用户名: 密码: 验证码:
一氧化氮在水分胁迫和脱落酸诱导玉米叶片抗氧化防护中的作用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
植物激素脱落酸(abscisic acid,ABA)可以调节植物抗逆(包括干旱、冷害、盐害等)的多种生理反应和分子生物学效应。一氧化氮(nitric oxide,NO)是一种多功能生物活性分子,作为信号参与基因活化、蛋白质表达和酶活性的调节使植物对逆境胁迫做出应答。最近的研究表明ABA和水分胁迫都可以引起NO和过氧化氢(hydrogenperoxide,H_2O_2)的产生,以及细胞质Ca~(2+)([Ca~(2+)]i)和钙调素(calmodulin,CaM)增加,诱导抗氧化基因的表达,提高植物抗氧化防护能力。NO在ABA诱导的抗氧化防护中起重要作用。然而,有关NO作为信号分子介导ABA诱导的抗氧化防护信号转导机制仍有待阐明。本研究以玉米叶片为材料,研究了在ABA和水分胁迫诱导的抗氧化防护中NO的作用以及H_2O_2,Ca~(2+)/CaM与NO之间的关系。主要的研究结果如下:
     用NO特异的荧光染料4'5'—二氨基荧光素二乙酸酯(4,5-diaminofluoresceindiacetate,DAF-2DA)对小块叶片进行染色,并用激光共聚焦显微镜(confocal laserscanning microscopy,CLSM)观察荧光变化。10 mM CaCl_2处理迅速诱导NO产生和NOS活性增加。CaCl_2处理1h时NO达到最大值并一直持续到2h,2h后开始减弱。在CaCl_2处理1h时,细胞溶质和微粒体部分一氧化氮合成酶(nitric oxide synthase,NOS)活性达到最大值,分别比对照增加了92.7%和148%。NO清除剂c-PTIO(2-4-carboxyphenyl-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide),NOS抑制剂_L-NAME(N~G-nitro-_L-Arg methylester)、PBITU(S,S'-1,3-phenylene-bis(1,2-ethanediyl)-bis-isothiourea)和CaM拮抗剂预处理都抑制了CaCl_2诱导的NO产生和细胞溶质及微粒体部分NOS活性增加。另一方面,Ca~(2+)抑制剂和CaM拮抗剂预处理几乎完全抑制了ABA和H_2O_2诱导的NO产生和细胞溶质及微粒体部分NOS活性的增加,表明玉米叶片中ABA和H_2O_2是通过Ca~(2+)-CaM依赖型的NOS途径诱导NO产生的。研究还发现外源NO处理显著提高了玉米叶片叶肉细胞[Ca~(2+)]_i、玉米叶片CaM1基因表达和CaM含量。NO清除剂c-PTIO和NOS抑制剂_L-NAME预处理部分抑制了ABA处理后期[Ca~(2+)]_i和CaM含量的提高,表明NO参与ABA诱导的Ca~(2+)/CaM水平增加。此外,Ca~(2+)鳌合剂、Ca~(2+)通道阻塞剂和CaM拮抗剂预处理还显著抑制了NO诱导的抗氧化防护基因SOD4、cAPX、GRl表达和叶绿体及细胞溶质抗氧化酶SOD、APX、GR活性的增加,说明玉米叶片中NO诱导的Ca~(2+)/CaM增加参与了NO诱导的亚细胞抗氧化防护系统。这些结果暗示了Ca~(2+)/CaM作为NO的上游和下游信号分子参与ABA和H_2O_2诱导玉米叶片抗氧化防护。
     水分胁迫处理能够诱导玉米叶片叶肉细胞NO的产生。水分胁迫处理1h时NO开始产生,一直持续到4h达到最大,4h后减弱。水分胁迫诱导了NOS活性增加,水分胁迫处理4h时细胞溶质部分NOS活性是对照的4.3倍,微粒体部分的NOS活性是对照的7.2倍。这些结果表明微粒体部分NOS活性比细胞溶质部分高且更容易受到水分胁迫的影响。NOS抑制剂_L-NAME和PBITU预处理显著抑制了水分胁迫诱导的细胞溶质和微粒体部分NOS活性的增加,而NO清除剂c-PTIO和硝酸还原酶_(nitrate reductase,NR)抑制剂KCN、NaN_3抑制了水分胁迫诱导的NO产生,但并不影响NOS活性。结果表明NOS是水分胁迫诱导NO产生的主要来源,NR也部分参与了水分胁迫诱导的玉米叶片NO的产生。
     分别用DAB(3,3-diaminobenzidine)染色的组织化学、分光光度计法和CeCl_3染色的细胞化学方法检测了NO对水分胁迫诱导的H_2O_2累积的影响。结果显示SNP提高了水分胁迫诱导的叶绿体和细胞溶质谷胱甘肽还原酶(glutathione reductase,GR)、超氧化物歧化酶(superoxide dismutase,SOD)和抗坏血酸过氧化物酶(ascorbate peroxidase,APX)的活性,减少了水分胁迫诱导的H_2O_2的积累,而[Fe(Ⅲ)CN]在一定程度上降低了亚细胞抗氧化防护酶的活性,不影响H_2O_2的积累。施用NO清除剂、NOS抑制剂和NR抑制剂的研究结果表明NO参与外源H_2O_2和水分胁迫诱导的SOD4、cAPX、GRl的表达和叶绿体及细胞溶质抗氧化防护酶SOD、APX、GR活性的提高。这些结果表明NO能够清除水分胁迫诱导产生的H_2O_2至少部分归因于NO诱导的不同亚细胞分隔抗氧化防护的协同作用。
     对水分胁迫下ABA积累、Ca~(2+)/CAM增加和NO产生之间的关系的研究结果显示,水分胁迫积累的内源ABA是水分胁迫诱导NO产生和激活NOS活性的关键诱导因子;NO参与了水分胁迫诱导的ABA积累、[Ca~(2+)]_i提高、CaM1基因表达和CaM含量的增加。另一方面,Ca~(2+)抑制剂和CaM拮抗剂预处理几乎完全抑制了水分胁迫诱导的NO的产生和细胞溶质及微粒体部分NOS活性的增加,表明Ca~(2+)/CaM介导了水分胁迫诱导的玉米叶片NO的产生。此外,研究还发现水分胁迫诱导叶绿体和线粒体NO产生,Ca~(2+)鳌合剂和CaM拮抗剂预处理只抑制了水分胁迫诱导的线粒体NO产生而对叶绿体NO的产生没有影响,表明在玉米叶片叶绿体和线粒体中合成NO的NOS种类可能有所不同。
     上述研究表明,ABA和水分胁迫诱导的[Ca~(2+)]_i和CaM含量的增加激活了NOS活性合成NO,NO又反过来影响Ca~(2+)/CaM水平,进而提高不同亚细胞分隔抗氧化酶活性及相关基因的表达。NO和Ca~(2+)/CaM之间的交叉谈话在外源ABA或水分胁迫积累的ABA信号转导过程中起重要作用。
Abscisic acid(ABA) can regulate a variety of physiological and molecular responses for plant against stresses,including drought,chilling,salinity,and so forth.Nitric oxide(NO) is a multifunctional bioactive molecule and as a signal is involved in gene activation,protein expression and activity regulation of enzymes response to stresses in plants.Recent work showed that ABA can cause the generation of NO and hydrogen peroxide(H_2O_2),and the increases in the levels of calcium([Ca~(2+)]_i) and calmodulin(CAM) in maize leaves,which induce the expression of antioxidant genes,and enhance the capacity of antioxidant defense systems.NO is an important intermediate component in the ABA signaling.However,the detailed mechanism about how NO mediates ABA signaling in plant cells remains to be determined.In the present study,the role of NO and the relationship between H_2O_2,Ca~(2+)/CaM and NO in ABA-and water stress-induced antioxidant defense in leaves of maize(Zea mays L.) plants were investigated.The results are as follows:
     In order to investigate the production of NO in leaves of maize plants exposed to CaCl_2 treatment,the leaf segments were loaded with the NO-specific fluorescent dye 4,5-diaminofluorescein diacetate(DAF-2DA) and confocal laser scanning microscopy (CLSM) was used to monitor changes in NO-induced fluorescence,10 mM CaCl_2 led to a rapid increase of NO.The generation of NO maximized at 1 h and remained high for 2 h after CaCl_2 treatment,and then decreased after 2 h of CaCl_2 treatment.After the 1 h of CaCl_2 treatment,the activity of NOS reached the maximum values.Treatment with CaCl_2 for 1 h enhanced the activity of NOS in cytosolic and microsomal fractions by 92.7%and 148%, respectively,compared with the control values.To establish a link between NO,Ca~(2+)/CaM and antioxidant defense in ABA signaling,the detached plants were pretreated with Ca~(2+) inhibitors or CaM antagonists,respectively,and then exposed to ABA,H_2O_2 or CaCl_2 treatment.Experimental results showed that pretreatments with Ca~(2+) inhibitors or CaM antagonists nearly fully arrested ABA-,H_2O_2- or CaCl_2-induced increases in the generation of NO and the activity of NOS,and also blocked the activities of the chloroplastic and cytosolic antioxidant enzymes SOD,APX,GR and the expression of the genes cAPX,GRl and SOD4 induced by SNP treatment in leaves of maize plants.These results indicate that the NOS, which mediates ABA- and H_2O_2-induced NO production,is Ca~(2+)/CaM-dependent,and Ca~(2+)/CaM is required for NO-induced subcellular antioxidant defense.On the other hand,our results showed also that exogenous NO led to significant increases in the levels of Ca~(2+)/CaM. ABA-induced the increases in levels of Ca~(2+)/CaM were partially blocked by pretreatments with the NO scavenger c-PTIO and the NOS inhibitor _L-NAME,suggesting that NO is involved in ABA-induced increases in the levels of Ca~(2+)/CaM.These results suggest that Ca~(2+)/CaM functions both upstream and downstream of NO production,which is mainly from NOS,in ABA- and H_2O_2-induced antioxidant defense in leaves of maize plants.
     Water stress induced the increases in the generation of NO in mesophyll of maize leaves. NO was detectable as early as 1 h after water stress treatment and maximized at 4 h,and then declined.Water stress induced the increases in the activity of NOS in maize leaves.The activity of NOS maintained at a continuously ascending trend during 4-h of water stress treatment.After 4 h of water stress treatment,the activity of NOS in cytosolic and microsomal fractions reached maximum values,which were 4.3-fold and 7.2-fold, respectively,higher than those in the controls.These results suggest that the activity of NOS in cytosolic and microsomal fractions is remarkably induced by water stress,and the activity of NOS in microsomal fraction was higher and more susceptible to water stress than that in cytosolic fraction.Pretreatments with _L-NAME and PBITU completely blocked the increases in the activity of NOS in cytosolic and microsomal fractions induced by water stress treatment. Pretreatments with c-PTIO,KCN and NaN_3 inhibited the generation of NO but hardly affected the activity of NOS in cytosolic and microsomal fractions induced by water stress treatment.These results suggest that NOS and NR are involved in water stress-induced NO production and NOS is the major source of NO.
     To investigate whether water stress-induced H_2O_2 production is regulated by NO,the effect of SNP on water stress-induced the activities of subcellular antioxidant enzymes and the accumulation of H_2O_2 were examined,by using the methods of histochemistry with 3,3-diamino benzidine(DAB) staining,spectrophotometry in leaf extracts,and cytochemistry with CeCl_3 staining and transmission electron microscopy,respectively.Experimental results showed that pretreatment with SNP resulted in remarkable increases in the activities of water stress-induced the chloroplastic and cytosolic antioxidant enzymes superoxide dismutase (SOD),ascorbate peroxidase(APX),and glutathione reductase(GR),which decrease the accumulation of H_2O_2 induced by water stress treatment.However,pretreatment with Fe(Ⅲ)CN had a very little effect on the accumulation of H_2O_2,and reduced the activities of chloroplastic and cytosolic antioxidant enzymes GR,SOD and APX induced by water stress treatment.Pretreatments with NO scavenger,NOS inhibitors and NR inhibitors markedly blocked the increases in the activities of the chloroplastic and cytosolic antioxidant enzymes SOD,APX,GR and the expression of the genes cAPX,GRl and SOD4 induced by H_2O_2 or water stress,indicating that NO is involved in H_2O_2-and water stress-induced subcellular antioxidant defense.These results suggest that the potential ability of NO to scavenge H_2O_2 is, at least in part,due to the induction of subcellular antioxidant defense.
     The relationship between ABA,Ca~(2+)/CaM and NO in water stress-induced antioxidant defense in leaves of maize plants were investigated.The application of ABA synthesis inhibitor blocked the generation of NO and the increase in the activity of NOS induced by water stress treatment,indicating that ABA is a key inducer of the induction of NO and the activation of NOS under water stress.NO is involved in water tress-induced accumulation of ABA and increases in the levels of Ca~(2+)/CaM.On the other hand,pretreatments with Ca~(2+) inhibitors or CaM antagonists nearly fully arrested water stress-induced increases in the generation of NO and the activity of NOS,indicating that Ca~(2+)/CaM mediates NO generation in leaves of maize plants exposed to water stress.In addition,our results showed also that water stress induced NO production in isolated chloroplasts and mitochondria of maize leaves. Pretreatments with Ca~(2+) chelator and CaM antagonist almost fully blocked water stress-induced NO production in mitochondria,but did not affect NO production in chloroplasts.These results suggest that there exists different species of NOS in chloroplasts and mitochondria of maize leaves.
     Taken together,our results suggest that the increases in the levels of Ca~(2+)/CaM trigger NO production by activation of NOS,which then affects the levels of Ca~(2+)/CaM,thus resulting in up-regulation in the activities of antioxidant enzymes and the expression of related genes in different subcellular compartments,and a crosstalk between NO and Ca~(2+)/CaM plays a pivotal role in the ABA signaling transduction.
引文
1.陈东林.一氧化氮在生物体内的化学过程.生物学教学,2000,25(3):1-3.
    2.何军,许兴,李树华等.水分胁迫对牛心朴子叶片光合色素及叶绿素荧光的影响.西北植物学报,2004,24:1594-1598.
    3.黄国存,崔四平,马春红等.干旱对小麦幼苗SOD活性和CaM水平的影响.华北农学报,1995a,10(1):40-44.
    4.黄国存,崔四平,马春红等.水分胁迫下小麦幼苗中CaM水平变化及其与SOD活性的关系.植物生理学通讯,1995b,31(5):335-337.
    5.李卫,孙中海,章文才 等.钙与钙调素对柑橘原生质体抗冻性的影响.植物学报,1997,23(3):262-266.
    6.刘春颖.海水中一氧化氮对浮游植物生长影响的规律研究.博士论文,2006,30.
    7.刘璞,陈珈.植物激素脱落酸的信号转导.植物生理学通讯,2000,36(2):165-169.
    8.刘新,林萍,李云 等.茉莉酸和脱落酸调控蚕豆气孔运动作用的比较.植物生理学通讯,2001,37(6):556-561.
    9.刘新,张蜀秋.植物体内一氧化氮的来源及其与其他信号分子的关系.植物生理学通讯,2003,(5):513-518.
    10.史庆华,赖齐贤,朱祝军 等.一氧化氮在植物中的生理功能.细胞生物学杂志,2005,27:39-42.
    11.孙大业,马力耕.细胞外钙调素-一种植物中的多功能信使.中国科学,2001a,31:289-297.
    12.孙大业,郭艳林,马力耕等.细胞信号转导.北京:科学出版社,2001b:110-118.
    13.阮海华,沈文飚,徐朗莱 等.一氧化氮对盐胁迫下小麦叶片氧化损伤的保护效应.科学通报,2001,46(23):1993-1997.
    14.屠洁,沈文飚,叶茂炳 等.外源NO供体对小麦离体叶片过氧化氢代谢的影响.植物学通报,2002,19(3):336-341.
    15.王凤茹,张红,商振清 等.水分胁迫及复水过程中小麦幼苗叶片内Ca~(2+)的定位.植物生理学报,2000,6(4):280-282.
    16.夏玉凤,孙新立,冯小燕等.琥珀酸脱氢酶的纯化研究.河北师范大学学报(自然科学版),2000,24:519-520.
    17.杨洪强,贾文锁,黄丛林 等.蛋白磷酸化参与湖北海棠根系中水分胁迫诱导的ABA积累.科学通报,2001,46(1):50-53.
    18.杨惠敏,王根轩.保卫细胞质中浓度变化与气孔开闭之间的关系.植物生理学通讯,2001,37(3):269-273
    19.袁清昌.钙提高植物抗旱能力的研究进展.山东农业大学学报,1999,30(3):302-306。
    20.张满效,安黎哲,陈拓 等.NO是植物应激反应的信号分子.西北植物学报,2004,24(6):1145-1153.
    21.张少颖,任小林,程顺昌 等.外源一氧化氮供体浸种对玉米种子萌发和幼苗生长的影响.植物生理学通讯,2004,40(3):309-310.
    22.张文利,沈文飚,徐朗莱.一氧化氮在植物体内的信号分子作用.生命的化学,2002,22(1):61-62.
    23.张文利,沈文飚,叶茂炳 等.小麦叶片顺乌头酸酶对NO和H_(2)O_(2)的敏感性.植物生理与分子生物学学报,2002,28(2):99-104.
    24.赵可夫,卢元芳,张宝泽等.Ca对小麦幼苗降低盐害效应的研究.植物学报,1993,35(1):51-56.
    25.赵晓刚,徐张红,裴真明 等.NO在植物中的调控作用.植物学通报,2004,21(1):44-51.
    26.周永斌,殷有,苏宝玲 等.外源一氧化氮供体对几种植物种子萌发和幼苗生长的影响.植物生理学通讯,2005,41(3):316-318.
    27.Albassam BA.Inhibition of wheat leaf nitrate reductase activity by phenolic compounds.Bioscience Biotechnology Biochemistry,2000,64:1507-1510.
    28.Allan AC,Fluhr R.Two district sources of elicited reactive oxygen species in tobacco epidermal cells.Plant Cell,1997,9:1559-1572.
    29.Allen R.Dissection of oxidative stress tolerance using transgenic plants.Plant Physiology,1995,107:1049-1054.
    30.Allen GJ,Kuchitusu K,Chu SP,Muruta YK,Schroeder JI.Arabidopsis abil-1 and abi2-1phosphatate mutations reduce abscisic acid-induced cytoplasmic calcium rises in guard cells.Plant Cell,1999,11:1785-1798.
    31.Anderson MD,Prasad TK,Martin BA,Stewart CR.Differential gene expression in chilling-acclimate d maize seedlings and evidence for the involvement of abscisic acid in chilling tolerance.Plant Molecular Biology,1994,105:331-339.
    32.Apel K,Hirt H.Metabolism,oxidative stress species,and signal transduction.Annual Review Plant Biology,2004,55:373-399.
    33.Arasimowicz M,Floryszak-Wieczorek J.Nitric oxide as a bioactive signalling molecule in plant stress responses,Plant Science,2007,doi:10.1016/j.plantsci.2007.02.005.
    34.Barroso J.Society of Free Radical Research,Granada,Spain,1998,17-19.
    35.Barroso JB,Corpas FJ,Carreras A,Sandalio LM,Valderrama R,Palma JM,Lupianez JA,Del Rio LA.Localization of nitric oxide synthase in plant peroxisomes.Journal of Biological Chemistry, 1999,274:36729-36733.
    36. Barolo CG, Simontacchi M, Tambussi E, Beltrano J, Montaldi E, Puntarulo S. Drought and watering-dependent oxidative stress: effect on antioxidant content in Triticum aestivum L. leaves. Journal of Experimental Botany, 1999, 50: 375-383.
    37. Becker TW, Rechenmann CP, Suzuki A, Hirel B. Subcellular and immunocytochemical localization of the enzymes involved in ammonia assimilation in mesophyll and bundle-sheath cells of maize leaves. Planta, 1993, 191: 129-136.
    38. Beligni MV, Lamattina L. Is nitric oxide toxic or protective? Trends in Plant Science, 1999, 4: 299-300.
    39. Beligni MV, Lamattina L. Nitric oxide stimulates seed germination and de-etiolation, and inhibits hypocotyls elongation, three light-inducible responses in plants. Planta, 2000, 210: 215-221.
    40. Beligni MV, Lamattina L. Nitric oxide: A non-traditional regulator of plant growth. Trends in Plant Science, 2001, 6: 508-509.
    41. Beligni MV, Fath A, Bethke PC, Lamattina L, Jones RL. Nitric oxide acts as an antioxidant and delays programmed cell death in barley aleurone layers. Plant Physiology, 2002,129: 1642-1650.
    42. Bellaire BA, Carmody J, Braud J, Gossett DR, Banks SW, Lucas MC, Fowler TE. Involvement of abscisic acid-dependent and -independent pathways in the up-regulation of antioxidant enzyme activity during NaCl stress in cotton callus tissue. Free Radical Research, 2000, 33: 531-545.
    43. Berridge MJ, Lipp P, Bootman MD. The versatility and universality of calcium signalling. Nation Review Molecular Cell Biology, 2000,1:11-21.
    44. Bestwick CS, Brown IR, Bennett MH, Mansfield JW. Localization of hydrogen peroxide accumulation during the hypersensitive reaction of lettuce cells to Pseudomonas syringae pv phaseolicola. Plant Cell, 1997, 9: 209-221.
    45. Bewley JD. Seed germination and dormancy. Plant Cell, 1997, 9: 1055-1066.
    46. Blatt M. Ca~(2+) signaling and control of guard-cell volume in stomatal movements. Current Opinion in Plant Biology, 2000, 3: 196-204.
    47. Bohnert HJ, Jensen KG. Stratigies for engineering water stress tolerance in plants, Trends in Biotechnology, 1996, 14: 89-97.
    48. Bogdan C. Nitric oxide and the regulation of gene expression. Trends in cell Biology, 2001, 11: 66-75.
    49. Bolwell GP. Role of reactive oxygen species and NO in plant defense responses. Current Opinion in Plant Biology, 1999, 2: 287-294.
    50. Boo YC, Jung J. Water deficit- induced oxidative stress and antioxidant defenses in rice plants. Journal of Plant Physiology, 1999, 155: 255-261.
    
    51. Bowler C, Van Montagu M, Inze D. Superoxide dismutases and stress tolerance. Annual Review of Plant Physiology and Plant Molecular Biology, 1992,43: 83-116.
    52. Bowler C, Neuhaus G, Yarnagata H, Chua N-H. Cyclic GMP and calcium mediate nhvtochrome nhoto transduction. Cell, 1994, 77: 73-81.
    53. Bowler C, Fluhr R. The role of calcium and activated oxygens as signals for controlling cross-tolerance. Trends in Plant Science, 2000, 5: 241-246.
    54. Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 1976, 72: 248-254.
    55. Bredt DS, Snyder SH. Isolation of nitric oxide synthetase, a calmodulin-requiring enzyme. Proceedings of the National Academy of Sciences, USA 1990, 87: 682-685.
    56. Bright J, Desikan R, Hancock JT, Weir IS, Neill SJ. ABA-induced NO generation and stomatal closure in Arabidopsis are dependent on H_2O_2 synthesis. The Plant Journal, 2006, 45: 113-122.
    57. Broillet MC. S-nitrosylation of proteins. Cellular and Molecular Life Sciences, 1999, 55: 1036-1042.
    58. Bueno P, Piqueras A, Kurepa J, Savoure A, Verbruggen N, Van Montagu M, Inze D. Expression of antioxidant enzymes in response to abscisic acid and high osmoticum in tobacco BY-2 cell cultures. Plant Science, 1998,138: 27-34.
    59. Bush DS. Calcium regulation in plant cells and its role in signaling. Annual Review of Plant Physiology and Plant Molecular Biology, 1995, 46: 95-122.
    60. Caro A, Puntarulo S. Nitric oxide decreases superoxide anion generation by 6 microsomes from soybean embryonic axes. Physiologia Plantarum, 1998,104: 357-364.
    61. Caro A, Puntarulo S. Nitric oxide generation by soybean embryonic axes possible effect on mitochondrial function. Free Radical Research, 1999, 31: 205-212.
    62. Chen CH, Lehninger AL. Ca~(2+) transport activity in mitochondria from some plant tissues. Arch. Biochem. Biophys. 1973, 157: 183-196.
    63. Chen TH, Hsu CS, Tsai PJ, Ho YF, Lin NS. Heterotrimeric G-protein and signal transduction in the nematode trapping fungus Arthrobotrys dactyloides. Planta, 2001, 212: 858-863.
    64. Cheung WY. Calmodulin plays a pivotal role in cellular regulation. Science, 1980, 207: 19-27.
    65. Cho MV, Lamattina L. Is nitric oxide toxic or protective? Trends in Plant Science, 1999, 4: 299-300.
    66. Chory J. Light modulation of vegetative development. Plant Cell, 1997, 9: 1225-1234.
    67. Clapham DE. Calcium signaling. Cell, 1995, 80: 259-268.
    68. Clarke A, Desikan R, Hurst RD, Hancock JT, Neill SJ. NO way back: nitric oxide and cell death in Arabidopsis thaliana suspension cultures. The Plant Journal, 2000, 24: 667-677.
    69. Clarke A, Neill J, Desikan R. Nitric oxide is a novel component of abscisic acid signaling in stomatal guard cells. Plant Physiology, 2002, 128: 1613-1634.
    70. Clark D, Durner J, Navarre DA, Klessig DF. Nitric oxide inhibition of tobacco catalase and ascorbate peroxidase. Molecular Plant-Microbe Interactions, 2000, 13: 1380-1384.
    71. Coelho SM, Taylor AR, Ryan KP, Sousa-Pinto I, Brown MT, Brownlee C. Spatiotemporal patterning of reactive oxygen production and Ca~(2+) wave propagation in Fucus rhizoid cells. The Plant Cell, 2002, 14: 2369-2381.
    72. Corpas FJ, Barroso JB, Cameras A, Quiros M, Leon AM, Romero-Puertas MC, Esteban FJ, Cooney RV, Harwood PJ, Cuater LJ, Franke AA. Light mediated conversion of itrogen dioxide to nitric oxide by carotenoids. Environment Health Perspect, 1994, 102: 460-462.
    73. Corpas FJ, Barroso JB, Rio LA. Peroxisomes as a source of reavtive oxygen species and nitric oxide signal molecules in plant cells. Trends in Plant Science, 2001, 6: 145-150.
    74. Corpas FJ, Barroso JB, Carreras A, Quiro' s M, Leo' n AM, Romero-Puertas MC, Esteban FJ, Valderrama R, Palma JM, Sandalio LM, Go' mez M, del Ri'o LA. Cellular and subcellular localization of endogenous nitric oxide in young and senescent pea plants. Plant Physiology, 2004, 136:2722-2733.
    75. Corpas FJ, Barroso JB, Carreras A, Valderrama R, Palma JM, Leon AM, Sandalio LM, del Rio LA. Constitutive arginine-dependent nitric oxide synthase activity in different organs of pea seedlings during plant development. Planta, 2006, 224: 246-254.
    76. Correa-Aragunde N, Graziano M, Lamattina L. Nitric oxide plays a central role in determining lateral root development in tomato. Planta, 2004, 218: 900-905.
    77. Correa-Aragunde N, Graziano M, Chevalier C, Lamattina L. Nitric oxide modulates the expression of cell cycle regulatory genes during lateral root formation in tomato. Journal of Experimental Botany, 2006, 57: 581-588.
    78. Crawford NM. Mechanism for nitric oxide synthesis in plants. Journal of Experimental Botany, 2006,57:471-478.
    79. Crawford NM, Galli M, Tischner R, Heimer YM, Okamoto M, Mack A. Plant nitric oxide synthase: back to square one. Trends in Plant Science, 2006, 11: 526-527.
    80. Crawford NM, Guo FQ. New insights into nitric oxide metabolism and regulatory functions. Trends in Plant Science, 2005, 10: 195-200.
    81. Cueto M, Martin R, Bentura ML. Presence of nitric oxide synthase activity in roots and nodules of Lupinus albus. FEBS Letters, 1996, 398: 159-164.
    
    82. Davies WJ, Zhang J. Root signals and the regulation of growth and development of plants in drying soil. Annual Review of Plant Physiology and Plant Molecular Biology, 1991,42: 55-76.
    83. Dean JV, Harper JE. Plant Physiology. 1998, 88: 389-395.
    84. De la Haba P, Agueera E, Benitez L. Modulation of nitrate reductase activity in cucumber (Cucumis sativ us) roots. Plant Science, 2001,161: 231-237.
    85. Delledonne M, Xia Y, Dixon RA, Lamb C. Nitric oxide functions as a signal in plant disease resistance. Nature, 1998, 394: 585-588.
    86. Delledonne M, Zeier J, Marocco A, Lamb C. Signal interactions between nitric oxide and reactive oxygen intermediates in the plant hypersensitive disease resistance response. Proceedings of the National Academy of Sciences, USA 2001,98: 13454-13459.
    87. Delledonne M. NO news is good news for plants. Current Opinion in Plant Biology, 2005, 8: 390-396.
    88. Desikan R, Griffiths R, Hancock JT, Neill SJ. A new role for an old enzyme: nitrate reductase-mediated nitric oxide generation is required for abscisic acid-induced stomatal closure in Arabidopsis thaliana. Proceedings of the National Academy of Sciences, USA 2002, 99: 16314-16318.
    89. Desikan R, Cheung M-K, Bright J, Henson D, Hancock JT, Neill SJ. ABA, hydrogen peroxide and nitric oxide signaling in stomatal guard cells. Journal of Experimental Botany, 2004, 55: 205-212.
    90. Dumer J, Klessig DF. Nitric oxide as a signal in plants. Current Opinion in Plant Biology, 1999, 2: 369-374.
    91. Durner J, Wendehenne D, Klessig DF. Defense gene induction in tobacco by nitric oxide, cyclic GMP and cyclic ADP-ribose. Proceedings of the National Academy of Sciences, USA 1998, 95: 10328-10333.
    92. Durzan DJ, Pedroso MC. Nitric oxide and reactive nitrogen oxide species in plants. Biotechnology Genetic Engineering Reviews, 2002,19:293-337.
    93. Finkelstein RR, Gampala SSL, Rock CD. Abscisic acid signaling in seeds and seedlings. Plant Cell, 2002, 14:515-545.
    94. Foissner I, Wendehenne D, Langebartels C, Durner J. Technical advance: In vivo imaging of an elicitor-induced nitric oxide burst in tobacco. Plant Journal, 2000, 23: 817-824.
    95. Frandsen G, Frieder NU. Novel plant Ca~(2+)-binding protein expressed in response to abscisic acid and osmotic stress. Journal of Biological Chemistry, 1996, 271: 343-345.
    96. Fryer MJ, Andrews JR, Oxborough K, Blowers DA, Baker NR. Relationship between CO_2 assimilation, photosynthetic electron transport and active O_2 metabolism in leaves of maize in the field during periods of low temperature. Plant Physiology, 1998, 16: 571-580.
    97. Garces H, Durzan D, Pedroso MC. Mechanical stress elicits nitric oxide formation and DNA fragmentation in Arabidopsis thaliana. Analytical Biochemistry, 2001, 87: 567-574.
    98. Garcia-Mata C, Lamattina L. Nitric oxide induces stomatal closure and enhances the adaptive plant responses against drought stress. Plant Physiology, 2001, 126: 1196-1204.
    99. Garcia-Mata C, Lamattina L. Nitric oxide and abscisic acid cross-talk in guard cells. Plant Physiology, 2002, 128: 790-792.
    100. Garcia-Mata C, Gay R, Sokolovski S, Hills A, Lamattina L, Blatt MR. Nitric oxide regulates K~+ and Cl~ channels in guard cells through a subset of abscisic acid-evoked signaling pathways. Proceedings of the National Academy of Sciences, USA 2003, 100: 11116-11121.
    101. Giraudat J, Parcy F, Bertauche N, Gosti F, Leung J. Current advances in abscisic acid action and signaling. Plant Molecular Biology, 1994,26: 1557-1577.
    102. Gisnnopolitis CN, Ries SK. Superoxide dismutase I. occurrence in higher plants. Plant Physiology, 1977,59:309-314.
    103. Glaab J, Kaiser WM. Increased nitrate reductase activity in leaf tissue after application of the fungicide Kresoxim2methyl. Planta, 1999, 207: 442-448.
    104. Godber BLJ, Doel JJ, Sapkota GP, Blake DR, Stevens CR, Eisenthal R, Harrison R. Reduction of nitric oxide catalysed by xanthine oxide reductase. Journal of Biological Chemistry, 2000, 275: 7757-7763.
    105. Gong M, Li YJ, Chen SZ. Abscisic acid-induced thermo tolerance in maize seedlings is mediated by calcium and associated with antioxidant systems. Journal of Plant Physiology, 1998, 153: 488-496.
    106. Gould KS, Lamotte O, Klinguer A, Pugin A, Wendehenne D. Nitric oxide production in tobacco leaf cells: a generalized stress response? Plant Cell and Environment, 2003, 26: 1851-1862.
    107. Gouvea CMCP, Souza JF, Magalhaes CAN, Martins IS. NO-releasing substances that induce growth elongation in maize root segments. Plant Growth Regulation, 1997, 21: 183-187.
    108. Grant JJ, Yun BW, Loake GJ. Oxidative burst and cognate redox signaling reported by luciferase imaging: identification of a signal network that functions independently of ethylene, SA and Me-JA but is dependent on MAPKK activity. The Plant Journal, 2000, 24: 569-582.
    109. Grant JJ, Loake GJ. Role of reactive oxygen intermediates and cognate redox signaling in disease resistance. Plant Physiology, 2000, 124: 21-29.
    110. Grun S, Lindermayr C, Sell S, Durner J. Nitric oxide and gene regulation in plants. Journal of Experimental Botany, 2006, 57: 507-516.
    
    111. Guan L, Scandalios JG. Two structurally similar maize cytosolic superoxide dismutase genes, Sod4 and Sod4A, respond differentially to abscisic acid and high osmoticum. Plant Physiology, 1998a, 117:217-224.
    112. Guan L, Scandalios JG. Effects of the plant growth regulator abscisic acid and high osmoticum on the developmental expression of the maize catalase genes. Physiologia Plantarum, 1998b, 104: 413-422.
    113. Guan L, Zhao J, Scandalios JG Cis-elements and traps-factors that regulate expression of the maize Catl antioxidant gene in response to ABA and osmotic stress: H_2O_2 is the likely intermediary signaling molecule for the response. The Plant Journal, 2000, 22: 87-95.
    114. Guo FQ, Crawford NM. Arabidopsis nitric oxide synthase 1 is targeted to mitochondria and protects against oxidative damage and dark-induced senescence. Plant Cell, 2005,17: 3436-3450.
    115. Han X, Kobzik L, Severson D, Shimoni Y. Characteristics of nitric oxide-mediated cholinergic modulation of calcium current in rabbit sino-atria node. J Physiol-London.1998,509: 741-754.
    116. Hausladen A, Stamler J. Nitric oxide in plant immunity. Proceedings of the National Academy of Sciences, USA 1998, 95: 10345-10347.
    117. Harrison R. Structure and function of xanthine oxidoreductase: Where are we now? Free Radical Biology Medicine, 2002, 33: 774-791.
    118. Hevel JM, Marietta MA. Nitric oxide synthase assays. Methods in Enzymology, 1994, 233: 250-258.
    119. He JM, Xu H, She XP, Song XC, Zhao WM. The role and interrelationship of hydrogen peroxide and nitric oxide in the UV B-induced stomatal closure in broad bean. Functional Plant Biology, 2005,32: 237-247.
    120. Henry YA, Dacastel B, Guissani A. Basic chemistry of nitric oxide and related nitrogen oxides. In Nitric Oxide Research from Chemistry to Biology, landes Co. Biomed. 1997 pp. 15-46.
    121. Henry YA, Guissani A, Dacastel B, Austin TX, Lamb C, Dison RA. The oxidative burst in plant desease resistance. Annual Review of Plant Physiology and Plant Molecular Biology, 1997, 48: 251-275.
    122. Hu X, Jiang M, Zhang A, Lu J. Abscisic acid-induced apoplastic H_2O_2 accumulation up-regulates the activities of chloroplastic and cytosolic antioxidant enzymes in maize leaves. Planta, 2005, 223: 57-68.
    123. Hu X, Jiang M, Zhang J, Zhang A. Abscisic acid is a key inducer of H_2O_2 production in leaves of maize plants expose to water stress. Plant cell physiology, 2006, 47: 1484-1495.
    124. Hu X, Jiang M, Zhang J, Zhang A, Lin F, Tan M. Calcium/calmodulin is required for abscisic acid-induced antioxidant defense and functions both upstream and downstream of H_2O_2 production in leaves of maize plants. New Phytologist, 2007, 173: 27-38.
    125. Huang S, Kerschbaum HH, Engel E, Hermann A. Biochemical characterization and histochemical localization of nitric oxide synthase in the nervous system of the snail, Helix pomatia. Journal of Neurochemistry, 1997, 69: 2516.
    126. Huang, J.S., Knopp, J.A., Involvement of nitric oxide in Ralstonia solanacearum induced hypersensitive reaction in tobacco. In: Prior, P, Elphinstone, J., ed. Bacterial Wilt Disease: Molecular and Ecological A spects. Berlin: NRA and Springer Editions. 1998. pp.218-224.
    127. Huang J, Sommer EM, Kim-Shapiro DB, King SB. Horseradish peroxidase catalyzed nitric oxide formation from hydroxyurea. Journal of American Chemistry Society, 2002b, 124: 3473-3480.
    128. Huang X, von Rad U, Durner J. Nitric oxide induces transcriptional activation of the nitric oxide-tolerant alternative oxidase in Arabidopsis suspension cells. Planta, 2002, 215: 914-923.
    129. Huang X, Stettmaier K, Michel C, Hutzler P, Mueller MJ, Dumer J. Nitric oxide is induced by wounding and influences jasmonic acid signaling in Arabidopsis thaliana. Planta, 2004, 218: 938-946.
    130. Huber SC, Bachmann M, Huber JL. Trends in Plant Science, 1996, 1: 432-438.
    131. Hung KT, Kao CH. Nitric oxide counteracts the senescence of rice leaves induced by abscisic acid. Journal of Plant Physiology, 2003, 160: 871-879.
    132. Hsu YT, Kao CH. Cadmium toxicity is reduced by nitric oxide in rice leaves. Plant Growth Regulation, 2004, 42: 227-238.
    133. Ingram J, Bartel D. The molecular basis of dehydration tolerance in plants. Annual Review of Plant Physiology and Plant Molecular Biology, 1996,47: 377-403.
    134. Iturbe-Ormaetxe I, Escudero PR, Arrese-Igor C, Becana M. Oxidative damage in pea plants exposed to water deficit or paraquat. Plant Physiology, 1998, 116: 173-181.
    135. Jaffrey SR, Snyder SH. PIN: an associated protein inhibitor of neuronal nitric oxide synthase. Science, 1996, 274: 774-777.
    136. Janistyn B. Gas chromatographic mass spectrometric identification and quantification of cyclic guanosine 3',5'-cyclic monophosphate in maize seedlings. Planta, 1983, 159: 382-288.
    137. Jay-Gcrin J, Fcrradini C. Are there protectivc enzymatic pathways to regulate high local nitric oxide (NO) concentrations in cells under stress conditions. Biochimie, 2000, 82: 161-166.
    138. Jiang M, Zhang J. Effect of abscisic acid on active oxygen species, antioxidative defence system and oxidative damage in leaves of maize seedlings. Plant Cell Physiology, 2001, 42: 1265-1273.
    139. Jiang M, Zhang J. Involvement of plasma membrane NADPH oxidase in abscisic acid- and water stress-induced antioxidant defense in leaves of maize seedlings. Planta, 2002a, 215: 1022-1030.
    140. Jiang M, Zhang J. Water stress-induced abscisic acid accumulation triggers the increased generation of reactive oxygen species and up-regulates the activities of antioxidant enzymes in maize leaves. Journal of Experimental Botany, 2002b, 53: 2401-2410.
    141. Jiang M, Zhang J. Role of abscisic acid in water stress-induced antioxidant defense in leaves of maize seedlings. Free Radical Research, 2002c, 36: 1001-1015.
    142. Jiang M, Zhang J. Cross-talk between calcium and reactive oxygen species originated from NADPH oxidase in abscisic acid-induced antioxidant defense in leaves of maize seedlings. Plant Cell and Environment, 2003,26: 929-939.
    143. Jiang M, Zhang J. Abscisic acid and antioxidant defense in plant cells. Acta Botanica Sinica, 2004, 46: 1-9.
    144. Jocob T, Ritchie S, Assmann SM, Gilroy. Abscisic acid signal transduction in guard cells is mediated by phospholopase D activity. Proceedings of the National Academy of Sciences, USA 1999, 96: 12192-12197.
    145. Journet EP, Douce R. Enzymatic capacities of purified cauliflower bud plastids for lipid synthesis and carbohydrate metabolism. Plant Physiology, 1985, 79: 458-467.
    146. Kaminaka H, Morita S, Tokumoto M, Masumura T, Tanaka K. Differential gene expression of rice superoxide dismutase isoforms to oxidative and environmental stresses. Free Radical Research, 1999,31:5219-5225.
    147. Kaiser WM, Weiner H, Huber SC. Physiology Plant, 1999,105:385-390.
    148. Kaiser WM, Huber SC. Post-translational regulation of nitrate reductase: mechanism physiological relevance and environmental triggers. Journal of Experimental Botany, 2001, 52: 1981-1989.
    149. Kaiser WM, Weiner H, Kandlbimder A, Tsai CB, Rockel P, Sonoda M, Planchet E. Modulation of nitrate reductase: some new insights, an unusual case and a potentially important side reaction. Journal of Experimental Botany, 2002, 53: 875-882.
    150. Keeler T, Damude HGs Werner D, Doerner P, Dixon RA, Lamb C. A plant homolog of the neutrophil NADPH oxidase gp91~(phox) subunit gene encodes a plasm membrane protein with Ca~(2+) binding motifs. Plant Cell, 1998,10: 255-266.
    151. Kelm M, Dahmann R, Wink D. The nitric oxide/superoxide assay. Insights into the biological chemistry of the NO/O_2~- interaction. Journal of Biological Chemistry, 1997, 272: 9922-9932.
    152. Klaus A, Heribert H. Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Annual Review Plant Biology, 2002, 55: 373-399.
    
    153. Klessig DF, Dumer J, Noad R, Navarre DA, Wendehenne D, Kumar D, Zhou JM, Shah J, Zhang SQ, Kachroo P, Trifa Y, Pontier D, Lam E, Silva H. Nitric oxide and salicylic acid signaling in plant defense. Proceedings of the National Academy of Sciences, USA 2000, 97: 8849-8855.
    154. Knight H, Trewavas AJ, Knight MR. Calcium signaling in Arabidopsis thalians responding to drought and salintiy. Plant Journal, 1997, 12: 1067-1078.
    155. Knight H, Knight MR. Abiotic stress signaling pathways: specificity and cross-talk. Trends in Plant Science, 2001, 6: 262-267.
    156. Kopyra M, Gwozdz EA. Nitric oxide stimulates seed germination and counteracts the inhibitory effect of heavy metals and salinity on root growth of Lupinus luteus. Plant Physiology Biochemistry, 2003, 41: 1011-1017.
    157. Kumar D, Klessig DF. Differential induction of tobacco MAP kinases by the defense signals nitric oxide, salicylic acid, ethylene, and jasmonic acid. Molecular Plant-Microbe Interactions, 2000, 13: 347-351.
    158. Lamattina L, Beligni MV, Garcia-Mata C, Laxalt AM. Method of enhancing the metabolic function and the growing conditions of plants and seeds. 2001. US Patent. US 6242384 B1.
    159. Lamattina L, Garcia-Mata C, Graziano M, Pagnussat G. Nitric oxide: The versatility of an extensive signal molecule. Annual Review Plant Biology, 2003,54: 109-136.
    160. Lamotte O, Gould K, Lecourieux D, Sequeira-Legrand A, Lebrun-Garcia A, Durner J, Pugin A, Wendehenne D. Analysis of nitric oxide signaling functions in tobacco cells challenged by the elicitor cryptogein. Plant Physiology, 2004, 135: 516-529.
    161. Lamotte O, Courtois C, Barnavon L, Pugin A, Wendehenne D. Nitric oxide in plants: the biosynthesis and cell signaling properties of a fascinating molecule. Planta, 2005,221: 1-4.
    162. Lamotte O, Courtois C, Dobrowolska G, Besson A, Pugin A, Wendehenne D. Mechanisms of nitric-oxide-induced increase of free cytosolic Ca~(2+) concentration in Nicotiana plumbaginifolia cells. Free Radical Biology and Medicine, 2006, 40: 1369-1376.
    163. Larkindale J, Knight MR. Protection against heat stress induced oxidative damage in Arabidopsis involves calcium, abscisic acid, ethylene and salicylic acid. Plant Physiology, 2002, 128: 682-695.
    164. Laspina NV, Groppa MD, Tomaro ML, Benavides MR Nitric oxide protects sunflower leaches against Cd-induced oxidative stress. Plant Science, 2005, 169: 323-330.
    165. Leckie CP, McAinsh MR, Montgomery L. Second message in guard cells. Journal of Experimental Botany, 1998, 49: 339-349.
    166. Lecourieux D, Ranjeva R, Pugin A. Calcium in plant defence-signaling pathways. New Phytologist, 2006,171: 249-269.
    
    167. Leshem YY. Nitric oxide in biological systems. Plant Growth Regulation, 1996, 18: 155-159.
    
    168. Leshem YY, Haramaty E. Plant aging: the emission of NO and ethylene and the effect of NO-releasing compounds on growth of pea (Pisum sativum) foliage. Plant Physiology, 1996, 148: 258-263.
    
    169. Leshem YY, Wills RBH, Veng-Va KV. Evidence for the function of the free redical gas-nitric oxide (NO) as an endogenous maturation and senescence regulating factor in higher plants. Plant Physiology Biochemistry, 1998, 36: 825-833.
    
    170. Leshem YY, Pinchasov Y. Non-invasive photoacoustic spectroscopic determination of relative endogenous nitric oxide and ethylene content stoichiometry during the ripening of straw berries Fragaria anan nasa (Duch.) and avocados Persea Americana (Mill.). Journal of Experimental Botany, 2000, 51: 1471-1473.
    
    171. Leshem YY. Nitric Oxide in Plants. Kluwer Academic Publishers, London, UK. 2001.
    
    172. Leung J, Giraudat J. Abscisic acid signal transduction. Annual Review of Plant Physiology and Plant Molecular Biology, 1998,49: 199-222.
    
    173. Levine A, Tenhaken R, Dixon R, Lamb C. H_2O_2 from the oxidative burst orchestrates the plant hypersensitive disease resistance response. Cell, 1994, 79: 583-593.
    
    174. Liu HT, Li B, Shang ZL, Li XZ, Mu RL, Sun DY, Zhou RG. Calmodulin is involved in heat shock signal transduction in wheat. Plant Physiology, 2003, 132: 1186-1195.
    
    175. Liu X, Wang YQ, Jia WS, Lou CH, Zhang SQ. Localization of NOS-like protein in guard cells of Viciafaba L. and its possible function. Chinese Science Bulletin, 2007, 52: 84-90.
    
    176. Logan DC. Knight MR. Mitochondrial and cytosolic calcium dynamics are differentially regulated in plants. Plant Physiology, 2003, 133:21-24.
    
    177. Lum HK, Butt YK, Lo SC. Hydrogen peroxide induces a rapid production of nitric oxide in mung bean (Phaseolus aureus). Nitric Oxide, 2002, 6: 205-213.
    
    178. MacRobbie EAC .Evidence for a role for protein tyrosine phosphatase in the control of ion release from the guard cell vacuole in stomatal closure. Proceedings of the National Academy of Sciences, USA 2002,99: 11963-11968.
    
    179. Mackerness SA-H, John CF, Jordan B, Thomas B. Early signaling components in ultraviolet-B responses: distinct roles for different reactive oxygen species and nitric oxide. FEBS Letters, 2001, 489: 237-242.
    
    180. MacKintosh C, Meek, SE, Regulation of plant NR activity by reversible phosphorylation proteins and proteolysis. Cellular and Molecular Life Science, 2001, 58: 205-214.
    181. Magalhaes JR, Monte DC, Durzan D. Nitric oxide and ethylene emission in Arabidopsis thaliana. Plant Physiology Molecular Biology, 2000, 6: 117-127.
    182. Malolepsza U, Rozalska S. Nitric oxide and hydrogen peroxide in tomato resistance: Nitric oxide modulates hydrogen peroxide level ino-hydroxyethylorutin-induced resistance to Botrytis cinerea tomato. Plant Physiology Biochemistry, 2005,43: 623-635.
    183. Mata CG, Lamattina L. Nitric oxide induces stomatal closure and enhances the adaptive plant responses against drought stress. Plant Physiology, 2001,126: 1196-1204.
    184. Mayer B, Hemmens B. Biosynthesis and action of nitric oxide in mammalian cells. Trends in Biochemical Science, 1997, 22: 477-481.
    185. McAinsh MR, Clayton H, Mansfield TA. Changes in stomatal behavior and guard cell cytosolic free calcium in response to oxidative stress. Plant Physiology, 1996, 111: 1031-1042.
    186. McAinsh MR, Brownlee C, Hetherington AM. Calcium ions as second massagers in guard cell signal transductio. Physiology Plants, 1997, 100: 16-29.
    187. Melkonian J, Yu LX, Setter TL. Chilling responses of maize (Zea mays L.) seedlings: root hydraulic conductance, abscisic acid, and stomatal conductance. Journal of Experimental Botany, 2004,55: 1751-1760.
    188. Milborrow BV. The pathway of biosynthesis of abscisic acid in vascular plants: a review of the present state of knowledge of ABA biosynthesis. Journal of Experimental Botany, 2001, 52: 1145-1164.
    189. Millar TM, Stevens CR, Benjamin N, Eisenthal R, Harrison R, Blake DR. Xanthine oxide reductase catslyses the reduction of nitrate and nitrite to nitric oxide under hypoxic conditions. FEBS Letters, 1998, 427: 225-228.
    190. Mittler R. Oxidative stress, antioxidants and stress tolerance. Trends in Plant Science, 2002, 7: 405-410.
    191. Mittler R, Vanderauwera S, Gollery M, Van Breusegem F. Reactive oxygen gene network of plants. Trends in Plant Science, 2004, 9: 490-498.
    192. Mittova V, Volokita M, Guy M. Activities of SOD and the ascorbate-glutathione cycle enzymes in subcellular compartments in leaves and roots of the cultivated tomato and its wild salt-tolerant relative Lycooersicon pennellii. Physiology Plant, 2000, 110: 42-51.
    193. Munne-Bosch S, Alegre L. The function of tocopherols and tocotrienols in plants. Critical Reviews in Plant Science, 2003, 21: 31-57.
    194. Munne-Bosch S, Alegre L. Drought-induced changes in the redox state of α-tocopherol, ascorbate, and the diterpene carnosic acid in chloroplasts of Labiatae species differing in carnosic acid contents. Plant Physiology, 2003, 131: 1816-1825.
    
    195. Murata Y, Pei ZM, Mori IC, Schroeder JI. Abscisic acid activation of plasma membrane Ca~(2+)channels in guard cells requires cytosolic NAD(P)H and is differentially disrupted upstream and downstream of reactive oxygen species production in abil-1 and abi2-1 protein phosphatase 2C mutants. The Plant Cell, 2001, 13:2513-2523.
    
    196. Murgia I, Delledonne M, Soave C. Nitric oxide mediates iron-induced ferritin accumulation in Arabidopsis. The Plant Journal, 2002,30: 521-528.
    
    197. Murgia I, de Pinto MC, Delledonne M, Soave C, De Gara L. Comparative effects of various nitric oxide donors on ferritin regulation, programmed cell death, and cell redox state in plant cells. Journal of Plant Physiology, 2004a, 161: 777-783.
    198. Murgia I, Tarantino D, Vannini C, Bracale M, Carravieri S, Soave C. Arabidopsis thaliana plants over expressing thylakoidal ascorbate peroxidase show increased resistance to paraquat-induced photooxidative stress and to nitric oxide-induced cell death. The Plant Journal, 2004b, 38: 940-953.
    199. Murphy ME, Noack E. Nitric oxide assay using haemoglobin method. Methods in Enzymology, 1994, 233: 241-250.
    200. Mohr H, Neininger A, Seith B. Control of nitrate reductase and nitrite reductase gene expression by light, nitrate and a plastidic factor. Botanica Acta, 1992, 105: 81-89.
    201. Nakano Y, Asada K. Hydrogen peroxide is scavenged by Ascorbate-specific peroxidase in Spinach Chloroplasts. Plant Cell Physiology, 1981, 22: 867-880.
    202. Neill SJ, Desikan R, Clarke A, Hancock JT. Nitric oxide is a novel component of abscisic acid signalling in stomatal guard cells. Plant Physiology, 2002,128: 13-16.
    203. Neill SJ, Desikan R, Hancock JT. Hydrogen peroxide signaling. Current Opinion in Plant Biology, 2002, 5: 388-395.
    204. Neill SJ, Desikan R, Clarke A, Hurst RD, Hancock JT. Hydrogen peroxide and nitric oxide as signaling molecules in plants. Journal of Experimental Botany, 2002b, 53: 1237-1242.
    205. Neill SJ, Desikan R, Hancock JT. Nitric oxide signaling in plants. New Phytologist, 2003, 159: 11-35.
    206. Neill SJ. Interactions between abscisic acid, hydrogen peroxide and nitric oxide mediate survival response during water stress. New Phytologist, 2007, 175: 4-6.
    207. Newton RP, Kingston EE, Evans DE. Occurrence of guanosine 3',5'-cylic monophophate (cGMP) and associated enzyme systems in phaeolis vulgaris. Phytochemistry, 1984, 23: 1367-1372.
    208. Ninnemann H, Maier J. Indications for the occurrence of nitric oxide synthases in fungi and plants and the involvement in photoconidiation of Neurospora crassa. Photochemistry and Photobiology, 1996, 64: 393-398.
    209. Norton BA, Hewitt EJ. The role of tungsten in the inhibition of nitrate reductase activity in spinach (Spinacea oleracea L.) leaves. Biochemical Biophysical Research Communications, 1971a, 44: 702-710.
    210. Okaiaki Y, Tazawa M. Calcium ion and turner regulation in plant cells. Journal of Membrane Biology,1990,114:189-194.
    211. Orzaez D, Granell A. DNA fragmentation is regulated by ethylene during carpel senescence in Pisum sativum. Plant Journal, 1997, 11:137-144.
    212. Orozco-Ca' rdenas ML, Ryan C. Hydrogen peroxide is generated systemically in plant leaves by wounding and system in via the octadecanoid pathway. Proceedings of the National Academy of Sciences, USA 1999, 96: 6553-6557.
    213. Orozco-Cardenas ML, Ryan CA. Nitric oxide negatively modulates wound signaling in tomato plants. Plant Physiology, 2002, 130: 487-493.
    214. Pagnussat G C, Simontacchi M, Puntarulo S, Lamattina L. Nitric oxide is required for root organogenesis. Plant Physiology, 2002, 129: 954-956.
    215. Pagnussat GC, Lanteri ML, Lamattina L. Nitric oxide and cyclic GMP are messengers in the in dole acetic acid induced adventitious rooting process. Plant Physiology, 2003, 132: 1241-1248.
    216. Pagnussat GC, Lanteri ML, Lombardo MC, Lamattina L. Nitric oxide mediates the indole acetic acid induction activation of a mitogen-activated protein kinase cascade involved in adventitious root development. Plant Physiology, 2004, 135: 279-286.
    217. Pedroso VIC, Magalhaes JR, Durzan D, Nitric oxide induces cell death in Taxus cells. Plant Science, 2000, 157: 173-180.
    218. Pedroso MC, Magalhaes JR, Durzan D. A nitric oxide burst precedes apoptosis in angiosperm and gymnosperm callus cells and foliar tissues. Journal of Experimental Botany, 2000, 51: 1027-1036.
    219. Pei ZM, Murata Y, Benning G, Thomine S, Klusener B, Allen GJ, Grill E, Schroeder JI. Ca~(2+) channels activated by hydrogen peroxide mediate abscisic acid signaling in guard cells. Nature, 2000,406:731-734.
    220. de Pinto MC, Tommasi E. de Gara L. Changes in the antioxidant systems as part of the signalling pathway responsible for the programmed cell death activated by nitric oxide and reactive oxygen species in Bright-Yellow 2 cells. Plant Physiology, 2002, 130: 698-708.
    221. Polverari A, Molesini B, Pezzotti M, Buonaurio R, Marte M, Delledonne M. Nitric oxide-mediated transcriptional changes in Arabidopsis thaliana. Molecular Plant-Microbe Interactions, 2003,16: 1094-1105.
    
    222. Poot M, Zhang YZ, Kramer JA, Wells KS, Jones LJ, Hanzel DK, Lugade AG, Singer VL, Haugland RP. Analysis of mitochondrial morphology and function with novel fixable fluorescent stains. Journal Histochemical Cytochemistry, 1996,44: 1363-1372.
    223. Poulos TL, Raman CS, Li H. NO news is good news. Structure 1998, 6: 255-258.
    224. Prasad TK, Anderson MD, Martin BA, Steward CR. Evidence for chilling-induced oxidative stress in maize seedlings and a regulatory role for hydrogen peroxide. The Plant Cell, 1994, 6: 65-74.
    225. Prasad TK, Anderson MD, Stewart CR. Acclimation, hydrogen peroxide, and abscisic acid protect mitochondria against irreversible chilling injury in maize seedlings. Plant Physiology, 1994a, 105: 619-627.
    226. Quijano C, Romero N, Radi R. Tyrosine nitration by superoxide and nitric oxide fluxes in biological systems: Modeling the impact of superoxide dismutase and nitric oxide diffusion. Free Radical Biology Medicine, 2005, 39: 728-741.
    227. del Rio LA, Corpas FJ, Barroso JB. Nitric oxide and nitric oxide synthase activity in plants. Phytochemistry, 2004, 65: 783-792.
    228. Ribeiro EA, Cunha FQ, Tamashiro WM, Martins IS. Growth phase dependent subcellular localization of nitric oxide synthase in maize cells. FEBS Letters, 1999, 445: 283-286.
    229. Robert J, Hudson M, Francois M. Tron transport in marine phytoplankton: Kinetics of cellular and medium coordination reaction. Limnol. Oceanogr, 1990, 35: 1002-1020.
    230. Roberts DM, Harmon AC. Calcium-modulated proteins: targets of intracellular calcium signals in higher plants. Annual Review in Plant Physiology and Plant Molecular Biology, 1992, 43: 375-414.
    231. Rock C. Pathways to abscisic acid-regulated gene expression. New Phytologist, 2000, 148: 357-396.
    232. Rockel P, Strube F, Rockel A, Wildt J, Kaiser WM. Regulation of nitric oxide (NO) production by plant nitrate reductase in vivo and in vitro. Journal of Experimental Botany, 2002, 53: 103-110.
    233. Rohde A, Kurup S, Holdsworth M. A913 emerges from the seed. Trends in Plant Science, 2000b, 5:418-419.
    234. Ruan HH, Shen WB, Ye MB. Protective effects of nitric oxide on salt stress-induced oxidative damage to wheat leaves. Chinese Sciense Bulletin, 2002, 7: 677-681.
    235. Ruan HH, Shen WB, Xu LL. Nitric oxide is involved in the abscisic acid induced proline accumulation in wheat seedling leaves under salt stress. Acta Botanica Sinica, 2005, 32: 345-350.
    236. Rudd JJ, Franklin-Tong. Calcium signaling in plants. Cellular and Molecular Life Sciences, 1999, 55: 214-232.
    237. Sanders D, Brownlee C, Harper JF. Communicating with calcium. Plant Cell, 1999, 11: 691-706.
    238. Sanders D, Pelloux J, Brownlee C, Harper JF. Calcium at the crossroads of signaling. The Plant Cell, 2002, 14:401-417.
    239. Sagi M, Fluhr R. Superoxide production by plant homologues of the gp91~(Pnox) NADPH oxidase-Modulation of activity by calcium and tobacco mosaic virus infection. Plant Physiology, 2001, 126:1281-1290.
    240. Sakihama Y, Nakamura S, Yamasaki H. Nitric oxide production mediated by nitrate reductase in the green alga Chlamydomonas reinhardtii: an alternative NO production pathway in photosynthesis organisms. Plant Cell Physiology, 2002, 43: 290-297.
    241. Samuel MA, Miles GP, Ellis BE. Ozone treatment rapidly activates MAP kinase signaling in plants. Plant Journal, 2000, 22: 367-376.
    242. Sauter M, Seagaull Kende H. Internodal elongation and orientation of cellulose microfibris in deep water rice. Planta, 1993, 190: 354-362.
    243. Sauter A, Davies WJ, Hartung W. The long-distance abscisic acid signal in the droughted plant: the fate of the hormone on its way from root to shoot. Journal of Experimental Botany, 2001, 52: 1991-1997.
    244. Schaedle M, Bassham JA. Chloroplast glutathione reductase. Plant Physiology, 1977, 59: 1011-1012.
    245. Schmidt HHWH, Walter U. NO at work. Cell. 1994, 78: 919-925.
    246. Schroeder JI, Kwak JM, Allen GJ. Guard cell abscisic acid signaling and engineering drought hardiness in plants. Nature, 2001,410: 327-330.
    247. Shang ZL, Ma LG, Zhang HL, He RR, Wang XC, Cui SJ, Sun DY. Ca~(2+) influx into lily pollen grains through a hyperpolarization-activated Ca~(2+)-permeable channel which can be regulated by extracellular CaM. Plant Cell Physiology, 2005, 46: 598-608.
    248. Sheen J. Signal transduction in maize and Arabidopsis mesophyll protoplasts. Plant Physiology, 2001, 127: 1466-1475.
    249. Shi W, Jia W, Liu X, Zhang S. Protein tyrosine phosphatases involved in signaling of the ABA-induced H_2O_2 generation in guard cells of Ycia faba L. Chinese Science Bulletin, 2004, 49: 1841-1846.
    250. Shi S, Wang G, Wang Y. Protective effect of nitric oxide against oxidative stress under ultraviolet-B radiation. Nitric Oxide, 2005, 13: 1-9.
    251. Shigeoka S, Ishikawa T, Miyagawa Y, Takeda T, Yabuta Y, Yoshimura K. Regulation and function of ascorbate peroxidase isoenzymes. Journal of Experimental Botany, 2002, 53: 1305-1319.
    252. Shinozaki K, Yamaguchi-Shinozaki K. Gene expression and signal transduction in water-stress response. Plant Physiology, 1997,115: 327-334.
    253. Shinozaki K, Yamaguchi-Shinozaki K. Molecular responses to dehydration and low temperature: differences and cross-talk between two stress signaling pathways. Current Opinion in Plant Biology, 2000,3: 217-223.
    254. Skipper L, Campbell WH, Mertens J, Lowe D. Pre-steady-state kinetic analysis of recombinant Arabidopsis NADH: nitrate reductase. Journal of Biological Chemistry, 2001, 276: 26995-27002.
    255. Sokolovski S, Hills A, Gay R, Garcia-Mata C, Lamattina L, Blatt MR. Protein phosphorylation is a prerequisite for intracellular Ca~(2+) release and ion channel control by nitric oxide and abscisic acid in guard cells. Plant Journal, 2005,43: 520-529.
    256. Solomonson LP, Barber JM. Structure-function relationships of algal nitrate reductase. In Molecular and Genetic Aspects of Nitrate Assimilation. EDITED BY Wary JL and Kinghom JR. Oxford Science Publications, Oxford.1989, 88-100.
    257. Smirnoff N. The role of active oxygen in the response of plants to water deficit and desiccation. New Phytologist, 1993, 125: 27-58.
    258. Stamler JS, Singel DJ, Loscalzo J. Biochemistry of nitric oxide and it's redox-activated forms. Science, 1992,258: 1898-1902.
    259. Stamler JS. Redox signaling: nitrosylation and related target interactions of nitric oxide. Cell, 1994,78:931-936.
    260. Staxen I, Pical C, Montgomery LT, Gray JE, Hetherington AM, Mcainsh MR. Abscisic acid induces oscillations in guard cell cytosolic free calcium that involve phosphoinositide-specific phosphlipase C. Proceedings of the National Academy of Sciences, USA 1999, 96: 1779-1784.
    261. Steven N, Radhika D, John H. Hydrogen peroxide signaling. Current Opinion in Plant Biology, 2002, 5: 388-395.
    262. Stitt M. Plant resistance to environmental stress. Current Opinion in Plant Biology, 1999, 2: 17-186.
    263. Stohr C, Strobe F, Marx G, Ullrich WR, Rocket P. A plasma membrane-bound enzyme of tobacco roots catalyses the formation of nitric oxide from nitrite. Planta, 2001, 212: 835-841.
    264. Sun DY, Bian YQ, Zhao BH, Zhao LY, Yu XM, Duan SJ. The effects of extracellular calmodulin on cell wall regeneration of protoplasts and cell division. Plant Cell Physiology, 1995, 36: 133-138.
    265. Szacilowski K, Chmura A, Stasicka Z. Interplay between iron complexes, nitric oxide and sulfur ligands: Structure, (photo) reactivity and biological importance. Coordination Chemistry Reviews, 2005,249: 2408-2436.
    266. Tatoyrn A, Gialivi C. Purification and characterisation of a nitric oxide from rat liver mitochondria. Journal of Biological Chemistry, 1998, 273: 11044-11048.
    267. Taylor IB, Burbidge A, Thompson AJ. Control of abscisic acid synthesis. Journal of Experimental Botany, 2000, 51:1563-1574.
    268. Thomashow MR. Plant cold acclimation: Freezing tolerance genes and regulatory mechanisms. Annual Review of Plant Physiology and Plant Molecular Biology, 1999, 50: 571-599.
    269. Torres MA, Onuchi H, Hamada S. Six Arabidopsis thaliana homologues of the human respiratory burst oxidase (gp91~(phox)). Plant Journal, 1998,14: 365-370.
    270. Uchida A, Jagendorf AT, Hibino T, Takabe T, Takabe T. Effects of hydrogen peroxide and nitric oxide on both salt and heat stress tolerance in rice. Plant Science, 2002, 163: 515-523.
    271.Vandelle E, Poinssot B, Wendehenne D, Bentejac M, Pugin A. Integrated signaling network involving calcium, nitric oxide, and active oxygen species but not mitogen-activated protein kinases in BcPG1-elicited grapevine defenses. Molecular Plant-Microbe Interactions, 2006, 19: 429-440.
    272. Vranova' E, Inze' D, Van Breusegem F. Signal transduction during oxidative stress. Journal of Experimental Botany. 2002, 53: 1227-1236.
    273. Vranova' E, Atichartpongkul S, Villarroel R, Van Montagu M, Inze D, Van Camp W. Comprehensive analysis of gene expression in Nicotiana tabacum leaves acclimated to oxidative stress. Proceedings of the National Academy of Sciences, USA 2002, 99: 10870-10875.
    274. Wang JW, Wu JY. Involvement of nitric oxide in elicitor-induced defense responses and secondary metabolism of Taxus Chinensis cells. Nitric Oxide, 2004, 11: 298-306.
    275. Wang SH, Yang ZM, Lu B, Li SQ, Lu YP. Copper-induced stress and antioxidative responses in roots of Brassica juncea L. Acta Botanica Sinica, 2004, 45: 203-212.
    276. Wendehenne D, Pugin A, Klessig D, Durner J. Nitric oxide: comparative synthesis and signaling in animal and plant cells. Trends in Plant Science, 2001, 6: 177-183.
    277. Wendehenne D, Durner J, Klessig DF. Nitric oxide: A new player in plant signalling and defense responses. Current Opinion in Plant Biology, 2004, 7: 449-455.
    278. Wildt J, Kley D, Rockel A, Rockel P, Segschneider HJ. Emission of NO from several higher plant species. J Geophys Res D, 1997, 102: 5919-5927.
    279. Wikinson JQ, Crawford NM. Identification and characterzation of a chlorate-resitant mutant of Arabidopsis thaliana with mutations in both nitrate reductase structural genes NIA1 and NIA2. Molecular General Genetics, 1993,239: 289-297.
    280. Wojtaszek P. Nitric oxide in plants to NO or not to NO. Phytochemistry, 2000, 54: 1-4.
    281. Wu W, Assmann SM. Photosynthesis by guard cell chloroplasts of Viciafaba L: Effects of factors associated with stomatal movements. Plant Cell Physiology, 1997, 34: 1015-1022.
    282. Xiong L, Ishitani M, Lee H, Zhu JK. The Arabidopsis LOSS/ABA3 locus encodes a molybdenum cofactor sulfurase and modulates cold and osmotic stress responsive gene expression. The Plant Cell, 2001, 13: 2063-2083.
    283. Xiong L, Zhu JK. Molecular and genetic aspects of plant responses to osmotic stress. Plant Cell and Environment, 2002, 25: 131-139.
    284. Xiong L, Lee H, Ishitani M, Zhu JK. Regulation of osmotic stress-responsive gene expression by the ABA locus in Arabidopsis. Journal of Biological Chemistry, 2002, 277: 8588-8569.
    285. Xiong TC, Mazars C, Ranjeva R, Autonomous regulation of free Ca~(2+) concentrations in isolated plant cell nuclei: a mathematical analysis. Cell Calcium, 2006, 39: 293-303.
    286. Yamasaki H, Sakihama Y, Takahashi S. An alternative new feature of an old enzyme pathway for nitric oxide production in plants. Trends in Plant Science, 1999, 4: 128-129.
    287. Yamasaki H. Nitrite-dependent nitric oxide production pathway: implications for involvement of active nitrogen species in photoinhibition in vivo. Philos Trans R Soc Lond, 2000, 355: 1477-1488.
    288. Yang G, Komatsu S. Involvement of calcium-dependent protein kinase in rice (Oryza sativa L.) lamina inclination caused by brassinolide. Plant Cell Physiology, 2000, 41: 1243-1250.
    289. Yang T, Poovaiah BW. Hydrogen peroxide hemostasis: activation of plant catalase by calcium/camodulin. Proceedings of the National Academy of Sciences, USA 2002, 99: 4097-4102.
    290. Yoshida K, Igarashi E, Wakatsuki E, Miyamoto K, Hirata K. Mitigation of osmotic and salt stresses by abscisic acid through reduction of stress-derived oxidative damage in Chlamydomonas reinhardtii. Plant Science, 2004, 167: 1335-1341.
    291. Zeier J, Delledonne M, Mishina T, Seven E, Sonoda M, Lamb C. Genetic elucidation of nitric oxide signaling in incompatible plant-pathogen interactions. Plant Physiology, 2004, 136: 2875-2886.
    292. Zemojtel T, Frohlich A, Palmieri MC, Kolanczyk M, Mikula I, Wyrwicz LS, Wanker EE, Mundlos S, Vingron M, Martasek P, Durner J. Plant nitric oxide synthase: a never-ending story. Trends in Plant Science, 2006, 11: 524-525.
    293. Zhang L, Lu YT. Calmodulin-binding protein kinases in plants. Trends in plant Science, 2003, 8: 123-127.
    294. Zhang A, Jiang M, Zhang J, Tan M, Hu X. Mitogen-activated protein kinase is involved in abscisic acid-induced antioxidant defense and acts downstream of reactive oxygen species production in leaves of maize plants. Plant Physiology, 2006, 141: 475-487.
    295. Zhang A, Jiang M, Zhang J, Ding H, Xu SH, Hu X, Tan M. Nitric oxide induced by hydrogen peroxide mediates abscisic acid-induced activation of mitogen-activated protein kinase cascade involved in antioxidant defense in maize leaves. New Phytologist, 2007, 175: 36-50.
    296. Zhang H, Shen MB, Xu LL. Effects of nitric oxide on the germination of wheat seeds and its reactive oxygen species metabolism under osmotic stress. Acta Botanica Sinica, 2003, 45: 901-905.
    297. Zhang S, Du H, Klessig DR. Activation of the tobacco SIP kinase by both a cell wall-derived carbohydrate elicitor and purified protein aceous elicitins from Phytophthora spp. The Plant Cell, 1998, 10: 435-450.
    298. Zhang S, Klessig DF. Resistance gene N-mediated de novo synthesis and activation of a tobacco mitogen-activated protein kinase by tobacco mosaic virus infection. Proceedings of the National Academy of Sciences, USA 1998, 95: 7433-7438.
    299. Zhang X, Zhang L, Dong F, Gao J, Galbraith DW, Song CP. Hydrogen peroxide is involved in abscisic acid-induced stomatal closure in Viciafaba. Plant Physiology, 2001, 126: 1438-1448
    300. Zhao Z, Chen G, Zhang C. Interaction between reactive oxygen species and nitric oxide in drought-induced abscisic acid synthesis in root tips of wheat seedlings. Austrilian Journal of Plant Physiology, 2001, 28:1055-1061.
    301. Zhao LQ, Zhang F. Nitric oxide functions as a signal in salt resistance in the calluses from two ecotype of reed. Plant Physiology, 2004, 134: 849-857.
    302. Zhou B, Guo Z, Xing J, Huang B. Nitric oxide is involved in abscisic acid-induced antioxidant activities in Stylosanthes guianensis. Journal of Experimental Botany, 2005, 56: 3223-3228.
    303. Zhu D, Scandalios JG. Differential accumulation of manganese-superoxide dismutase transcripts in maize in response to abscisic acid and high osmoticum. Plant Physiology, 1994, 106: 173-178.
    304. Zhu JK. Salt and drought stress signal transduction in plants. Annual Review Plant Biology, 2002, 53:247-273.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700