用户名: 密码: 验证码:
山东省典型农产品基地土壤微生物多样性与地球化学元素关系研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
土壤微生物是陆地生态系统的重要组成部分,在推动地球生物化学元素循环过程中起着重要作用。它们通过相互竞争、协调、驱动养分循环等作用对土壤营养状况、生态系统稳定性、农作物健康和生产力起着重要作用。近年来土壤微生物多样性研究一直是微生物生态学的前沿热点问题。影响土壤微生物多样性的因素很多,以往研究主要集中在对土壤类型,有机质,水分,个别营养元素及有害重金属元素对微生物多样性的影响,而有关区域地球化学环境对土壤微生物多样性影响的报道却很少。然而地球化学是生态系统的重要组成部分,生物圈元素循环势必对农作物的生长、人类健康和生态系统稳定性产生重要影响。因此,配合多目标地球化学调查,研究典型农产品基地区域地球化学元素与土壤微生物多样性特征,并对其相互关系进行研究,不仅具有重大的理论研究意义,而且对发展可持续的生态农业系统具有重要的应用价值。
     本研究选择山东省两个具有典型特色的农产品生产基地——鱼台优质稻生产基地和寿光大棚蔬菜基地,与“山东省黄河下游流域1:25万多目标区域地球化学调查”项目同步采样,对两地的土壤地球化学环境及微生物多样性进行研究,并创新性地将多目标地球化学填图数据应用到土壤微生物多样性研究中,对土壤地球化学元素与微生物多样性的关系进行研究。首先通过测定土壤pH、含水量、C(org)、As、B、Cd、Co、Cr、Cu、F、Hg、Mn、Mo、Ni、P、Pb、V、Zn、Se、N、S、SiO_2、Al_2O_3、Fe_2O_3、MgO、CaO、Na_2O_和K_2O的浓度,确定两地的地球化学元素特征。同时分别利用传统的培养技术、现代的BIOLOG系统及非依赖培养的FAME(Fatty acid methyl esters)分析方法分别对土壤微生物不同生理类群的微生物数量、碳源利用功能及基于磷脂脂肪酸图谱的微生物群落结构进行全面研究,从而揭示鱼台寿光两地土壤微生物多样性特征。最后将多目标地球化学填图数据应用到土壤微生物多样性研究中,揭示地球化学元素与土壤微生物多样性之间的相互关系。
     对土壤地球化学元素的研究表明,鱼台优质稻产区土壤中N、P、K、B、Mo、Mn、Se、Fe等有益元素富集。但由于污灌、农药、化肥的施用等人为因素影响,土壤中As、Cd、Hg、Pb等重金属元素有明显富集趋势。鱼台淹育水稻土(SPS)中高含量S与低的pH值表明鱼台地区淹育水稻土有酸化现象。寿光市蔬菜种植区有益营养元素相对富集,而重金属污染相对轻微,从区域地球化学背景上分析对生产绿色无公害蔬菜非常有利。寿光大棚内P、N、S含量均显著高于大棚外。不同的大棚之间土壤地球化学环境差异较大棚外土壤地球化学环境差异大。研究区不同深度土壤化学元素含量不同,总的来说C,N、P含量随深度的增加而降低,F含量随深度的增加而增加。某些重金属与有毒化学元素如Cd、Cr、Cu、Ni、Zn和As在深层土壤中有富集趋势。
     对土壤不同生理类群微生物的研究表明,鱼台不同生理类群微生物含量差异较大;八种生理类群的微生物中,可培养的细菌数量占优势,其次是放线菌与氨化菌,纤维素分解菌数量最少;潮土中的放线菌数量明显多于淹育水稻土。寿光表层土壤中的优势菌主要是细菌、放线菌、固氮菌、氨化菌;总的来看,无论是微生物总量还是各类微生物的量,大棚内土壤样品中微生物的数量高于大棚外土壤的。研究区大多数土壤微生物数量随着深度的增加而降低。
     对土壤微生物BIOLOG碳源利用功能的研究表明,鱼台表层土壤微生物的碳源利用数(S)为21.18±3.76,平均光吸收值(AWCD)为0.66±0.20,Shannon多样性指数(H')为3.04±0.15,Shannon均匀度指数(S_E)为1.01±0.04。鱼台潮土(FAS)的碳源利用数S及代表碳源利用活力的AWCD值显著高于淹育水稻土(SPS)。寿光表层土壤微生物S为20.84±5.19,AWCD为0.72±0.27,H'为3.00±0.21,S_E为1.04±0.22。寿光不同的农田土壤微生物具有不同的碳源利用模式。寿光大棚菜地碳源利用模式在主成分分析(PCA)图上较大田土壤样品分散。鱼台深层土壤微生物S、H'、McIntosh指数(U)、AWCD值随着深度的增加而减少,Gini指数(G)、S E、McIntosh均匀度(M_E)值总的来说随着深度的增加而增加。不同深度的土壤微生物碳源利用模式不同,但总的来说可以分成三个类群。
     对土壤微生物磷脂脂肪酸图谱的研究表明,鱼台表层土壤微生物群落结构多样性不同样地之间存在差异,土壤微生物FAMEs含量(单位:μg g~-1干土)代表革兰氏阳性菌(GP)的为21.6±9.8,代表革兰氏阴性菌(GN)的为23.9±8.1,代表真菌(Fungi)的为22.7±9.2,GP/GN(Gram-positive/Gram-negative)值为0.9±0.3,细菌/真菌(Bac/Fungi)值为2.1±0.4。鱼台所有样地中就细菌与真菌而言细菌含量占优势。鱼台潮土的FAMEs总含量显著高于淹育水稻土,不同土壤类型微生物FAME结构不同。寿光表层土壤微生物群落结构多样性不同样地之间也存在差异,其土壤微生物FAMEs含量(单位:μg g~1 dry soil)GP值为8.44±3.31,GN值为12.87±3.60,Fungi值为15.29±7.07,GP/GN值为0.65±0.14,Bacteria/Fungi值为1.57±0.53。寿光不同农田土壤微生物的磷脂脂肪酸结构有明显差异。寿光番茄地土样明显与其它地分离。研究区深层土壤GP、GN、Fungi的FAMEs的含量总的来说随着深度的增加而降低。说明随着深度增加,各种营养物质的匮乏,土壤微生物含量逐渐降低。
     通过对两地土壤微生物多样性比较发现,鱼台地区可培养的细菌、放线菌、氨化菌和纤维素分解菌数明显小于寿光。两地BIOLOG碳源利用指数没有明显的差异。基于FAMEs的各个指数存在显著差异,鱼台土壤中的GP、GN、GP/GN、Bac/Fungi比值明显高于寿光,而标记真菌的FAMEs总数明显低于寿光。
     对土壤微生物多样性指标与地球化学元素的相关性研究表明多数土壤微生物多样性指数与地球化学元素之间存在显著相关关系(P<0.05),且不同的参数与各地球化学元素间存在着不同的相关性。可培养的细菌数与Co、Mn、Ni、V呈极显著负相关性;真菌数与Co、Cr、Ni、V呈极显著负相关性,而与P、SiO_2呈极显著正相关性;放线菌数与Co、Cr、Ni呈极显著负相关性;固氮菌数与Co、Cr、Ni、V呈极显著负相关性,与SiO_2呈极显著正相关性;纤维数分解菌与Ni呈极显著负相关性(P<0.01)。基于BIOLOG系统的U指数与Co、Cr、Ni、V呈极显著负相关性,与SiO_2呈极显著正相关性;S_E均匀度指数与Cr呈极显著正相关性;AWCD与Co、Cr、Ni呈极显著负相关性(P<0.01)。基于FAME方法的GP、GN、Fungi、GP+GN、Bac+Fungi、GP/GN、Bac/Fungi与多数地球化学元素存在显著相关性,且不同的指数与不同的地球化学元素存在不同的相关性。
     当环境受到污染时,微生物的种类、数量、生理状态和活性等会相应地发生改变,可以将微生物指标应用于环境监测中。由于可培养的细菌、真菌、放线菌、固氮菌、纤维数分解菌;基于BIOLOG系统的U值、AWCD值;基于FAMEs方法的GP、GN、GP+GN、Bac+Fungi、GP/GN、Bac/Fungi与多数地球化学元素存在显著相关性,它们有望成为地球化学环境变化的指标。如可培养的细菌数可以作为研究区Co,Mn,Ni,V的指示物,真菌与固氮菌数可以作为Co、Cr、Ni、V的指示物,放线菌数可以作为Co、Cr、Ni的指示物,纤维数分解菌可以作为Ni的指示物。GP、GN、GP+GN、Bac+Fungi、GP/GN、Bac/Fungi可作为研究区As、Cr、Pb、Zn、Cu的敏感指示物,Bac/Fungi和Fungi可作为Cr和Ni的敏感指示物。
     本研究通过对山东省典型农产品基地——鱼台、寿光土壤微生物多样性及其与地球化学元素的关系研究发现不同区域表层土壤微生物数量、结构与功能存在差异;同一区域不同土壤类型或不同农业利用方式下土壤微生物多样性存在差异;不同深度土壤微生物的数量、结构与功能不同:多数土壤微生物多样性指数与地球化学元素之间存在显著相关关系,且不同的参数与各地球化学元素间存在着不同的相关性,并由此筛选出对地球化学环境变化具有指示作用的微生物指标。
Soil microbes comprise much of the earth's biodiversity and have a critical role in biogeochemistry cycles (BGC) as well as ecosystem functioning. By their competition, coordination and nutrient cycling driven, they have important effects on soil nutrient status, crop health, ecosystem stability, and overall crop productivity. In recent years, the study of soil microbial diversity has been the hotspot of microbial ecology. Many factors affect soil microbial communities. In previous work, the effects on microbial community have received much attention in soil type, organic matter, moisture, specific nutrient elements, and some toxic heavy metal elements on soil microbial community. However, until now, the application of geochemical data to study geochemical environments associated with soil microbial diversity has not been reported. It is well-known that geochemistry is the critical components of ecosystems. The element circulation in the biosphere will have an impact on crop growth, human health, ecosystem stability. Therefore, combining with mult-purpose geochemical investigation, a better understanding of soil geochemistry and microbial diversity not only has an important academic research meaning, but also is necessary for the development of more efficient, sustainable eco-agriculture system.
     In this study, the relationships between soil microbial diversity and geochemical elements were investigated in Yutai high quality rice base and Shouguang vegetable base, which are two of typical agricultural products bases in Shouguang province, China. The samplings were synchronized with "1: 250,000 multipurpose geochemical survey in the lower reach of the Yellow River", and the multipurpose geochemical mapping data were used in microbial diversity study for the first time. On the one hand, the soil geochemistry was investigated through a group of 28 chemical elements, such as pH, C(org), As, B, Cd, Co, Cr, Cu, F, Hg, Mn, Mo, Ni, P, Pb, V, Zn, Se, N, S, SiO_2, Al_2O_3, Fe_2O_3, MgO, CaO, Na_2O and K_2O. On the other hand, the soil microbial diversity was studied by three microbiological measurements, including traditional culture method, BIOLOG system and fatty acid methyl esters (FAME) analysis. The number of various physiological groups of microorganisms was studied by traditional culture method, the functional diversity on sole carbon source utilization (SCSU) was evaluated by the BIOLOG-ECO system, and the structural diversity was evaluated by FAME analysis. Finally, the multipurpose geochemical mapping data were used to resolve the relationships between soil microbial diversity and geochemistry.
     The study of soil geochemical elements showed that the useful elements of N, P, K, B, Mo, Mn, Se, Fe were enriched in Yutai high quality rice base soil. However, because of the man-made effects from much sewage pollution, pesticide application and fertilization, some heavy and toxic elements, such as As, Cd, Hg, Pb were obviously enriched in surface soil in Yutai. In the submergenic paddy soil (SPS), the higher content of S and the lower value of pH showed that it was apt to be acidification. In Shouguang vegetable base soil, the useful elements were enriched, and the polluted heavy metal elements were small. It was beneficial for the growth of green and non-polluted vegetable. The contents of P, N and S were obviously higher in plastic-greenhouse soil than in field soil. The differences in soil geochemistry among different plastic-greenhouses were larger than those among different field lands. The contents of geochemical elements were distinct in different layer in soil profile. The contents of N and P were decreased with increasing depth, but the content of F was increased. The contents of some heavy and toxic elements, such as Cd, Cr, Cu, Ni, Zn and As, were apt to be enriched in deeper soil layers.
     To various physiological groups of microorganisms, the results showed that the amounts and proportions of various physiological groups of microorganisms were different in Yutai surface soil. In the eight physiological groups of microorganisms, the numbers of culturable bacteria were dominate, the actinomyces and ammonifying bacteria took second place, and the cellulose-degrading bacteria were the least. The number of actinomyces in fluvo-aquic soil (FAS) was obviously greater than in SPS. In Shouguang surface soil, the numbers of culturable bacteri, actinomyces, nitrogen-fixing bacteria and ammonifying. Not only the total microbial amounts, but also the each kind of physiological group amounts were all higher in plastic-greenhouse than in fieldlands. The numbers and proportions of various physiological groups of microorganisms changed with depth. The amounts of most soil microbes were decreased with increasing depth.
     To the functional diversity on BIOLOG sole carbon source utilization patterns, in Yutai surface soil, the average values of substrates richness (S), average well color development (AWCD), Shannon's diversity index (H') and evenness index (S_E) were 21.18±3.76, 0.66±0.20, 3.04±0.15 and 1.01±0.04, respectively. In Yutai FAS soils, the values of substrates richness and AWCD were obviously higher than in SPS. In Shouguang surface soil, the average values S, AWCD, H' and S_E were 20.84±5.19, 0.72±0.27, 3.00±0.21, 1.04±0.22, respectively. The soil microbial communities had distinct carbon source substrate utilization patterns under different farmlands in Shouguang. The separation of different land use samples on principal component analysis (PCA) revealed that the open-field samples clustered in one section of the plot respectively, but the plastic-greenhouse samples were scattered. The results clearly indicated that the variations in SSCU patterns in plastic-greenhouse soils under different management were more obvious than in open-field soils in Shouguang. The values of S, H', McIntosh' diversity index (U) and AWCD decreased with the increase of depth, but the Gini's evenness index (G), S_E and Mclntosh' evenness index (ME) increased. Although the microbial metabolic diversity was different at every depth, it could be classified into three main groupings by principal component analysis and cluster analysis.
     To the structural diversity on FAMEs patterns in Yutai, the microbial community structural diversity was distinct among different soil samples. The contents of Gram-positive bacteria (GP), Gram-negative bacteria (GN), fungi, Gram-positive /Gram-negative (GP/GN) and Bacteria/fungi were 21.6±9.8, 23.9±8.1, 22.7±9.2, 0.9±0.3 and 2.1±0.4μg FAMEs g~(-1) dry soil, respectively. In all soil samples, the contents of bacteria were more than fungi. The total FAMEs in FAS soils were significantly higher than in SPS soils. The soil microbial structures based on FAMEs were various in different type soils in Yutai. In Shouguang, the microbial community structural diversity was distinct among different soil samples. The average contents of GP, GN, fungi, GP/GN and Bacteria/fungi were 8.44±3.31, 12.87±3.60, 15.29±7.07, 0.65±0.14 and 1.57±0.53μg FAMEs g~(-1) dry soil, respectively. PCA of FAME data demonstrated distinctive soil fatty acid profiles among different farm lands. The samples collected from tomato plastic-house deviated obviously from the other vegetable fields. The contents of GP, GN and Fungi decreased with increasing depth in tendency. It indicated that the soil microbial biomass reduced because of the lack of nutriment with increasing depth.
     The results of soil microbial diversity comparing between Yutai and Shouguang showed that the amounts of culturable bacteria, actinomyces, ammonifying bacteria and cellulose-degrading bacteria in Yutai samples were obviously less than in Shouguang. There was no distinct difference in functional diversity index based on SCSU patterns, while there were significant variations in structural diversity index based on FAMEs profiles. The values of GP, GN, GP/GN and Bac/Fungi were obviously higher in Yutai soil than in Shouguang soil, but the total FAMEs marked fungi were significantly lower in Yutai than in Shouguang.
     The correlation analysis between soil geochemistry and microbial diversity showed that many microbial diversity index had significant correlations to geochemical elements (P < 0.05), and the different microbial parameters had the various correlations to geochemical elements. The amounts of culturable bacteria had very high negative correlations with Co, Mn, Ni and V (P < 0.01). The quantities of fungi had very high negative correlations with Co, Cr, Ni and V, but had very high positive correlations with P and SiO_2 (P < 0.01). The number of actinomyces had very high negative correlations with Co, Cr and Ni (P < 0.01). The amounts of nitrogen-fixing bacteria had very high negative correlations with Cr, Ni and V, but had very high positive correlations with SiO_2 (P < 0.01). The quantities of cellulose-degrading bacteria had very high negative correlations with Ni. The McIntosh' diversity index (U) based on BIOLOG had very high negative correlations with Co, Cr, Ni and V, but had very high positive correlations with SiO_2 (P < 0.01). The value of S_E had very high positive correlations with Cr (P < 0.01). The value AWCD had very high negative correlations with Co, Cr and Ni (P < 0.01). The FAME parameters including GP, GN, Fungi, GP+GN, Bac+Fungi, GP/GN and Bac/Fungi had significant correlations with most geochemical elements, and the different index had the various correlations.
     Because the microbial community characteristics, including species, amounts, physiological profiles, activities, and so on, change accordingly with environment, the microbial parameters may be used in environmental inspecting. In our study, the amounts of culturable bacteria, fungi, actinomyces, nitrogen-fixing bacteria and cellulose-degrading bacteria; the values of U and AWCD based on BIOLOG; the index of GP, GN, GP+GN, Bac+Fungi, GP/GN and Bac/Fungi had significant correlations with most of geochemical elements. They were expected to be the sensitive microbial indicator of geochemical environment. Our study indicated that the culturable bacteria were expected to be the indicator of Co, Mn, Ni and V, fungi and nitrogen-fixing bacteria to be the indicator of Co, Cr, Ni and V, actinomyces to be the indicator of Co, Cr and Ni, cellulose-degrading bacteria to be the indicator of Ni. The values of GP, GN, GP+GN, Bac+Fungi, GP/GN and Bac/Fungi were expected to be the indicator of As, Cr, Pb, Zn and Cu. The values of Bac/Fungi and fungi may be the indicator of Cr and Ni.
     In this research, the soil microbial diversity and its relationships with geochemical elements were studied in Yutai and Shouguang, which are two of the typical agricultural products bases in Shandong province, China. The results showed that the different areas had distinct soil microbial amounts, structures and functions. Even if in the same area, there were also variations in soil microbial diversity in different type soil or various farmlands. The microbial community diversity was different at different depths. Many microbial diversity indexes had significant correlations to geochemical elements, and the different microbial parameters had the various correlations to geochemical elements. Therefore, the soil microbial indexes were screened out as geochemical environments sensitive indicators.
引文
1. Aber J D. Nitrogen cycling and nitrogen saturation in temperate forest ecosystems. Trends Ecol Evol, 1992, 7: 220-223.
    
    2. Arnebrandt D, Baath E, Soderstrom B. Changes in microfungal community structure after fertilization of Scots pine forest soil with ammonium nitrate or urea. Soil Biol & Biochem, 1990,22: 309-312.
    
    3. Baath E, Frostegard A, Diaz-Ravina M et al. Microbial community-based measurements to estimate heavy metal effects in soil: the use of phospholipid fatty acid patterns and bacterial community tolerance. Ambio, 1998,27: 58-61.
    
    4. Bartelt-Rysera J, Joshia J, Schmida B et al. Soil feedbacks of plant diversity on soil microbial communities and subsequent plant growth. J Perspect Plant Ecol, 2005, 7: 27-49.
    
    5. Bending G D, Turnera M K, Raynsb F et al. Microbial and biochemical soil quality indicators and their potential for differentiating areas under contrasting agricultural management regimes. Soil Biol & Biochem, 2004,36: 1785-792.
    
    6. Bonkowski M, Roy J. Soil microbial diversity and soil functioning affect competition among grasses in experimental microcosms. Oecologia, 2005, 143(2): 232-240.
    
    7. Borneman J, Skroch P W, O'Sullivan KMet al. Molecular microbial diversity of an agricultural soil in Wisconsin. Appl Environ Microb, 1996, 62(6):1935-1943.
    
    8. Bossio D A, Girvan M S, Verchot L et al. Soil microbial community response to land use change in an agricultural landscape of Western Kenya. Microb Ecol, 2005,49(1): 50-62.
    
    9. Bossio D A, Scow K M, Gunapala N et al. Determinants of soil microbial communities: effects of agricultural management, season, and soil type on phospholipid fatty acid profiles. Microb Ecol, 1998, 36: 1-12.
    
    10. Bossio D A, Scow K M. Impacts of carbon and flooding on soil microbial communities: phospholipid fatty acid profiles and substrate utilization patterns. Microb Ecol, 1998, 35: 265-278.
    
    11. Broughton L C, Gross K L. Patterns of diversity in plant and soil microbial communities along a productivity gradient in a Michigan old-field. Oecologia, 2000,125: 420-427.
    
    12. Burgmann H, Widmer F, Sigler W V et al. mRNA extraction and reverse transcription-PCR protocol for detection of nifH gene expression by Azotobacter vinelandii in soil. Appl Environ Microbiol 2003, 69: 1928-1935.
    
    13. Cai Y F, Liao Z W, Zhang J E et al. Effect of fertilization on Tomato bacterial wilt biocontrolling and soil health restoration using FAME analysis. Agr Sci in China, 2003, 2: 779-785.
    
    14. Carney K M, Matson P A. Plant communities, soil microorganisms, and soil carbon cycling: Does altering the world belowground matter to ecosystem functioning? Ecosystems, 2005, 8: 928-940.
    
    15. Chabrerie O, Laval K, Puget P et al. Relationship between plant and soil microbial communities along a successional gradient in a chalk grassland in north-western France. Appl Soil Ecol, 2003,24: 43-56.
    
    16. Chen M M, Zhu Y G, Su Y H et al. Effects of soil moisture and plant interactions on the soil microbial community structure. Eur J Soil Biol, 2007,43: 31-38.
    
    17. Cheung P Y, Kinkle B K. Changes in Mycobacterium spp. population structure and pyrene mineralization in polycyclic aromatic hydrocarbon-amended soils. Soil Biol & Biochem, 2005, 37(10): 1929-1937.
    
    18. Choi K H, Dobbs F C. Comparison of two kinds of Biolog microplates (GN and ECO) in their ability to distinguish among aquatic microbial communities. J Microb Meth, 1999, 36: 203-213.
    
    19. Classen A T, Boyle S I, Haskins K E et al. Community-level physiological profiles of bacteria and fungi: plate type and incubation temperature influences on contrasting soils. FEMS Microbiol Ecol, 2003,44: 319-328.
    
    20. Dai J, Becquer T, Rouiller J H et al. Influence of heavy metals on C and N mineralisation and microbial biomass in Zn-, Pb-, Cu-, and Cd-contaminated soils. Appl Soil Ecol, 2004, 25: 99-109.
    21. De Fede K L, Sexstone A J. Differential response of size-fractionated soil bacteria in BIOLOG(R) microtitre plates. Soil Biol & Biochem, 2001, 33 (11): 1547-1554.
    
    22. Degens B P, Schipper L A, Sparling G? et al. Decreases in organic C reserves in soils can reduce the catabolic diversity of soil microbial communities. Soil Biol & Biochem, 2000, 32: 189-196.
    
    23. Degens B P. Microbia functional diversity can be influenced by the addition of simple organic substrates to soil. Soil Biol & Biochem, 1998, 30: 1981-1988.
    
    24. Dick R P. A review: long-term effects of agricultural systems on soil biochemical and microbial parameters. Agr Ecosyst Environ, 1992,40: 25-36.
    
    25. Donald R Z, William E H, David C W et al. Plant diversity, soil micromial communities, and ecosystem function: are there any links? Ecology, 2003, 84(8): 2042-2050.
    
    26. Fauci M F, Dick R P. Soil microbial dynamics: short- and long-term effects of organic and inorganic nitrogen. Soil Sci Soc Am J, 1994, 58: 801-808.
    
    27. Fierer N, Schimel J P, Holden P A. Variations in microbial community composition through two soil depth profiles. Soil Biol & Biochem, 2003, 35: 167-176.
    
    28. Fog K. The effect of added nitrogen on the rate of decomposition of organic matter. Biol Rev, 1988,63: 433-462.
    
    29. Frostegard A, Tunlid A, Baath E. Phospholipid fatty acid composition,biomass,and activity of microbial communities from two soil types experimentally exposed to different heavy metals. Appl Environ Microb, 1993, 59: 3605-3617.
    
    30. Garland J L, Mills A L. Classification and characterization of heterotrophic microbial communities on the basis of patterns of community-level sole-carbon-source utilization. Appl Environ Microb, 1991, 57(8): 2351-2359.
    
    31. Gomez E D, Garland J L, Roberts M S. Microbial structural diversity estimated by dilution-extinction of phenotypic traits and T-RFLP analysis along a land-use intensification gradient. FEMS Microbiol Ecol, 2004, 49,(2): 253-259.
    32. Gottschal J C, Meijer W G, Oda Y, 1997. Use of molecular probing to assess microbial activities in natural ecosystems. In: Insam H, Rangger A (Eds.) Microbial Communities. Springer, Heidelberg, pp. 10-18.
    
    33. Goyal S, Mishra M M, Hooda I S et al. Organic matter-microbial biomass relationships in field experiments under tropical conditions: effects of inorganic fertilization and organic amendments. Soil Biol & Biochem, 1992, 24: 1081-1084.
    
    34. Graham M H, Haynes R J. Catabolic diversity of soil microbial communities under sugarcane and other land uses estimated by Biolog and substrate-induced respiration methods. Appl Soil Ecol, 2005,29: 155-164.
    35. Grayston S J, Griffith G S, Mawdsley J L et al. Accounting for variability in soil microbial communities of temperate upland grassland ecosystems. Soil Biol. Biochem. 2001, 33: 533-551.
    36. Guckert J B, White D C. Phospholipid, esther-linked fatty acid analysis in microbial ecology [A]. In: Megusar F, Gantar G, eds. Perspectives in Microbial Ecology: Proceedings of the 4th nternational Symposium on Microbial Ecology. Ljubljana, lovenia, 1986: 455-459.
    37. Harch B D, Correll R L, Meech W et al. Using the Gini coefficient with BIOLOG substrate utilisation data to provide an alternative quantitative measure for comparing bacterial soil communities. J Microbiol Meth, 1997, 30: 91-101.
    38. Harold P C, Michel A C. Soil microbial community characteristics along an elevation gradient in the Laguna Mountains of Southern California. Soil Biol & Biochem, 2003, 35: 1027-1037.
    39. Harris J A. Measurements of the soil microbial community for estimating the success of restoration. Eur J Soil Sci, 2003, 54:4, 801-808.
    40. Hedlund K. Soil microbial community structure in relation to vegetation management on former agricultural land. Soil Biol. Biochem. 2002, 34: 1299-1307.
    41. Hill G T, Mitkowski N A, Aldrich W L et al. Methods for assessing the composition and diversity of soil microbial communities. Appl Soil Ecol, 2000, 15: 25-36.
    
    42. Hu S, Van Bruggen A H C. Microbial dynamics associated with multiphasic decomposition of 14C-labeled cellulose in soil. Microb Ecol, 1997,33: 134-143.
    
    43. Ibekwe A M, Kennedy A C. Phospholipid fatty acid profiles and carbon-utilization patterns for analysis of microbial community structure under field and greenhouse conditions. FEMS Microbiol Ecol, 1998,26: 151-163.
    
    44. Inbar E, Green S J, Hadar Y et al. Competing factors of compost concentration and proximity to root affect the distribution of streptomycetes. Microb Ecol, 2005, 50(1): 73-81.
    
    45. Insam H. Development in soil microbiology since the mid 1960s. Geoderma, 2001,100:389-402.
    
    46. Jacek K, Jan Dirk van Elsas. Structural diversity of microorganisms in chemically perturbed soil assessed by molecular and cytochemical approaches. J Microbiol Meth.2001,43: 197-212.
    
    47. James M. Opening the black box of soil microbial diversity. Appl Soil Ecol, 1999, 13: 109-122.
    
    48. Johnsen K, Jacobsen C S, Torsvik V et al. Pesticide effects on bacterial divemity in gricultural soils-A review. Biol Fert Soils, 2001, 33:443-453
    
    49. Kanazawa S, Asakawa S, Takai Y. Effect on fertilizer and manure application on microbial numbers, biomass, and enzyme activities in volcanic ash soils. Soil Sci Plant Nutr, 1988, 34: 429-439.
    
    50. Kaye J P, Hart S C. Competition for nitrogen between plants and soil microorganisms. Trends Ecol Evol, 1997, 12:139-142.
    
    51. Kelly J J, Tate R L. Effects of heavy metal contamination and remediation on soil microbial communities in the vicinity of a zinc smelter. J Environ Qual, 1998, 27: 609-617.
    
    52. Kennedy A C. Bacterial diversity in agroecosystems. Agr Ecosyst Environ, 1999,74: 65-76.
    
    53. Keun-Hyung C, Fred C D. Comparison of two kinds of Biolog microplates (GN and ECO) in their ability to distinguish among aquatic microbial communities. J Microbiol Meth, 1999, 36: 203-213
    
    54. Kim M S, Ahn J H, Jung M K et al. Molecular and cultivation-based characterization of bacterial community structure in rice field soil. J Microbiol Biotechn, 2005, 15 (5): 1087-1093.
    
    55. Knight B, McGrath S P, Chaudri A M. Biomass carbon measurements and substrate utilization patterns of microbial populations from soils amended with cadmium, copper, or zinc. Appl Environ Microbiol, 1997, 63: 39-43.
    
    56. Kourtev P S, Ehrenfeld J G, Haggblom M. Experimental analysis of the effect of exotic and native plant species on the structure and function of soil microbial communities. J Soil Biol Biochem, 2003,35: 895-905.
    
    57. Krumbein W E. Microbial Geochemistry. Oxford: Blackwell Scientific Publications, 1983.
    58. Langworthy T A. Lipids of Archaebacteria. The Bacteria, 1985, 8: 459-497.
    59. Larkin R P. Characterization of soil microbial communities under different potato cropping systems by microbial population dynamics, substrate utilization, and fatty acid profiles. Soil Biol & Biochem, 2003, 35: 1451-1466.
    60. Lawlor K, Knight B P, Barbosa-Jefferson V L et al. Comparison of methods to investigate microbial populations in soils under different agricultural management. FEMS Microbiol Ecol, 2000, 33: 129-137.
    61. Lin X G, Yin R, Zhang H Y et al. Changes of soil microbiological properties caused by land use changing from rice-wheat rotation to vegetable cultivation. Environ Geochem Hlth, 2004,26: 119-128.
    62. Liu W T, Marsh T L, Cheng H et al. Characterization of microbial diversity by determining terminal restriction fragment length polymorphisms of genes encoding 16SrRNA. Appl Environ Microbiol, 1997, 63(11): 4516-4522.
    63. Lupwayi N Z, Monreal M A, Clayton G W et al. Soil microbial biomass and diversity respond to tillage and sulphur fertilizers. Can J Soil Sci, 2001, 81: 577-589.
    64. Lupwayi N Z, Rice W A, Clayton G W. Soil microbial diversity and community structure under wheat as influenced by tillage and crop rotation. Soil Biol & Biochem, 1998,30:1733-1741.
    65. Lynch J M, Panting L M. Effects of season, cultivation and nitrogen fertilizer on the size of the soil microbial biomass. J Sci Food Agr, 1982, 33: 249-252.
    66. Macalady J L, Fuller M E, Scow K M. Effects of metan sodium fumigation on soil microbial activity and community structure. J Environ Qual, 1998, 27: 53-63.
    67. Madhur A, Ke-Ming M, Alexander O et al. Characterising biocomplexity and soil microbial dynamics along a smelter-damaged landscape gradient. Science Total Environ, 2003,311: 247-259.
    68. Maloney P E, Van Bruggen A H C, Hu S. Bacterial community structure in relation to the carbon environments in lettuce and tomato rhizospheres and in bulk soil. Microb Ecol, 1997, 34: 109-117.
    69. Maria de la P J, Ana M de la H, Laura P et al. Soil quality: a new index based on microbiological and biochemical parameters. Bio Fertil Soil, 2002, 35: 302-306.
    70. Marschner P, Yang C H, Lieberei R et al. Soil and plant specific effects on bacterial community composition in the rhizosphere. Soil Biol & Biochem, 2001, 33: 1437-1445.
    71. Miethling R, Wieland G, Backhaus H et al. Variation of microbial rhizosphere communities in response to crop species, soil origin, and inoculation with Sinorhizobium meliloti L33. Microb Ecol, 2000,41: 43-56.
    72. Moore J C. Impact of agricultural practices in soil food-web structure: theory and application. Agr Ecosyst Environ, 1994, 51: 239-247.
    73. Muhammad A, Xu J M, Li Z J et al. Effects of lead and cadmium nitrate on biomass and substrate utilization pattern of soil microbial communities. Chemosphere, 2005,60: 508-514.
    74. Pennanen T, Frostegard A, Fritze H et al. Phospholipid acid composition and heavymetal tolerance of soil microbial communities along two heavy metal-polluted gradients in Coniferous forests. Appl Environ Microbiol, 1996, 62(2): 420-428.
    75. Petersen S O, Debosz K, Schjonning P et al. Phospholipid fatty acid profiles and C availability in wet-stable macro-aggregates from conventionally and organically fanned soils. Geoderma, 1998, 78: 181-196.
    76. Raphael G, Lucile J M, Francois B et al. Relationships between soil physico-chemical properties and microbial activity along a restoration chronosequence of alpine grasslands following ski run construction. Appl Soil Ecol, 2004,27: 7-22.
    77. Reimann C, Siewers U, Tarvainen T et al. Baltic soil survey: total concentrations of major and selected trace elements in arable soils from 10 countries around the Baltic Sea. Sci Total Environ, 2000,257: 155-170.
    78. Ringelberg D B, Davis J D, Smith G A et al. Validation of signature polarlipid fatty acid biomarkers for alkane-utilizing bacteria in soils and subsurface aquifer materials [J]. FEMS MicroBiology Ecology, 1989, 62: 39-50.
    79. Rogers B F, Tate R L Ⅲ. Temporal analysis of the soil microbial community along a toposequence in Pineland soils. Soil Biol & Biochem, 2001, 33: 1389-1401.
    80. Sanita di Toppi L, Gabrielli R. Response to cadmium in higher plants. Environ Exp Bot, 1999,41: 105-130.
    81. Sarathchandra S U, Ghani A, Yeates G W et al. Effect of nitrogen and phosphate fertilisers on microbial and nematode diversity in pasture soils. Soil Biol & Biochemistry, 2001, 33: 953-964.
    82. Sayler G S, Fleming J T, Nivens D E. Gene expression monitoring in soils by mRNA analysis and gene lux fusions. Curr Opin Biotechnol, 2001,12: 455-460.
    83. Schloter M, Bach H J, Metz S et al. Influence of precision farming on the microbial community structure and functions in nitrogen turnover. Agr Ecosyst Environ, 2003, 98: 295-304.
    84. Schloter M, Bach H J, Metz S et al. Influence of precision farming on the microbial community structure and functions in nitrogen turnover. Agr Ecosyst Environ, 2003,98:295-304.
    85. Schloter M, Dilly O, Munch J C. Indicators for evaluating soil quality. Agr Ecosyst Environ, 2003,98:255-262.
    86. Sharma S, Radl V, Hai B et al. Quantification of functional genes from procaryotes in soil by PCR. J Microbiol Meth, 2007, 68 445-452
    87. Shen D Z. Microbial diversity and application of microbial products for agricultural purpose in China. Agr Ecosyst Environ, 1997, 62: 237-245.
    88. Shomar B H, Miiller G, Yahya A. Occurrence of Pesticides in Groundwater and Topsoil of the Gaza Strip. Water Air Soil Poll, 2006,171: 237-251
    89. Suhadolc M, Schroll R, Gattinger A et al. Effects of modified Pb-, Zn-, and Cd-availability on the microbial communities and on the degradation of isoproturon in a heavy metal contaminated soil. Soil Biol & Biochem, 2004, 36: 1943-1954.
    90. Thomas V G, Kevan P G. Basic principle of agroecology and sustainable agriculture. J Agric Environ Eth. 1993, 5:1-18.
    91. Vanotti M B, Leclerc S A, Bundy L G Short-term effects of nitrogen fertilization on soil organic nitrogen availability. Soil Sci Soc Am J, 1995, 59: 1350-1359.
    92. Viti C, Giovannetti L. Characterization of cultivable heterotrophic communities in Cr-polluted and unpolluted using Biolog and ARDRA approaches. Appl Soil Ecol, 2005,28: 101-112.
    93. Wang D M, Marschner P, Solaiman Z et al. Growth, P uptake and rhizosphere properties of intercropped wheat and chickpea in soil amended with iron phosphate or phytate. Soil Biol & Biochem, 2007, 39: 249-256.
    94. Wardle D A, Bardgett R D, Klironomos J N et al. Ecological linkages between aboveground and belowground biota. Science, 2004,304: 1629-1633.
    95. Wellington E M H, Berry A, Krsek M. Resolving functional diversity in relation to microbial community structure in soil: exploiting genomics and stable isotope probing. Curr Opin Microbiol, 2003, 6: 295-301.
    96. Westbroek P. Life as a geological force: dynamics of the earth. Norton, New York, USA, 1991.
    97. White D C, Davis W M, Nickels J S et al. Determination of sedimentary microbial biomass by extractable lipid phosphate. Oecologia, 1979,40: 51-62.
    98. Widmera F, Flieβbach A, Laczko E et al. Assessing soil Biological characteristics: a comparison of bulk soil community DNA-, PLFA-, and Biologe-analyses. Soil Biol & Biochem, 2001, 33: 1029-1036.
    
    
    99. Wong M L, Medrano F. Real-time PCR for mRNA quantitation. Biotechniques,2005,39: 75-85.
    
    100.Yan F, McBratney A B, Copeland L. Functional substrate biodiversity ofcultivated and uncultivated A horizons of vertisols in NW New South Wales.Geoderma, 2000, 96: 321-343.
    
    101. Yang Y H, Yao J, Hu S et al. Effects of agricultural chemicals on DNA sequencediversity of soil microbial community: a study with RAPD marker. Microb Ecol,2000,39: 72-79.
    
    102.Zak J C, Willig M R, Moorhead D L et al. Function diversity of microbialcommunities: A quantitative approach. Soil Biol Biochem, 1994,26: 1101-1108.
    
    103.Zelles L, Alef K. Biomarkers. In: Alef K, Nannipieri P eds. Methods in AppliedSoil MicroBiology and Biochemistry. London: Academic Press, 1995: 422-439.
    
    104.Zelles L, Bai Q Y, Beck T et al. Signature fatty acidsin phospholipids andlipopolysaccharides as indicators of microbial biomass and community structurein agricultural soils. Soil Biology Biochemistry, 1992,24: 317-323.
    
    105.Zhao Y, Li W, Zhou Z H et al. Dynamics of microbial community structure andcellulolytic activity in agricultural soil amended with two biofertilizers. Eur J SoilBiol, 2005,41: 21-29.
    
    106.Zhou J, Guo W H, Wang R Q et al. Microbial community diversity in the profileof an agricultural soil in Northern China. Journal of Environmental Sciences,2008,20 (8).
    
    107.Zhou J, Zhou G J, Wang R Q et al. Aqueous synthesis and characterization ofsilver nanorods and nanowires. Materials Science-Poland., http://www.materialsscience.pwr. wroc.pl/index.php?id=3.
    
    108.蔡燕飞,廖宗文,董春等.番茄青枯病的土壤微生态防治研究.农业环境保 护.2002,21(5):417-420.
    
    109.蔡燕飞,廖宗文.土壤微生物生态学研究方法进展.土壤与环境,2002,11(2): 167-171.
    
    110.陈怀满.土壤-植物系统中的重金属污染.北京:科学出版社,1996.
    
    111.陈骏,姚素平,季峻峰等.微生物地球化学及其研究进展.地质论评,2004,??50(6):620-632.
    
    112.陈晓蕾,张忠泽.微生物的ARDRA检测.微生物学杂志,1999,9(4):40-43.
    
    113.程庆展.开展农业地球化学综合调查促进农业可持续发展.国土经济2002, 6:42-43.
    
    114.东秀珠,洪俊华.原核微生物的多样性.生物多样性,2001,9(1):18-24.
    
    115.董鸣.陆地生物群落调查观测与分析.北京:中国标准出版社,1997, 129-135.
    
    116.董佑福.从寿光看山东设施农业的发展.农机推广和安全.2006,11:9-11.
    
    117.方新启.发展农业旅游打造寿光旅游特色品牌.山东经济战略研究,2006年, 8:28-29.
    
    118.关广岳.金属矿床氧化带微生物地球化学.北京:科学出版社,2000,1-216.
    
    119.韩芳,邵玉琴,赵吉等.皇甫川流域不同林地土壤微生物类群的初步研究. 内蒙古林业科技,2001,3:5-6.
    
    120.韩迎祥,李建忠,聂桂惠等.寿光蔬菜为何笑傲市场十五载.当代蔬菜,2005, 10,10-11.
    
    121.侯端敏.振兴县域经济,实现强县富民.山东经济战略研究,2001,1.2合刊, 95-96.
    
    122.姜培坤,徐秋芳,俞益武.土壤微生物量碳作为林地土壤肥力指标.浙江林 学院学报,2002,19:17-19.
    
    123.康明.地球化学在环境和农业领域中的应用研究.物探与化探,2004,28(2): 99-101.
    
    124.李晨.科学时报,2006,12-20-A1.
    
    125.李俊良,崔德杰,孟祥霞等.山东寿光保护地蔬菜施肥现状及问题的研究. 土壤通报,2002,33(2):126-128.
    
    126.李文庆,杜秉海,骆洪义.大棚栽培对土壤微生物区系的影响.土壤肥料, 1996,2:31-33
    
    127.李香真,曲秋皓.蒙古高原草原土壤微生物量碳氮特征.土壤学报,2002,39: 97-104.
    
    128.李晓鸣.矿质镁对水稻产量及品质影响的研究.植物营养与肥料学报,2002, 8(1):125-126.
    
    129.李新虎,岑况.以银川平原大米为例探讨农业地球化学研究方法.物探与化 探,2006,30(3):270-275.
    
    130.李艳红,韩美,庞小平等.山东省寿光市沿海湿地生态系统的组成与结构研 究.山东师范大学学报(自然科学版),2006,21(2):88-91.
    
    131.李酉开.土壤农业化学常规分析方法.北京:科学出版社,1983,56-57, 166-168.
    
    132.鲁如坤.土壤农业化学分析方法.北京:中国农业科技出版社,2000, 106-109.
    
    133.庞绪贵,战金成,宋海林等.山东黄河下游地区局部生态地球化学评价方法 与技术.山东国土资源,2006,22(5):28-33.
    
    134.孙维,赵洁.不同草原生境下的土壤微生物生物量研究.内蒙古农业大学学 报,2002,22(1):29-31.
    
    135.孙秀山,封海胜,万书波.连作花生田主要微生物类群与土壤酶活性变化及 其交互作用.作物学报,2001,27(5):617-621.
    
    136.滕应,黄昌勇,骆永明等.铅锌银尾矿区土壤微生物活性及其群落功能多样 性研究.土壤学报.2004,41:113-119.
    
    137.王冠三,陈守仁.寿光县志.上海:中国大百科全书出版社上海分社,1992, 89-94.
    
    138.王克将,常弘,廖金凤等.生物地球化学.广州:广东科技出版社,1999, 327-406.
    
    139.王世纪,简中华,罗杰.浙江省台州市路桥区土壤重金属污染.地球与环境, 2006,34(1):35-43.
    
    140.王书锦,胡江春,张宪武.新世纪中国土壤微生物学的展望.微生物学杂志, 2002,22(1):38.
    
    141.肖慈英,阮宏华,屠六邦.宁镇山区不同森林土壤生物学特性的研究.应用生 态学报,2002,13(9):1077-1081.
    
    142.邢宇俊,程智慧,周艳丽等.保护地蔬菜连作障碍原因及其调控.西北农业 学报 2004,13(1):120-123.
    
    143.许景伟,王卫东,李成.不同类型黑松混交林土壤微生物、酶及其与土壤养分 关系的研究.北京林业大学学报,2000,22(1):51-55.
    
    144.许炼烽.镉对砖红壤微生物的影响.农业环境保护,1993,12:145-149.
    
    145.薛立,陈红跃,徐英宝等.混交林地土壤物理性质与微生物数量及酶活性的 研究.土壤通报,2004,35(2):154-158.
    
    146.阎葆瑞,张锡根.微生物成矿学.北京:科学出版社,2000,1-158.
    
    147.阎鹏,许世良.山东土壤.北京:中国农业出版社,1994,276.
    
    148.杨居荣,任燕.砷对土壤微生物及土壤生化活性的影响.土壤,1996,2: 101-109.
    
    149.杨永华,姚健,华晓梅.农药污染对土壤微生物群落功能多样性的影响.微 生物学杂志,2000,20:23-25.
    
    150.杨永华,姚健,华晓梅.农药污染对土壤微生物群落功能多样性的影响.微 生物学杂志,2000,20:23-25.
    
    151.杨忠芳,陈岳龙,汪明启等.地球化学填图的国际研究现状及建议.地球科 学进展,2002,17(6):826-832.
    
    152.姚健,杨永华,沈晓蓉.农用化学品污染对土壤微生物群落DNA序列多样性 的影响.生态学报,2000,20(6):1021-102.
    
    153.尹睿,张华勇,黄锦法等.保护地菜田与稻麦轮作田土壤微生物学特征的比 较.植物营养与肥料学报,2004,10(1):57-62.
    
    154.余慎,李勇,王俊华等.土壤微生物生物量作为红壤质量生物指标的探讨. 土壤学报,1999,36:413-422.
    
    155.张国发,崔玉波.矿质元素对稻米品质影响的研究进展.黑龙江农业科学, 2007,3:114-116.
    
    156.张汉波,段昌群,屈良鹄.非培养方法在土壤微生物生态学研究中的作用. 生态学杂志,2003,22,131-136.
    
    157.张瑞檀.鱼台县志.济南:山东人民出版社,1997,77-91,259-261.
    
    158.张永忠,吕少伟,衷存堤.江西信丰脐橙农业地球化学特征探讨.资源调查 与环境,2004,25(4):31-38.
    
    159.赵祥伟,骆永明,滕应等.重金属复合污染农田土壤的微生物群落遗传多样 性研究.环境科学学报,2005,25(2):186-191.
    
    160.赵小宁,吕家珑,柏延芳等.不同种植年限蔬菜日光温室土壤养分与生物活 性研究.干旱地区农业研究,2006,24(3):54-59.
    
    161.郑传刚.微量元素对香稻产量和稻米品质的影响.石河子大学学报(自然科 学版),2005,23(4):461-463.
    
    162.郑华,欧阳志云,王效科等.不同森林恢复类型对土壤微生物群落的影响. 应用生态学报,2004,15,2019-2024.
    
    163.钟文辉,蔡祖聪.土壤微生物多样性研究方法.应用生态学报,2004,15,(5): 899-904.
    
    164.周德庆.微生物学教程.北京:高等教育出版社,1996,39.
    
    165.周立军,李娓,张玉烛等.钙镁硫对优质早稻产量和米质的影响.湖南农业 科学,2001,2:21-23.
    
    166.周艺敏,小仓宽典,吉田彻志.天津半干早地区不同种植年限莱田土壤微生 物变化特征的研究.植物营养与肥料学报,2000,6(4):424-429.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700