2000,22(5):391-399.
    [280]Itoh H,Ueguehi-Tanaka M,Sentoku N,et al.Cloning and functional analysis of two gibberellin 3β-hydroxylase genes that are differently expressed during the growth of rice[J].Proc Natl Acad Sci U S A,2001,98(15):8909-8914.
    [281]Ikeda A,Ueguchi-Tanaka M,Sonoda Y,et al.slender rice,a constitutive gibberellin response mutant,is caused by a null mutation of the SLR1 gene,an ortholog of the height-regulating gene GAI/RGA/RHT/D8[J].Plant Cell,2001,13(5):999-1010.
    [282]Sasaki A,Ashikari M,Ueguchi-Tanaka M,et al.Green revolution:a mutant gibberellin-synthesis gene in rice[J].Nature,2002,416(6882):701-702.
    [283]Mori M,Nomura T,Ooka H,et al.Isolation and characterization of a rice dwarf mutant with a defect in brassinosteroid biosynthesis[J].Plant Physiol,2002,130(3):1152-1161.
    [284]Hong Z,Ueguchi-Tanaka M,Umemura K,et al.A rice brassinosteroid-deficient mutant,ebisu dwarf(d2),is caused by a loss of function of a new member of cytochrome P450[J].Plant Cell,2003,15(12):2900-2910.
    [285]Gao ZY,Zeng DL,Cui X,et al.Map-based cloning of the ALK gene,which controls the gelatinization temperature of rice[J].Science in China Series C-Life Sciences,2003,46(6):661-668.
    [286]Komatsu K,Maekawa M,Ujiie S,et al.LAX and SPA:major regulators of shoot branching in rice[J].Proc Natl Acad Sci U S A,2003,100(20):11765-11770.
    [287]Nagasawa N,Miyoshi M,Sano Y,et al.SUPERWOMAN1 and DROOPING LEAF genes control floral organ identity in rice[J].Development,2003,130(4):705-718.
    [288]Sun X,Cao Y,Yang Z,et al.Xa26,a gone conferring resistance to Xanthomonas oryzae pv.oryzae in rice,encodes an LRR receptor kinase-like protein[J].Plant J,2004,37(4):517-527.
    [289]Komori T,Ohta S,Mural N,et al.Map-based cloning of a fertility restorer gene,Rf-1,in rice(Oryza sativa L.)[J].Plant J,2004,37(3):315-325.
    [290]Akagi H,Nakamura A,Yokozeki-Misono Y,et al.Positional cloning of the rice Rf-1 gene,a restorer of BT-type cytoplasmic male sterility that encodes a mitochondria-tergeting PPR protein[J].The,or Appl Genet,2004,108(8):1449-1457.
    [291]Wang Z,Zou Y,Li X,et al.Cytoplasmic male sterility of rice with boro Ⅱ cytoplasm is caused by a cytotoxic peptide and is restored by two related PPR motif genes via distinct modes of mRNA silencing[J].Plant Cell,2006,18(3):676-687.
    [292]Miyoshi K,Ahn BO,Kawakatsu T,et al.PLASTOCHRON1,a timekeeper of leaf initiation in rice,encodes cytochrome P450[J].Proc Natl Acad Sci U S A,2004,101(3):875-880.
    [293]Itoh H,Tatsumi T,Sakamoto T,et al.A rice semi-dwarf gene,Tan-Ginbozu(D35),encodes the gibberellin biosynthesis enzyme,ent-kaurene oxidase[J].Plant Mol Biol,2004,54(4):533-547.
    [294]Iyer AS,McCouch SR.The rice bacterial blight resistance gene xa5 encodes a novel form of disease resistance[J].Mol Plant Microbe Interact,2004,17(12):1348-1354.
    [295]Bohnert HU,Fudal I,Dioh W,et al.A putative polyketide synthase/peptide synthetase from Magnaporthe grisea signals pathogen attack to resistant rice[J].Plant Cell,2004,16(9):2499-2513.
    [296]Suzaki T,Sato M,Ashikari M,et al.The gene FLORAL ORGAN NUMBER1 regulates floral meristem size in rice and encodes a leucine-rich repeat receptor kinase orthologous to Arabidopsis CLAVATA1[J].Development,2004,131(22):5649-5657.
    [297]Tanabe S,Ashikari M,Fujioka S,et al.A novel cytochrome P450 is implicated in brassinosteroid biosynthesis via the characterization of a rice dwarf mutant,dwarf11,with reduced seed length[J].Plant Cell,2005,17(3):776-790.
    [298]Haga K,Takano M,Neumann R,et al.The Rice COLEOPTILE PHOTOTROPISM1 gene encoding an ortholog of Arabidopsis NPH3 is required for phototropism of coleoptiles and lateral translocation of auxin[J].Plant Cell,2005,17(1):103-115.
    [299]Inukai Y,Sakamoto T,Ueguchi-Tanaka M,et al.Crown rootless1,which is essential for crown root formation in rice,is a target of an AUXIN RESPONSE FACTOR in auxin signaling [J].Plant Cell,2005,17(5):1387-1396.
    [300]Liu H,Wang S,Yu X,et al.ARL1,a LOB-domain protein required for adventitious root formation in rice[J].Plant J,2005,43(1):47-56.
    [301]Ueguchi-Tanaka M,Ashikari M,Nakajima M,et al.GIBBERELLIN INSENSITIVE DWARF1 encodes a soluble receptor for gibberellin[J],Nature,2005,437(7059):693-698.
    [302]Gu K,Yang B,Tian D,et al.R gene expression induced by a type-Ⅲ effector triggers disease resistance in rice[J].Nature,2005,435(7045):1122-1125.
    [303]Komorisono M,Ueguchi-Tanaka M,Aichi I,et al.Analysis of the rice mutant dwarf and gladius leaf 1.Aberrant katanin-mediated mierotubule organization causes up-regulation of gibberellin biosynthetic genes independently of gibberellin signaling[J].Plant Physiol,2005,138(4):1982-1993.
    [304]Sazuka T,Aichi I,Kawai T,et al.The rice mutant dwarf bamboo shoot 1:a leaky mutant of the NACK-type kinesin-like gene can initiate organ primordia but not organ development[J].Plant Cell Physiol,2005,46(12):1934-1943.
    [305]Luo AD,Qian Q,Yin H,et al.EUI1,encoding a putative cytochrome P450 monooxygenase,regulates internode elongation by modulating gibberellin responses in rice[J].Plant Cell Physiol,2006,47(2):181-191.
    [306]Zhu Y,Nomura T,Xu Y,et al.ELONGATED UPPERMOST INTERNODE encodes a cytochrome P450 monooxygenase that epoxidizes gibberellins in a novel deactivation reaction in rice[J].Plant Cell,2006,18(2):442-456.
    [307]Kawakatsu T,Itoh J,Miyoshi K,et al.PLASTOCHRON2 regulates leaf initiation and maturation in rice[J].Plant Cell,2006,18(3):612-625.
    [308]Zhang K,Qian Q,Huang Z,et al.GOLD HULL AND INTERNODE2 encodes a primarily multifunctional cinnamyl-alcohol dehydrogenase in rice[J].Plant Physiol,2006,140(3):972-983.
    [309]Suzaki T,Toriba T,Fujimoto M,ef al.Conservation and diversification of meristem maintenance mechanism in Oryza sativa:Function of the FLORAL ORGAN NUMBER2 gene[J].Plant Cell Physiol,2006,47(12):1591-1602.
    [310]Ma JF,Tamai K,Yamaji N,et al.A silicon transporter in rice[J].Nature,2006,440(7084):688-691.
    [311]Chen X,Shang J,Chen D,et al.A B-lectin receptor kinase gene conferring rice blast resistance [J].Plant J,2006,46(5):794-804.
    [312]Pan G,Zhang X,Liu K,et al.Map-based cloning of a novel rice cytochrome P450 gene CYP81A6 that confers resistance to two different classes of herbicides[J].Plant Mol Biol,2006,61(6):933-943.
    [313]Chu Z,Yuan M,Yao J,et al.Promoter mutations of an essential gene for pollen development result in disease resistance in rice[J].Genes Dev,2006,20(10):1250-1255.
    [314]Qu S,Liu G,Zhou B,et al.The broad-spectrum blast resistance gene Pi9 encodes a nucleotide-binding site-leucine-rich repeat protein and is a member of a multigene family in rice[J].Genetics,2006,172(3):1901-1914.
    [315]Zhou B,Qu S,Liu G,et al.The eight amino-acid differences within three leucine-rich repeats between Pi2 and Piz-t resistance proteins determine the resistance specificity to Magnaporthe grisea[J].Mol Plant Microbe Interact,2006,19(11):1216-1228.
    [316]Chu H,Qian Q,Liang W,et al.The FLORAL ORGAN NUMBER4 gene encoding a putative ortholog of Arabidopsis CLAVATA3 regulates apical meristem size in rice[J].Plant Physiol,2006,142(3):1039-1052.
    [317]Li N,Zhang DS,Liu HS,et al.The rice tapetum degeneration retardation gene is required for tapetum degradation and anther development[J].Plant Cell,2006,18(11):2999-3014.
    [318]Kurakawa T,Ueda N,Maekawa M,et al.Direct control of shoot meristem activity by a cytokinin-activating enzyme[J].Nature,2007,445(7128):652-655.
    [319]Ma JF,Yamaji N,Mitani N,et al.An efflux transporter of silicon in rice[J].Nature,2007,448(7150):209-212.
    [320]Cheng L,Wang F,Shou H,et al.Mutation in nicotianamine aminotransferase stimulated the Fe(Ⅱ) acquisition system and led to iron accumulation in rice[J].Plant Physiol,2007,145(4):1647-1657.
    [321]Ikeda K,Ito M,Nagasawa N,et al.Rice ABERRANT PANICLE ORGANIZATION 1,encoding an F-box protein,regulates meristem fate[J].Plant J,2007,51(6):1030-1040.
    [322]Zeng D,Yan M,Wang Y,et al.Du1,encoding a novel Prp1 protein,regulates starch biosynthesis through affecting the splicing of Wx~b pre-mRNAs in rice(Oryza sativa L.)[J].Plant Mol Biol,2007,65(4):501-509.
    [323]Lin F,.Chen S,Que Z,et al.The blast resistance gene Pi37 encodes a nucleotide binding site leucine-rich repeat protein and is a member of a resistance gene cluster on rice chromosome 1[J].Genetics,2007,177(3):1871-1880.
    [324]Liu X,Lin F,Wang L,et al.The in silico map-based cloning of Pi36,a rice coiled-coil nucleotide-binding site leucine-rich repeat gene that confers race-specific resistance to the blast fungus[J].Genetics,2007,176(4):2541-2549.
    [325]Nagasaki H,Itoh J,Hayashi K,et al.The small interfering RNA production pathway is required for shoot meristem initiation in rice[J].Proc Natl Acad Sci U S A,2007,104(37):14867-14871.
    [326]Jia L,Zhang B,Mao C,et al.OsCYT-INV1 for alkaline/neutral invertase is involved in root cell development and reproductivity in rice(Oryza sativa L.)[J].Planta,2008:dio:10.1007/s00425-00008-00718-00420.
    [327]Fujino K,Matsuda Y,Ozawa K,et al.NARROW LEAF 7 controls leaf shape mediated by auxin in rice[J].Mol Genet Genomics,2008,279(5):499-507.
    [328]Lee S,Jung KH,An G,et al.Isolation and characterization of a rice cysteine protease gene,OsCP1,using T-DNA gene-trap system[J].Plant Mol Biol,2004,54(5):755-765.
    [329]Oikawa T,Koshioka M,Kojima K,et al.A role of OsGA20ox1,encoding an isoform of gibberellin 20-oxidase,for regulation of plant stature in rice[J].Plant Mol Biol,2004,55(5): 687-700.
    [330]Lee S,Kim J,Han JJ,et al.Functional analyses of the flowering time gene OsMADS50,the putative SUPPRESSOR OF OVEREXPRESSION OF CO I/AGAMOUS-LIKE 20(SOC1/AGL20) ortholog in rice[J].Plant J,2004,38(5):754-764.
    [331]Hur J,Jung KH,Lee CH,et al.Stress-inducible OsP5CS2 gene is essential for salt and cold tolerance in rice[J].Plant Science,2004,167(3):417-426.
    [332]Kang HG,Park S,Matsuoka M,et al.White-core endosperm floury endosperm-4 in rice is generated by knockout mutations in the C-type pyruvate orthophosphate dikinase gene (OsPPDKB)[J].Plant J,2005,42(6):901-911.
    [333]Jiang H,Wang S,Dang L,et al.A novel short-root gene encodes a glucosamine-6-phosphate acetyltransferase required for maintaining normal root cell shape in rice[J].Plant Physiol,2005,138(1):232-242.
    [334]Jung KH,Han MJ,Lee DY,et al.Wax-deficient anther1 is involved in cuticle and wax production in rice anther walls and is required for pollen development[J].Plant Cell,2006,18(11):3015-3032.
    [335]Li J,Zhu S,Song X,et al.A rice glutamate receptor-like gene is critical for the division and survival of individual cells in the root apical meristem[J].Plant Cell,2006,18(2):340-349.
    [336]Zhou HL,He SJ,Cao YR,et al.OsGLU1,a putative membrane-bound endo-1,4-beta-D-glucanase from rice,affects plant intemode elongation[J].Plant Mol Biol,2006,60(1):137-151.
    [337]Han MJ,Jung KH,Yi G,et al.Rice Immature Pollen 1(RIP1) is a regulator of late pollen development[J].Plant Cell Physiol,2006,47(11):1457-1472.
    [338]Yamaguchi T,Lee DY,Miyao A,et al.Functional diversification of the two C-class MADS box genes OSMADS3 and OSMADS58 in Oryza sativa[J].Plant Cell,2006,18(1):15-28.
    [339]Lee J,Park JJ,Kim SL,et al.Mutations in the rice liguleless gene result in a complete loss of the auricle,ligule,and laminar joint[J].Plant Mol Biol,2007,65(4):487-499.
    [340]Kim SL,Lee S,Kim HJ,et al.OsMADS51 is a short-day flowering promoter that functions upstream of Ehd1,OsMADS14,and Hd3a[J].Plant Physiol,2007,145(4):1484-1494.
    [341]Lee S,Kim YY,Lee Y,et al.Rice P1B-type heavy-metal ATPase,OsHMA9,is a metal efflux protein[J].Plant Physiol,2007,145(3):831-842.
    [342]Koh S,Lee SC,Kim MK,et al.T-DNA tagged knockout mutation of rice OsGSK1,an orthologue of Arabidopsis BIN2,with enhanced tolerance to various abiotic stresses[J].Plant Mol Biol,2007,65(4):453-466.
    [343]Lee DY,Lee J,Moon S,et al.The rice heterochronic gene SUPERNUMERARY BRACT regulates the transition from spikelet meristem to floral meristem[J].Plant J,2007,49(1): 64-78.
    [344]Li A,Zhang Y,Wu X,et al.DH1,a LOB domain-like protein required for glume formation in rice[J].Plant Mol Biol,2008,66(5):491-502.
    [345]Sato Y,Sentoku N,Miura Y,et al.Loss-of-function mutations in the rice homeobox gone OSH15 affect the architecture of internodes resulting in dwarf plants[J].Embo J,1999,18(4):992-1002.
    [346]Takano M,Kanegae H,Shinomura T,et al.Isolation and characterization of rice phytochrome A mutants[J].Plant Cell,2001,13(3):521-534.
    [347]Nonomura K,Miyoshi K,Eiguchi M,etal.The MSP1 gone is necessary to restrict the number of cells entering into male and female sporogenesis and to initiate anther wall formarion in rice[J].Plant Cell,2003,15(8):1728-1739.
    [348]Tanaka K,Murata K,Yamazaki M,et al.Three distinct rice cellulose synthase catalytic subunit genes required for cellulose synthesis in the secondary wall[J].Plant Physiol,2003,133(1):73-83.
    [349]Nonomura K,Nakano M,Fukuda T,et al.The novel gone HOMOLOGOUS PAIRING ABERRATION IN RICE MEIOSIS1 of rice encodes a putative coiled-coil protein required for homologous chromosome pairing in meiosis[J].Plant Cell,2004,16(4):1008-1020.
    [350]Kaneko M,Inukai Y,Ueguchi-Tanaka M,et al.Loss-of-function mutations of the rice GAMYB gene impair alpha-amylase expression in aleurone and flower development[J].Plant Cell,2004,16(1):33-44.
    [351]Yamaguchi T,Nagasawa N,Kawasaki S,et al.The YABBY gone DROOPING LEAF regulates carpel specification and midrib development in Oryza sativa[J].Plant Cell,2004,16(2):500-509.
    [352]Kurusu T,Yagala T,Miyao A,et al.Identification of a putative voltage-gated Ca~(2+) channel as a key regulator of elicitor-induced hypersensitive cell death and mitogen-activated protein kinase activation in rice[J].Plant J,2005,42(6):798-809.
    [353]Jung KH,Han MJ,Lee YS,et al.Rice Undeveloped Tapetum1 is a major regulator of early tapetum development[J].Plant Cell,2005,17(10):2705-2722.
    [354]Tabuchi M,Sugiyama K,Ishiyama K,et al.Severe reduction in growth rate and grain filling of rice mutants lacking OsGS1;1,a cytosolic glutamine synthetase1;1[J].Plant J,2005,42(5):641-651.
    [355]Sakamoto T,Morinaka Y,Ohnishi T,et al.Erect leaves caused by brassinosteroid deficiency increase biomass production and grain yield in rice[J].Nat Biotechnol,2006,24(1):105-109.
    [356]Nonomura K,Nakano M,Eiguchi M,et al.PAIR2 is essential for homologous chromosome synapsis in rice meiosis I[J].J Cell Sci,2006,119(Pt 2):217-225.
    [357]Fujita N,Yoshida M,Asakura N,et al.Function and characterization of starch synthase Ⅰusing mutants in rice[J].Plant Physiol,2006,140(3):1070-1084.
    [358]Nonomura K,Morohoshi A,Nakano M,et al.A germ cell specific gene of the ARGONAUTE family is essential for the progression of premeiotic mitosis and meiosis during sporogenesis in rice[J].Plant Cell,2007,19(8):2583-2594.
    [359]Nakagawa Y,Hanaoka H,Kobayashi M,et al.Cell-type specificity of the expression of Os BOR1,a rice efflux boron transporter gene,is regulated in response to boron availability for efficient boron uptake and xylem loading[J].Plant Cell,2007,19(8):2624-2635.
    [360]Fujita N,Yoshida M,Kondo T,et al.Characterization of SSⅢa-deficient mutants of rice:the function of SSⅢa and pleiotropic effects by SSⅢa deficiency in the rice endosperm[J].Plant Physiol,2007,144(4):2009-2023.
    [361]Katou S,Kuroda K,Seo S,et al.A calmodulin-binding mitogen-activated protein kinase phosphatase is induced by wounding and regulates,the activities of stress-related mitogen-activated protein kinases in rice[J].Plant Cell Physiol,2007,48(2):332-344.
    [362]Woo YM,Park HJ,Su'udi M,et al.Constitutively wilted 1,a member of the rice YUCCA gene family,is required for mainlining water homeostasis and an appropriate root to shoot ratio[J].Plant Mol Biol,2007,65(1-2):125-136.
    [363]Horie T,Costa A,Kim TH,et al.Rice OsHKT2;1 transporter mediates large Na~+ influx component into K~+-starved roots for growth[J].Embo J,2007,26(12):3003-3014.
    [364]Takahashi A,Agrawal GK,Yamazaki M,et al.Rice Ptila negatively regulates RAR1-dependent defense responses[J].Plant Cell,2007,19(9):2940-2951.
    [365]Riemann M,Riemann M,Takano M.Rice JASMONATE RESISTANT 1 is involved into phytochrome and jasmonate signaling[J].Plant Cell Environ,2008:doi:10.1111/j.1365 -3040.2008.01790.x.
    [366]Komatsu M,Chujo A,Nagato Y,et al.FRIZZY PANICLE is required to prevent the formation of axillary meristems and to establish floral meristem identity in rice spikelets[J].Development,2003,130(16):3841-3850.
    [367]Zhu QH,Hoque MS,Dennis ES,et al.Ds tagging of BRANCHED FLORETLESS 1(BFL1)that mediates the transition from spikelet to floret meristem in rice(Oryza sativa L.)[J].BMC Plant Biol,2003,3:6.
    [368]Zhu QH,Ramm K,Shivakkumar R,et al.The ANTHER INDEHISCENCE1 gene encoding a single MYB domain protein is involved in anther development in rice[J].Plant Physiol,2004,135(3):1514-1525.
    [369]Margis-Pinheiro M,Zhou XR,Zhu QH,et al.Isolation and characterization of a Ds-tagged rice(Oryza sativa L.) GA-responsive dwarf mutant defective in an early step of the gibber.ellin biosynthesis pathway[J].Plant Cell Rep,2005,23(12):819-833.
    [370]Jiang SY,Cai M,Ramachandran S.The Oryza sativa no pollen(Osnop) gene plays a role in male gametophyte development and most likely encodes a C2-GRAM domain-containing protein[J].Plant Mol Biol,2005,57(6):835-853.
    [371]Park SH,Kim CM,Je BI,et al.A Ds-insertion mutant of OSH6(Oryza sativa Homeobox 6)exhibits outgrowth of vestigial leaf-like structures,bracts,in rice[J].Planta,2007,227(1):1-12.
    [372]Kim CM,Park SH,Je BI,et al.OsCSLD1,a cellulose synthase-like D1 gene,is required for root hair morphogenesis in rice[J].Plant Physiol,2007,143(3):1220-1230.
    [373]Jiang SY,Cai M,Ramachandran S.ORYZA SATIVA MYOSIN XI B controls pollen development by photoperiod-sensitive protein localizations[J].Dev Biol,2007,304(2):579-592.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700