用户名: 密码: 验证码:
异体骨髓间充质干细胞用于类风湿关节炎治疗的初步探讨
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:
     类风湿关节炎(rheumatoid arthritis,RA)是一种慢性、系统性的炎性自身免疫病,通常伴有多关节肿胀与疼痛,若不及时治疗,可导致关节软骨、骨的侵蚀与破坏。尽管发病机制尚不明确,众多证据表明T细胞、B细胞以及多种炎性因子在RA病理过程中均发挥着重要的作用。有效的抑制这些炎性因素,则成为了RA治疗的一个重要目标。近来,以T细胞、B细胞和各种炎性细胞因子为治疗靶向的生物制剂已证实在RA治疗中的具有显著效果,但对于一些难治性RA患者的治疗仍不理想。而有学者认为RA患者自身的干细胞本身就存在功能缺陷,使得目前采用自体干细胞移植来治疗难治性RA的方案也受到质疑。另一方面,RA患者关节局部持续存在的炎症反应,是导致滑膜“肿瘤样”增殖,以及软骨组织最终遭受侵袭破坏的主要原因。尽管RA的治疗在抑制系统性炎症方面已有很大进展,但在炎症因素众多的关节局部如何有效地修复受损的软骨组织,目前还少见报道。
     骨髓间充质干细胞(bone marrow mesenchymal stem cells,BMSCs)多能分化性以及低免疫原性和免疫抑制特性的发现为解决这些问题带来了希望。以BMSCs为种子细胞构建的组织工程软骨已经在治疗骨关节炎(ostarthritis,OA)患者受损的关节软骨方面取得了满意的效果。另一方面,采用异体BMSCs治疗(graft-versus-host diseases,GVHD)的临床试验也取得成功。此外,BMSCs还被观察到能够缓解实验性脑脊膜炎(experimental allergic encephalomyelitis,EAE)——一种自身免疫病的动物模型的症状。然而,目前利用BMSCs的多能分化性和免疫学特性来治疗RA还少见报道。
     因此,本研究旨在BMSCs分离、培养以及体内、外诱导其向软骨细胞/组织分化的基础上:1.研究BMSCs对RA患者II型胶原(type II collagean,CII)特异性T细胞、B细胞的免疫抑制作用,并进一步观察异体BMSCs静脉移植对胶原诱导(collagen induced arthritis,CIA)大鼠模型的治疗作用;2.初步研究BMSCs分化后的软骨细胞的免疫学特性,探讨以BMSCs作为种子细胞构建的组织工程软骨,在炎性因素众多的关节内修复受损软骨同时是否可发挥抑炎作用,从而防止修复后软骨再次遭受炎症破坏的可能性;为临床采用BMSCs治疗RA提供实验依据。
     方法(分五部分):
     1.建立BMSCs分离、培养、鉴定体系和研究生物特性抽取正常健康供者骨髓3-5 ml,依次采用密度梯度离心法、自然贴壁法分离BMSCs;采用流式细胞术检测表面标记,诱导其向成骨细胞/脂肪细胞分化等方法对其鉴定;观察不同代数细胞形态、生长曲线、细胞周期、衰老染色等各方面的变化以及长期培养的BMSCs的自然分化情况,了解BMSCs的体外生长以及部分生物学特性;通过透射电镜观察BMSCs的微观结构。
     2.建立体内、外BMSCs向软骨细胞分化和鉴定体系将BMSCs离心后形成微小细胞团,在TGF-β1、地塞米松(Dex)及维生素C(Vit C)等诱导下向软骨细胞分化。21d后,细胞团经石蜡包埋、切片及HE染色后,进行甲苯胺蓝染色及CoII的免疫组化染色。采用Western blot和RT-PCR,分别检测诱导前后BMSCs中CoII及前CoII mRNA的表达。同时,采用组织工程技术在体外构建BMSCs-CII海绵复合物,在软骨细胞诱导液中培养1周后移植入裸鼠皮下,8 w后观察其大体形态。
     3.研究BMSCs及其分化的软骨细胞对CII反应性T细胞的作用收集RA患者外周血(peripheral blood,PB)及关节滑液(synovial fluids,SF),分离单个核细胞(mononuclear cell,PBMC和SFMC)。采用3H-胸腺嘧啶核苷掺入法、流式细胞术、ELISA等方法观察BMSCs及其分化的软骨细胞对RA患者CII特异性T细胞在增殖、CD25/CD29等表面活化标记表达、多种细胞因子分泌(IL-4、IL-10、IL-17A、IFN-γ、TNF-α和TGF-β1)、T细胞亚群变化以及T细胞凋亡等各方面的作用;探讨TGF-β1在BMSCs及其诱导的软骨细胞抑制T细胞的作用机制。
     4.研究BMSCs及其分化的软骨细胞对CII反应性B细胞的作用收集RA患者PB及SF,分离PBMC和SFMC。采用BrdU掺入法、流式细胞术、ELISA等方法观察BMSCs及其分化的软细胞对RA患者CII特异性B细胞在增殖、亚群变化、抗CII抗体表达以及B细胞凋亡等各方面的作用;探讨TGF-β1在BMSCs及其诱导的软骨细胞抑制B细胞的作用机制。
     5.研究异体BMSCs治疗大鼠CIA采用SD大鼠尾根部皮内注射乳化的鸡CII与完全福氏佐剂(complete Freund’s adjuvant,CFA)混合物的方法,建立CIA大鼠模型;分离、培养健康SD大鼠BMSCs;按静脉给予BMSCs的时间不同,将CIA大鼠分为初次免疫第7 d和21 d两个治疗组。以未注射BMSCs组CIA大鼠作阳性对照,通过CIA模型关节关节炎评分,血清中抗CII抗体水平变化以及关节的组织病理学检查,观察静脉注射异体BMSCs对CIA大鼠治疗的效果。
     结果:
     1. BMSCs及其生物学特性分离的细胞呈成纤维样的形态,其表面表达多种抗原标志,但并不表达造血细胞系的抗原,且这群细胞具有成功的向成骨细胞和脂肪细胞分化的能力,证实我们所分离出的细胞为BMSCs;传至第2-3代时,无论细胞形态还是其表面抗原的表达均显示BMSCs高度均一,但BMSCs随着传代呈逐渐衰老的趋势;长期培养时,BMSCs可自发的向成骨细胞分化;透射电镜下观察,可见BMSCs具有成熟和幼稚两种细胞形态。
     2. BMSC向软骨细胞分化体外诱导分化21d后HE染色显示,细胞呈软骨样细胞形态;胞外基质甲苯胺蓝及CII染色呈阳性;诱导后细胞表达CII蛋白和前CoII的mRNA;此外,8 w后观察到裸鼠皮下植入的BMSCs-CII生物支架复合物已呈透明软骨样组织形态。
     3. BMSCs及其分化的软骨细胞对CII反应性T细胞的作用BMSCs及其分化的软骨细胞,不引起RA患者T细胞的增殖与活化,反而能够抑制CII特异性T细胞的增殖、活化抗原(CD25和CD29)的表达,并呈剂量依赖趋势,且抑制效应并不因为BMSCs及其诱导的软骨细胞的延迟加入而改变;BMSCs及其分化的软骨细胞同样能够显著抑制CII特异性T细胞分泌炎性细胞因子如IL-17A、IFN-γ、TNF-α(P<0.05),防止抗炎因子IL-4的降低(P<0.05)以及升高共培养体系中抗炎因子IL-10和TGF-β1的水平(P<0.05);进一步检测发现,BMSCs及其分化的软骨细胞显著抑制T细胞亚群Th1、Th17的升高(P<0.05),防止Th2亚群降低;但对于Treg细胞的上调作用却不显著(P>0.05);此外,BMSCs及其分化的软骨细胞发挥抑制作用的同时并不会造成T细胞凋亡;TGF-β1在BMSCs及其分化的软骨细胞抑制T细胞的作用中扮演重要的角色。
     4. BMSCs及其分化的软骨细胞对CII反应性B细胞的作用BMSCs及其分化的软骨细胞,同样不引起RA患者B细胞的增殖,而对CII特异性B细胞的增殖具有抑制作用; BMSCs及其分化的软骨能显著抑制幼稚型CD27-IgG+B细胞比例的降低(P<0.05)和记忆型CD27+IgG+B细胞(non-swiched memory B cells)比例的升高(P<0.05),但对于记忆型CD27+IgD- B细胞(memory B cells)比例的增长,抑制作用却并不显著(P>0.05); BMSCs同样可显著抑制B细胞产生抗CII抗体(P<0.05);BMSCs及其分化的软骨细胞发挥抑制作用时的同样并不会引起B细胞凋亡;TGF-β1在BMSCs及其分化的软骨细胞抑制B细胞的作用中也发挥重要的作用。
     5.异体BMSCs治疗大鼠CIA的效果静脉给予CIA大鼠异体BMSCs并不会导致大鼠死亡,反而能够显著缓解CIA的病程发展(即关节肿胀变化过程)(P<0.05)以及显著降低CIA大鼠血清中抗CII抗体的水平(P<0.05);关节组织病理学检查证实,BMSCs能显著缓解CIA大鼠关节滑膜增殖和关节软骨的破坏程度(P<0.05),治疗越早,疗效越明显。
     结论:
     在成功建立BMSCs培养、鉴定以及诱导向软骨分化的研究体系的基础上,证明异体BMSCs及其诱导的软骨细胞在体外具有抑制RA CII特异性T、B细胞的作用,静脉移植BMSCs能够显著缓解大鼠CIA并减轻关节软骨的破坏。
Objective:
     Rheumatoid arthritis (RA) is a chronic and systemic inflammatory auto-immune disease characterized by pain, swelling, and inflammation of joints resulting in progressive destruction of cartilage and bone. Though the mechanisms underlying remain to be clarified, cumulative evidence suggests that T cells, B cells and multiple pro-inflamatory cytokines are all involved in the pathogenesis of RA. Thus, that inhibiting antigen-reactive T-cell/B-cell activities and antagonizing pro-inflammatory cytokines are used as critical methods for RA threatment, which also have been proved effective by the successful using biological agents targeting at T cells, B cells and multiple pro-inflamatory cytokines in RA patients. However, these biological agents have not been got satisfying results in the treatment of some patients with refractory RA, and then autologous bone marrow transplantation (Auto-BMT) has been used as an important substitution. Though arthritis in patients with refractory RA has been notably allevated by auto-BMT, the prostecdtive efficacy of auto-BMT is still unknown. Moreover, RA patients-derived stem cells are recently considered to have some functional defects,which raised some suspection on the role of auto-BMT in RA threatment. On the orther hand, cartilage-repairing in the inflammation-infiltrated RA joints is another aspect for RA therapy, which still has not been well-studied so far.
     The multilineage potential of bone mesenchymal stem cells (BMSCs) and their immunosuppressive nature suggest that allogenic BMSCs may be promising candidates for cartilage repairing and immunotherapy in the treatment of RA. BMSCs-based tissue engineering has obtained satisfactory results in repairing the articular cartilage defects in osteoarthritis (OA) models and patients. In addition, allogenic BMSCs also have been successfully used to treat graft-versus-host diseases (GVHD) in patients who received bone marrow transplantation (BMT) and alleviated a T-cell-mediated auto-immune diseas-experimental autoimmune encephalomyelitis (EAE) in an animal model. However, cell therapy for RA using allogenic BMSCs has not been well-studied.
     In the present study, we firstly isolated BMSCs from healty adult bone marrow and induced theses cells to differentiate into chondrocyte/cartilage both in vitro and in vivo after expansion in vitro. Then, we explored the therapeutic potentials of BMSCs in RA treatment: the effects of BMSCs on the responses of CII-reactive T cells/ B cells from peripheral blood (PB)/synovial fluid (SF) of RA patients in vitro and on the collagean induced arthritis model by i.v administration were evaluated; we also investigated whether MSCs-differentiated chondrocytes (BMSCs-chondrocytes) possess the same immunological properties as MSCs to explore their cartilage-repairing potentiality in the inflammation-infiltrated RA joints for preventing cartilage re-destruction.
     Methods (five parts):
     1. Isolation and identification of BMSCs Bone marrow samples (3~5ml) were obtained from healthy adult human donors, and BMSCs were separated by centrifugation in percoll solution followed by adherence to the plastics cultured in vitro; then, the cell surface antigen were detected by flow cytometry (FCM) and their multilineage potential was confirmed through inducing BMSCs to differentiate into osteoblast and adipocytes; in addition, the morphology, cell growth curve, cell cycle and senescence staining were explored in cells from different passages; furthermore, the microstructure of BMSCs were also observed under transmission electron microscope(TEM).
     2. Chondrogenic differentiation of BMSCs in vitro and in vivo The micro-cell aggregate was get by centrifugate and was induced by TGF-β1, dexamethasone(Dex) and Vitamin C(Vit C); 21 days later, the micro-cell aggregate were embedded in paraffin, sectioned and stained with HE staining, toluidine blue staining and immunohistochemical staining with anti-type II collagen (CII); the expression of CII in cell plasm were detected by Western blot and The expression of pro CoII mRNA were detected by RT-PCR; in addition, BMSCs-CII scaffod compounds were constructed in vitro followed by cultured in chondrogenesis-inducing medium, and the chondrogenic differentiation of these compounds were observed 8 weeks later after implanting subcutaneously in the athymic mice.
     3. Influence of BMSCs and BMSCs-chondrocytes on CII-reactive T cells in vitro Paired peripheral blood mononuclear cells and synovial fluids mononuclear cell were isolated from patients with RA; then the effects of both MSCs and MSCs-chondrocytes on proliferation, activation-antigen expression (CD69 and CD25), and cytokines production (IFN-γ, TNF-α, TGF-β1, IL-17A, IL-10 and IL-4) of CII-reactive T cells and T-cell subsets in RA patients were investigated with the stimulation of CII or not by 3H-thymidine-incorporate detection, flow cytometry and ELISA respectively; CD3/Annexin V staining was used to evaluate T-cell apoptosis in the inhibition by FCM; the role of TGF-β1 underlying the inhibition was also investigated.
     4. Influence of BMSCs and BMSCs-chondrocytes on CII-reactive B cells in vitro Paired peripheral blood mononuclear cells and synovial fluids mononuclear cell were isolated from patients with RA; then the effects of both MSCs and MSCs-chondrocytes on proliferation, anti-CII antibody production,B-cell subsets in RA patients were investigated with the stimulation of CII or not by BrdU-incorporate detection, flow cytometry and ELISA respectively; CD19/Annexin V staining was used to evaluate B-cell apoptosis in the inhibition by FCM; the role of TGF-β1 underlying the inhibition was also investigated.
     5. Influence of BMSCs by I.V on CIA Rats were isolated and expanded firstly; Collagen-induced arthritis (CIA) model was induced by intradermal injection with chicken CII in complete Freund’s adjuvant (CFA) into SD rats,and a second injection of CII in CFA was administered on 8 day after primary immunization; CIA rats received BMSCs by i.v administration were divided into 2 groups according to the time point they received BMSCs after primary immunization: on 7 day and 21 day, respectively; CIA rats who did not receive BMSCs served as positive control; the effects of allogenic BMSCs on the development of arthritis were investigated by a arthritis scoring system and the titre of anti-CII antibody in serum at different time point, together with a histopathological scoring system in ankle joints after rats being sacrificed.
     Results:
     1. Isolation, identification of BMSCs and its biological properties The population we isolated showed a fibroblast-like morphology, and expressed multiple cell surface antigens while not expressed cell antigen of hemopoietic stem cell; these cells also retained the capacity to differentiate into osteocytes and adipocytes, which confirmed that the cells we isolated were BMSCs; both morphology and the results of FCM showed that the cells were 90 % and 98 % homogeneous respectively in passage 2 and passage 3; however, BMSCs were found senenscence during sequential passages; in addition, BMSCs were found to differentiate into osteoblast precursors during long-term culture; under TEM,we also found BMSCs were composed of 2 subpopulatons:nave cells and mature cells.
     2. BMSCs could be successfully induced to differentiate into chondrocytes in vitro and in vivo 21 days later, the HE result showed that the post-inductive cells exhibited a chondrocyte-like morphology. The cells stained with toluidine blue and Col II were positive in the extracelluar matrix. The result of Western blot and RT-PCR showed that the Col II and its pro Col II mRNA were only expressed in post-inductive cells; 8 weeks later after implantation into athymic mice, BMSCs-CII scaffods compounds showed a cartilage-like morphology.
     3. BMSCs and BMSCs-chondrocytes suppressed CII-reactive T cells in vitro Allogenic BMSCs failed to elicit positive responses of CII-reactive T cells, whereas significantly suppressed CII-stimulated T-cell proliferation and activation-antigen expression in a dose-dependent fashion without inducing T-cell apoptosis; the inhibition was still observed even BMSCs were added as late as 3 days after the initiation of stimulation; moreover, BMSCs inhibited T cells in producing IL-17A, IFN-γand TNF-α(P<0.05), while up-regulated the levels of IL-10 and TGF-β1 (P<0.05) and prevented IL-4 from decreasing(P<0.05); furthermore, Th1 and Th17 were found to be significantly suppressed by BMSCs(P<0.05) while Treg were not significantly upregulated (P>0.05); TGF-β1 was confirmed to play a critical role in inhibition. throughout our study, MSCs-chondrocytes shared the similar properties with MSCs.
     4. BMSCs and BMSCs-chondrocytes suppressed CII-reactive B cells in vitro Allogenic BMSCs also failed to elicit positive responses of CII-reactive B cells, whereas significantly suppressed CII-stimulated B-cell proliferation and anti-CII antibody prduction without inducing B-cell apoptosis; in addition, BMSCs were also found significantly inhibited the up-regulation of CD27+IgG+non-swiched memory B cells with the stimulation of CII and down-regulation of CD27-IgG+ na?ve B cells(P<0.05); as for CD27+IgD- memory B cells, its elevation in the presence of CII was still suppressed by BMSCs, but insignificantly (P>0.05); TGF-β1 also played a critical role in the inhibition; throughout our study, MSCs-chondrocytes shared the similar properties with MSCs.
     5. BMSCs alleviated arthritis in CIA BMSCs administration by i.v. fialed to result in the death of CIA rats for graft-versus-host diseases (GVHD), whereas siginificantly allevated arthritis and prevent the development of joint inflammation in the CIA rats(P<0.05); the titre of anti-CII antibody in CIA serum was also significantly suppressed by BMSCs(P<0.05); furthermore, BMSCs were found to significantly prevented the proliferation of synovium and destruction of cartilage in CIA rat(sP<0.05); in addition, the ealier using BMSCs for therapy ,the better it wil be;
     Conclusion:
     1. We successfully established the methods in our labaratory for BMSCs isolatation、culture and identification in vitro, and even successffuly induced BMSCs to differentiate into chondrocyte/cartilage both in vitro and in vivo;
     2. We found allogenic BMSCs and they differentiated chondrocytes could significantly suppressed the responses of CII-reactive T cells and B cells in vitro;
     3. We found allogenic BMSCs significantly alleviated the development of arthritis and destruction of cartilage in CIA rats;
引文
1. Scott DL, Symmons DP, Coulton BL, Popert AJ. Long-term outcome of treating rheumatoid arthritis: results after 20 years. Lancet 1987;1(8524):1108-11.
    2. Yelin E, Wanke LA. An assessment of the annual and long-term direct costs: the impact of poor function and functional decline. Arthritis Rheum 1999;42(6):1209-18.
    3. Smolen JS, Steiner G. Rheumatoid arthritis is more than cytokines:autoimmunity and rheumatoid arthritis. Arthritis Rheum 2001;44(10):2218-20.
    4. Goldring SR. Pathogenesis of bone erosions in rheumatoid arthritis. Curr Opin Rheumatol 2002;14(4):406-10.
    5. Matsuoka N, Eguchi K, Kawakami A, Ida H, Nakashima M, Sakai M, Terada K, Inoue S, Kawabe Y, Kurata A, et al. Phenotypic characteristics of T cells interacted with synovial cells. J Rheumatol 1991;18(8) 1137-42.
    6. Kong YY, Feige U, Sarosi I, Bolon B, Tafuri A, Morony S, Capparelli C, Li J, Elliott R, McCabe S, Wong T, Campagnuolo G, Moran E, Bogoch ER, Van G, Nguyen LT, Ohashi PS, Lacey DL, Fish E, Boyle WJ, Penninger JM. Activated T cells regulate bone loss and joint destruction in adjuvant arthritis through osteoprotegerin ligand. Nature 1999;402(6759):304-9.
    7. Choy EH, Panayi GS. Cytokine pathways and joint inflammation in rheumatoid arthritis. N Engl J Med 2001;344(12):907-16.
    8. Houssiau FA. Cytokines in rheumatoid arthritis. Clin Rheumatol 1995;14(Suppl 2):10-3.
    9. Holmdahl R, Klareskog L, Rubin K, Larsson E, Wigzell H. T lymphocytes in collagen II-induced arthritis in mice: Characterization of arthritogenic collagen II-specific T-cell lines and clones. Scand J Immunol 1985;22(3):295-306.
    10. Seki N, Sudo Y, Yoshioka T, Sugihara S, Fujitsu T, Sakuma S, Ogawa T. Type II collagen-induced murine arthritis. I. Induction and perpetuation of arthritis require synergy between humoral and cell-mediated immunity. J Immunol 1988;140(5):1477-84.
    11. Kotani M, Hirata K, Ogawa S, Habiro K, Ishida Y, Tanuma S, Horai R. CD28-dependent differentiation into the effector/memory phenotype is essential for induction of arthritis in interleukin-1 receptor antagonist-deficient mice. Arthritis Rheum 2006;542):473-81.
    12. Isler P, Vey E, Zhang JH, Dayer JM. Cell surface glycoproteins expressed on activated human T cells induce production of interleukin-1 beta by monocytic cells: a possible role of CD69. Eur Cytokine Netw 1993;4(1):15-23.
    13. Mosmann TR, Sad S. The expanding universe of T- cell subsets: Th1, Th2 and more. Immunol Today 1996;17(3):138-46.
    14. Romagnani S. Short analytical review: Th1 and Th2 in human diseases. Clin Immunol Immuno Pathol 1996;80(3):225-35.
    15. Miossec P, van den Berg W. Th1/Th2 cytokine balance in arthritis. Arthritis Rheum 1997;40(12):2105-15.
    16. Park SH, Min DJ, Cho ML, Kim WU, Youn J, Park W, Cho CS, Kim HY. Shift toward T helper 1 cytokines by type II collagen-reactive T cells in patients with rheumatoid arthritis. Arthritis Rheum 2001;44(3):561-9.
    17. Fox DA. The role of T cells in the immunopathogenesis of rheumatoid arthritis.Arthritis Rheum 1997;40(4):598–609.
    18. van Roon JAG, Lafeber FPJG, Bijlsma JWJ. Synergistic activity of interleukin-4 and interleukin-10 in suppression of inflammation and joint destruction in rheumatoid arthritis. Arthritis Rheum 2001;44(1):3-12.
    19. Vermeire K, Heremans H, Vandeputte M, Huang S, Billiau A, Matthys P. Accelerated collagen-induced arthritis in IFN gamma receptor-deficient mice. J Immunol 1997;158(11):5507-13.
    20. Van Roon JA, Verhoef CM, van Roy JL, Gmelig-Meyling FH, Huber-Bruning O, Lafeber FP, Bijlsma JW. Decrease in peripheral type 1 over type 2 T cell cytokine production in patients with rheumatoid arthritis correlates with an increase in severity of disease. Ann Rheum Dis 1997;56(11):656-60.
    21. Rosloniec EF, Latham K, Guedez YB. Paradoxical roles of IFN gamma in models of Th1-mediated autoimmunity. Arthritis Res 2002;4(6):333-6.
    22. Fossiez F, Djossou O, Chomarat P, Flores-Romo L, Ait-Yahia S, Maat C, Pin JJ, Garrone P, Garcia E, Saeland S, et al. T cell interleukin-17 induces stromal cells to produce proinflammatory and hematopoietic cytokines. J Exp Med 1996;183(6):2593-603.
    23. Cho ML, Yoon CH, Hwang SY, Park MK, Min SY, Lee SH, Park SH, Kim HY. Effector function of type II collagen-stimulated T cells from rheumatoid arthritis patients: cross-talk between T cells and synovial fibroblasts. Arthritis Rheum 2004;50(4):776-84.
    24. Kim KW, Cho ML, Park MK, Yoon CH, Park SH, Lee SH, Kim HY. Increased interleukin-17 production via a phosphoinositide 3-kinase/Akt and nuclear factor kappaB-dependent pathway in patients with rheumatoid arthritis. Arthritis Res Ther 2005;7(1):R139-48.
    25. Stamp LK, James MJ, Cleland LG. Interleukin-17: the missing link between T-cell accumulation and effector cell actions in rheumatoid arthritis? Immunol Cell Biol 2004;82(1):1-9.
    26. Lubberts E, Koenders MI, van den Berg WB. The role of T-cell interleukin-17 in conducting destructive arthritis: lessons from animal models. Arthritis Res Ther 2005;7(1):29-37.
    27. Koenders MI, Lubberts E, van de Loo FA, Oppers-Walgreen B, van den Bersselaar L, Helsen MM, Kolls JK, Di Padova FE, Joosten LA, van den Berg WB. Interleukin-17 acts independently of TNF-alpha under arthritic conditions. J Immunol 2006;176(10):6262-6269.
    28. Kirkham BW, Lassere MN, Edmonds JP, Juhasz KM, Bird PA, Lee CS, Shnier R, Portek IJ. Synovial membrane cytokine expression is predictive of joint damage progression in rheumatoid arthritis: a two-year prospective study (the DAMAGE study cohort). Arthritis Rheum 2006;54(4):1122-31.
    29. Langrish CL, Chen Y, Blumenschein WM, Mattson J, Basham B, Sedgwick JD, McClanahan T, Kastelein RA, Cua DJ. IL-23 drives a pathogenic T cell population that induces autoimmune inflammation. J Exp Med 2005;201(2):233-40.
    30. Piccirillo CA, Thornton AM. Cornerstone of peripheral tolerance: naturally occurring CD4+CD25+ regulatory T cells.Trends Immunol 2004;25(7):374-80.
    31. Bruder D, Probst-Kepper M, Westendorf AM, Geffers R, Beissert S, Loser K, von Boehmer H, Buer J, Hansen W. Neuropilin-1: a surface marker of regulatory T cells. Eur J Immunol 2004;34(3):623-630.
    32. Huang CT, Workman CJ, Flies D, Pan X, Marson AL, Zhou G,Hipkiss EL, Ravi S, Kowalski J, Levitsky HI. Role of LAG-3 in regulatory T cells. Immunity 2004;21(4):503-13.
    33. Leipe J, Skapenko A, Lipsky PE, Schulze-Koops H. Regulatory T cells in rheumatoid arthritis. Arthritis Res Ther 2005;7(3):93-99.
    34. Huang CT, Workman CJ, Flies D, Pan X, Marson AL, Zhou G, Hipkiss EL, Ravi S, Kowalski J, Levitsky HI, et al. Role of LAG-3 in regulatory T cells. Immunity 2004;21(4):503-13.
    35. Ehrenstein MR, Evans JG, Singh A, Moore S, Warnes G, Isenberg DA, Mauri C. Compromised function of regulatory T cells in rheumatoid arthritis and reversal by anti-TNF-α therapy. J Exp Med 2004;200(3):277-85.
    36. Cao D, Borjesson O, Larsson P, Rudin A, Gunnarsson I, Klareskog L, Malmstrom V, Trollmo C. FOXP3 identifies regulatory CD25bright CD4+ T cells in rheumatic joints. Scand J Immunol 2006;63(6):444-52.
    37. Lawson CA, Brown AK, Bejarano V, Douglas SH, Burgoyne CH, Greenstein AS, Boylston AW, Emery P, Ponchel F, Isaacs JD. Early rheumatoid arthritis is associated with a deficit in the CD4+CD25high regulatory T cell population in peripheral blood. Rheumatology (Oxford) 2006;45(10):1210-7.
    38. Mottonen M, Heikkinen J, Mustonen L, Isomaki P, Luukkainen R, Lassila O. CD4+ CD25+ T cells with the phenotypic and functional characteristics of regulatory T cells are enriched in the synovial fluid of patients with rheumatoid arthritis. Clin Exp Immunol 2005;140(2):360-7.
    39. Frey O, Petrow PK, Gajda M, Siegmund K, Huehn J, Scheffold A,Hamann A, Radbruch A, Brauer R. The role of regulatory T cells in antigen-induced arthritis: aggravation of arthritis after depletion and amelioration after transfer of CD4+CD25+ T cells. Arthritis Res Ther 2005;7(2):R291-301.
    40. Morgan ME, Sutmuller RP, Witteveen HJ, van Duivenvoorde LM, Zanelli E, Melief CJ. CD25+ cell depletion hastens the onset of severe disease in collagen-induced arthritis. Arthritis Rheum 2003;48(5):1452-60.
    41. Cao D, van Vollenhoven R, Klareskog L, Trollmo C, Malmstrom V. CD25brightCD4+ regulatory T cells are enriched in inflamed joints of patients with chronic rheumatic disease. Arthritis Res Ther 2004;6(4):R335-46.
    42. van Amelsfort JM, Jacobs KM, Bijlsma JW, Lafeber FP, Taams LS. CD4(+)CD25(+) regulatory T cells in rheumatoid arthritis: differences in the presence, phenotype, and function between peripheral blood and synovial fluid. Arthritis Rheum 2004;50(9):2775-85.
    43. Valencia X, Stephens G, Goldbach-Mansky R, Wilson M, Shevach EM, Lipsky PE. TNF downmodulates the function of human CD4+CD25high T-regulatory cells. Blood 2006;108(1):253-61.
    44. van Bilsen JH, van Dongen H, Lard LR, van der Voort EI, Elferink DG, Bakker AM. Functional regulatory immune responses against human cartilage glycoprotein-39 in health vs. proinflammatoryresponses in rheumatoid arthritis. PNAS 2004;101(49):17180-5.
    45. Morgan ME, Flierman R, van Duivenvoorde LM, Witteveen HJ, van Ewijk W, van Laar JM, de Vries RR, Toes RE. Effective treatment of collagen-induced arthritis by adoptive transfer of CD25+regulatory T cells. Arthritis Rheum 2005;52(7):2212-21.
    46. Billiau A, Leclercq G, Matthys P. Defective CD4+CD25+ regulatory T cell functioning in collagen-induced arthritis: an important factor in pathogenesis, counter-regulated by endogenous IFN-gamma. Arthritis Res Ther 2005;7(2):R402-15.
    47. Maldonado A, Mueller YM, Thomas P, Bojczuk P, O’Connors C, Katsikis PD. Decreased effector memory CD45RAtCD62L-CD8+T cells and increased central memory CD45RA- CD62L+CD8+T cells in peripheral blood of rheumatoid arthritis patients. Arthritis Res Ther 2003;5(2):R91-6.
    48. Kang YM, Zhang X, Wagner UG, Yang H, Beckenbaugh RD, Kurtin PJ. CD8+T cells are required for the formation of ectopic germinal centers in rheumatoid synovitis. J Exp Med 2002;195(10):1325-36.
    49. Berek C, Gause A. Role of B cells in the pathogenesis of rheumatoid arthritis: potential implications for treatment. Biodrugs 2001;(2)15:72-9.
    50. Goronzy JJ, Weyand CM. Rheumatoid arthritis. Immunol Rev 2005;204:55-73.
    51. Carroll MC. The complement system in regulation of adaptive immunity. Nat Immunol 2004;5(10):981-6.
    52. Weyand CM, Goronzy JJ, Takemura S. Cell-cell interactions in synovitis: Interactions between T cells and B cells in rheumatoid arthritis. Arthritis Res, 2000;2:457-63.
    53. Carroll MC. The complement system in regulation of adaptive immunity. Nat Immunol 2004;5(10):981-6.
    54. Salzer U, Chapel HM, Webster AD, Pan-Hammarstrom Q, Schmitt-Graeff A, Schlesier M. Mutations in TNFRSF13B encoding TACI are associated with common variable immuno-deficiency in humans. Nat Genet 2005;37(8):820-8.
    55. Boackle SA. Complement and autoimmunity. Biomed Pharmacother 2003;57(7):269-73.
    56. Stastny P. Association of the B-cell alloantigen DRw4 with rheumatoid arthritis. N Engl J Med 1978;298(16):869-71.
    57. Takemura S, Klimiuk PA, Braun A, Goronzy JJ, Weyand CM. T cell activation in rheumatoid synovium is B cell dependent. J Immunol 2001;167(8):4710-8.
    58. Lund FE, Garvy BA, Randall TD, Harris DP. Regulatory roles for cytokine-producing B cells in infection and autoimmune disease. Curr Dir Autoimmun 2005;8:25-54.
    59. Dorner T, Burmester GR. The role of B cells in rheumatoid arthritis: mechanisms and therapeutic targets. Curr Opin Rheumatol 2003;15(3):246-52.
    60. Magalh?es R, Stiehl P, Morawietz L, Berek C, Krenn V. Morphological and molecular pathology of the B cell response in synovitis of rheumatoid arthritis. Virchows Arch 2002;441(5):415-27.
    61. Arend WP. The innate immune system in rheumatoid arthritis. Arthritis Rheum 2001;44(10):2224-34.
    62. Ma Y, Pope RM. The role of macrophages in rheumatoid arthritis. Curr Pharm Des 2005;11(5):569-80.
    63. Liu HT, Pope RM. Phagocytes: mechanisms of inflammation and tissue destruction. Rheum Dis Clin N Am 2004;30(1):19-39.
    64. Edwards SW, Hallett MB. Seeing the wood for the trees: the forgotten role of neutrophils in rheumatoid arthritis. Imunology today 1997;18(7):320-4.
    65. Ji H, Ohmura K, Mahmood U, Lee DM, Hofhuis FM, Boackle SA, Takahashi K. Arthritis critically dependent on innate immune system players. Immunity 2002;16:157-68.
    66. Qu Z, Garcia CH, O'Rourke LM, Planck SR, Kohli M, Rosenbaum JT. Local proliferation of fibroblast-like synoviocytes contributes to synovial hyperplasia. Results of proliferating cell nuclear antigen/cyclin, c-myc, and nucleolar organizer region staining. Arthritis Rheum. 1994;37(2)212-20.
    67. Gravallese EM, Manning C, Tsay A, Naito A, Pan C, Amento E, Goldring SR. Synovial tissue in rheumatoid arthritis is a source of osteoclast differentiation factor. Arthritis Rheum. 2000;43(2)250-8.
    68. Strand V, Kavanaugh AF. The role of interleukin-1 in bone resorption in rheumatoid arthritis. Rheumatology 2004;43(Suppl-3):III10-III16.
    69. Dayer J M. The pivotal role of interleukin- 1 in the clinical manifestations of rheumatoid arthritis. Rheumatology(Oxford) 2003;42 (Suppl 2):3-10.
    70. Zwerina J, Hayer S, Tohidast- Akrad M. Single and combined inhibition of tumor necrosis factor, interleukin-1, and RANKL pathways in tumor necrosis factor- induced arthritis: effects on synovial inflammation, bone erosion, and cartilage destruction. Arthritis Rheum 2004;50(1):277-90.
    71. Dayer J M. Interleukin 1 or tumor necrosis factor- alpha: which is the real target in rheumatoid arthritis? J Rheumatol 2002;65:Suppl10-5.
    72. Nakahara H, Song J, Sugimoto M, et al. Anti- interleukin- 6 receptor antibody therapy reduces vascular endothelial growth factor production in rheumatoid arthritis. Arthritis Rheum 2003;48(6):1521-9.
    73. Nishimoto N, Yoshizaki K,Miyasaka N. Treatment of rheumatoid arthritis with humanized anti-interleukin-6 receptor antibody: a multicenter, double-blind, placebo-controlled trial. Arthritis Rheum 2004;50(6):1761-9.
    74. Min S Y, Hwang S Y, Jung Y O. Increase of cyclooxygenase-2 expression by interleukin 15 in rheumatoid synoviocytes.J Rheumatol 2004;31(5):875-83.
    75. Hwang S Y, Kim J Y, Kim K W. IL-17A induces production of IL-6 and IL-8 in rheumatoid arthritis synovial fibroblasts via NF-kappaB- and PI3- kinase /Akt- dependent pathways. Arthritis Res Ther 2004;6(2):120-8.
    76. Nanki T, Nagasaka K, Hayashida K. Chemokines regulate IL-6 and IL-8 production by fibroblast-like synoviocytes from patients with rheumatoid arthritis. J Immunol 2001;167 (9):5381-5.
    77. Borderie D, Hilliquin P, Hernvann A. Inhibition of inducible NO synthase by TH2 cytokines and TGF beta in rheumatoid arthritic synoviocytes: effects on nitrosothiol production. Nitric Oxide 2002;6(3):271-82.
    78. Wirjatijasa F, Dehghani F, Blaheta R A. Interleukin- 4, interleukin-10, and interleukin-1-receptor antagonist but not transforming growth factor- beta induce ramification and reduce adhesion molecule expression of rat microglial cells. J Neurosci Res 2002;68(5):579-87.
    79. Villiger P M, Geng Y, Lotz M. Induction of cytokine expression by leukemia inhibitory factor. J Clin Invest 1993;91:1575-81.
    80. Alaaeddine N, Di Battista JA, Pelletier JP. Inhibition of tumor necrosis factor alpha- induced prostaglandin E2 production by the antiinflammatory cytokines interleukin 4, interleukin 10, and interleukin 13 in osterarthritic synovial fibroblasts:distinct targeting in the siganaling pathways. Arthritis Rheum 1999;42:710-8.
    81. Wooley P H. Immunotherapy in collagen-induced arthritis: past, present, and future. Am J Med Sci 2004;327(4):217-26.
    82. MacKay K, Milicic A, Lee D, Tikly M. Rheumatoid arthritis susceptibility and interleukin 10: a study of two ethnically diverse populations. Rheumatology(Oxford) 2003;42(1):149-53.
    83. Prudhomme G J, Piccirillo C A. The inhibitory effect of transforming growth factor-betal (TGF-β) in auto-immune disease. J Autoimmuity 2000;14(1):23-42.
    84. Andreakos E T, Foxwell B M, Brennan F M. Cytokines and anti- cytokine biologicals in autoimmunity:present and future. Cytokine Growth Factor 2002;13:299-313.
    85. Palmer G, Mezin F, Juge-Aubry CE. Interferon beta stimulates interleukin 1 receptor antagonist production in human articular chondrocytes and synovial fibroblasts. Ann Rheum Dis 2004;63(1):43-9.
    86. Spadaro A, Rinaldi T, Riccieri V. Interleukin-13 in autoimmune rheumatic diseases: relationship with the autoantibody profile. Clin Exp Rheumatol 2002;20(2):213-6.
    87. Lubberts E, Koenders MI, Oppers-Walgreen B. Treatment with a neutralizing anti-murine interleukin-17 antibody after the onset of collagen-induced arthritis reduces joint inflammation, cartilage destruction, and bone erosion. Arthritis Rheum 2004;50(2):650-9.
    88. Joosten L A B, Lubbtrts E, Durez P. Role of interleukin-4 and interleukin-10 in murine cillagen-induced arthritis. Arthritis Rheum 1997;40(2):249-60.
    89. Arend W P. The balance between IL-1 and IL-1Ra in disease. Cytokine Growth Factor 2002; 13:323-40.
    90. Taylor PC. Antibody therapy for rheumatoid arthritis. Curr Opin Pharmacol 2003;3(3):323-8.
    91. MacKenzie NM. New therapeutics that treat rheumatoid arthritis by blocking T-cell activation. Drug discov today 2006;11 (19-20): 952-6.
    92. Tellander AC, Pettersson U, Runstrom A, Andersson M. Michaelsson E. Interference with CD28, CD80, CD86 or CD152 in collagen-induced arthritis. Limited role of IFN-γ in anti-B7-mediated suppression of disease. J Autoimmun 2001;17(1):39-50.
    93. Srinivasan M, Lu D, Eri R, Brand DD, Haque A, Blum JS. CD80 Binding Polyproline Helical Peptide Inhibits T cell Activation. J Biol Chem. 2005;280(11):10149-55.
    94. Lee KM, Chuang E, Griffin M, Khattri R, Hong DK, Zhang W, Straus D, Samelson LE, Thompson CB, Bluestone JA. Molecular basis of T cell inactivation by CTLA-4. Science 1998;282(5397): 2263-66.
    95. Cross AH, San M, Keeling RM, Karr RW. CTLA-4-Fc treatment of ongoing EAE improves recovery, but has no effect upon relapse rate. Implications for the mechanisms involved in disease perpetuation. J Neuroimmunol 1999;96(1):144-7.
    96. De Vita S, Quartuccio L. Treatment of rheumatoid arthritis with rituximab: An update andpossible indications. Autoimmunity Reviews 2006;5:443-8.
    97. Moore PA, Belvedere O, Orr A, Pieri K, LaFleur DW, Feng P. BLyS: member of the tumor necrosis factor family and B lymphocyte stimulator. Science 1999;285(5425):260-3.
    98. Salzer U, Chapel HM, Webster AD. Mutations in TNFRSF13B encoding TACI are associated with common variable immunodeficiency in humans. Nat Genet 2005;37 (8):820-5.
    99. Stohl W. BlySfulness does not equal blissfulness in systemic lupus erythematosus: a therapeutic role for BLyS antagonists. Curr Dir Autoimmun 2005;8:289-304.
    100. Lipsky PE, van der Heijde DM, St Clair EW, Furst DE, Breedveld FC, Kalden JR, Smolen JS, Weisman M, Emery P, Feldmann M, Harriman GR, Maini RN. Infliximab and methotrexate in the treatment of rheumatoid arthritis. Anti-Tumor Necrosis Factor Trial in Rheumatoid Arthritis with Concomitant Therapy Study Group. N Engl J Med 2000; 343(22):1594-602.
    101. Maini R, St Clair EW, Breedveld F, Furst D, Kalden J, Weisman M, Smolen J, Emery P, Harriman G, Feldmann M, Lipsky P. Infliximab (chimeric anti-tumour necrosis factor alpha monoclonal antibody) versus placebo in rheumatoid arthritis patients receiving concomitant methotrexate: a randomised phase III trial. ATTRACT Study Group. Lancet 1999;354(9194):1932-9
    102. Weinblatt ME, Kremer JM, Bankhurst AD, Bulpitt KJ, Fleischmann RM, Fox RI, Jackson CG, Lange M, Burge DJ. A trial of etanercept, a recombinant tumor necrosis factor receptor:Fc fusion protein, in patients with rheumatoid arthritis receiving methotrexate. N Engl J Med 1999;340(4):253-9.
    103. Cohen S, Hurd E, Cush J, Schiff M, Weinblatt ME, Moreland LW, Kremer J, Bear MB, Rich WJ, McCabe D. Treatment of rheumatoid arthritis with anakinra, a recombinant human interleukin-1 receptor antagonist, in combination with methotrexate: results of a twenty-four-week, multicenter, randomized, double-blind, placebo-controlled trial. Arthritis Rheum 2002;46(3):614-24.
    104. Nishimoto N, Yoshizaki K, Miyasaka N, Yamamoto K, Kawai S, Takeuchi T. Treatment of rheumationd arthritis with humanized anti-interleukin-6 (IL-6) receptor antibody: a multicenter, double-blind, placebocontrolled trial. Arthritis Rheum. 2004;50(6):1761-69.
    105. Baslund B, Tvede N, Danneskiold-Samsoe B, Larsson P, Panayi G, Petersen J. Targeting interleukin-15 in patients with rheumatoid arthritis: a proof-of-concept study. Arthritis Rheum 2005;52(9):2686-92.
    106. Joosten LA, Lubberts E, Durez P, Helsen MM, Jacobs MJ, Goldman M, van den Berg WB. Role of interleukin-4 and interleukin-10 in murine collagen-induced arthritis: protective effect of interleukin-4 and interleukin-10 treatment on cartilage destruction. Arthritis Rheum 1997;40(2): 249-260.
    107. Joachim RK, Joachim S. Editorial:Oral Collagen in the Treatment of RA. Arthritis Rheum 1998;41(2): 191-194
    108. Fellowes R, Etheridge CJ, Coade S, Cooper RG, Stewart L, Miller AD, Woo P. Amelioration of established collagen induced arthritis by systemic IL-10 gene delivery. Gene Ther 2000;7(11): 967-77.
    109. Quattrocchi E, Dallman MJ, Feldmann M. Adenovirus-mediated gene transfer of CTLA-4 Ig fusion protein in the suppression of experimental autoimmune arthritis. Arthritis Rheum 2000;43(8): 1688-97.
    110. Kim SH, Evans CH, Kim S, Oligino T, Ghivizzani SC, Robbins PD. Gene therapy for established murine collagen-induced arthritis by local and systemic adenovirus-mediated delivery of interleukin- 4. Arthritis Res 2000;2(4):293-302.
    111. American College of Rheumatology Subcommittee on Rheumatoid Arthritis Guidelines. Guidelines for the management of rheumatoid arthritis. 2002 Update. Arthritis Rheum 2002;46(4):328-46.
    112. Baldwin JL, Storb R, Thomas ED, Mannik M. Bone marrow transplantation in patients with gold-induced marrow aplasia. Arthritis Rheum 1977;20(5):1043- 48.
    113. Jacobs P, Vincent MD, Martell RW. Prolonged remission of severe refractory rheumatoid arthritis following allogeneic bone marrow transplantation for drug- induced aplastic anemia. Bone Marrow Transplant 1986;1(2):237-9.
    114. Lowenthal RM, Cohen ML, Atkinson K, Biggs JC. Apparent cure of rheumatoid arthritis by bone marrow transplantation. J Rheumatol 1993;20(1): 137-40.
    115. McKendry RJR, Huebsch L, Lelair B. Progression of rheumatoid arthritis following bone marrow transplantation: a case report with a 13-year follow up. Arthritis Rheum 1996;39(7):1246-53.
    116. VanBekkum DW. Stem cell transplantation in experimental modelsof autoimmune diseases. J Clin Immunol 2000;20(1):10-6.
    117. Knaan-Shanzer S, Houben P, Kinwel-Bohre EPM, Van Bekkum DW. Remissioninduction of adjuvant arthritis in rats by total body irradiation and autologous bone marrow transplantation. Bone MarrowTransplant 1991;8(5):333-8.
    118. Snowden J, Brooks P, Biggs J. Haemopoietic stem cell transplantation for autoimmune diseases. Br J Haematol 1997;99(1):9-22.
    119. Hough RE, Snowden JA, Wulffraat NM. Haemopoietic stem ell transplantation in autoimmune disease: a European perspective. Br J Haematol 2005;128(4):432-59.
    120. Bohgaki T, Atsumi T, Koike T. Autoimmune disease after autologous hematopoietic stem cell transplantation. Autoimmun Rev 2008 ;7(3):198-203.
    121. Cohnheim J. Ueber Entzu¨ndung und Eiterung. (In German.) Pathol Anat Physiol Klin Med. 1867;40(1):1-79.
    122. Friedenstein AJ, Petrakova KV, Kurolesova AI, Frolova GP. Heterotopic of bone marrow. Analysis of precursor cells for osteogenic and hematopoietic tissues. Transplantation 1968;6(2):230-47.
    123. Friedenstein AJ, Chailakhjan RK, Lalykina KS. The development of fibroblast colonies in monolayer cultures of guinea pig bone marrow and spleen cells. Cell Tissue Kinet 1970;3(4):393-403.
    124. Friedenstein AJ, Gorskaja JF, Kulagina NN. Fibroblast precursors in normal and irradiated mouse hematopoietic organs. Exp Hematol. 1976;4(5):267-74.
    125. Friedenstein AJ, Chailakhyan RK, Gerasimov UV. Bone marrow osteogenic stem cells: in vitro cultivation and transplantation in diffusion chambers. Cell Tissue Kinet 1987;20(3):263-72.
    126. Pittenger MF, Mackay AM, Beck SC, Jaiswal RK, Douglas R, Mosca JD. Multilineage potential of adult human mesenchymal stem cells. Science 1999;284(5411):143-47.
    127. Phinney DG, Kopen G, Isaacson RL, Prockop DJ. Plastic adherent stromal cells from the bone marrow of commonly used strains of inbred mice: variations in yield, growth, and differentiation. J Cell Biochem 1999;72(4):570-85.
    128. Fibbe WE, Noort WA. Mesenchymal stem cells and hematopoietic stem cells transplantation. Ann NY Acad Sci 2003;996:235-44.
    129. Chen D, Ji X, Harris MA, Feng JQ, Karsenty G, Celeste AJ, Rosen V, Mundy GR, Harris SE. Differential roles for bone marrow morphogenic protein (BMP) receptor type IB and IA in differentiation and specification of mesenchymal precursor cells to osteoblast and adipocyte lineages. J Cell Biol 1998;142(1): 295-305.
    130. Gronthos S, Franklin DM, Leddy HA, Robey PG, Storms RW, Gimble JM. Surface protein characterization of human adipose tissue-derived stromal cells. J Cell Physiol 2001;189(1):54-63.
    131. Igura K, Zhang X, Takahashi K, Mitsuru A, Yamaguchi S,Takashi TA. Isolation and characterization of mesenchymal progenitor cells from chorionic villi of human placenta. Cytotherapy 2004;6(6):543-53.
    132. Tsai MS, Lee JL, Chang YJ, Hwang SM. Isolation of human multipotent mesenchymal stem cells from secondtrimester amniotic fluid using a novel two-stage culture protocol. Hum Reprod 2004;19(6):1450-56.
    133. Zvaifler NJ, Marinova-Mutafchieva L, Adams G, Edwards CJ, Moss J, Burger JA, Maini RN. Mesenchymal precursor cells in the blood of normal individuals. Arthritis Res 2000;2(6):477-88.
    134. Campagnoli C, Roberts IA, Kumar S, Bennet PR, Bellantuono I, Fisk NM. Identification of mesenchymal stem/progenitor cells in human first-trimester fetal blood, liver and bone marrow. Blood 2001;98(8):2396-2402.
    135. In’t Anker PS, Noort WA, Scherjon SA, Kleijburg-van der Keur C, Kruisselbrink AB, van Bezooijen RL. Mesenchymal stem cells in human second-trimester bone marrow, liver, lung, and spleen exhibit a similar immunophenotype but a heterogeneous multilineage differentiation potential. Haematologica 2003;88(8):845-52.
    136. Miura M, Gronthos S, Zhao M, Lu B, Fisher LW, Robey PG, Shi S. SHED: stem cells from human exfoliated deciduous teeth. PNAS 2003;100(10):5807-12.
    137. Sekiya I, Colter DC, Prockop DJ. BMP-6 enhances chondrogenesis in a subpopulation of human marrow stromal cells. Biochem Biophys Res Commun 2001;284(2):411-8.
    138. Tropel P, Noel D, Platet N, Legrand P, Benabid AL, Berger F. Isolation and characterization of mesenchymal stem cells from adult mouse bone marrow. Exp Cell Res 2004;295(2):395-406.
    139. Ramalho-Santos M, Yoon S, Matsuzaki Y, Mulligan RC, Melton DA. "Stemness": transcriptional profiling of embryonic and adult stem cells. Science 2002;298(5593):597-600
    140. Cognet PA, Minguell JJ. Phenotypical and functional properties of human bone marrow mesenchymal progenitor cells. J Cell Physiol 1999;181(1):67-73.
    141. Bruder SP, Jaiswal N, Haynesworth SE. Growth kinetics, self-renewal, and the osteogenic potential of purified human mesenchymal stem cells during extensive subcultivation and following cryopreservation. J Cell Biochem 1997;64(2):278-94.
    142. Jeong JA, Hong SH, Gang EJ, Ahn C, Hwang SH, Yang IH, Han H, Kim H. Differential geneexpression profiling of human umbilical cord blood-derived mesenchymal stem cells by DNA microarray. Stem Cells 2005;23(4):584-93.
    143. Krampera M, Pasini A, Rigo A, Scupoli MT, Tecchio C, Malpeli G, Scarpa A, Dazzi F, Pizzolo G, Vinante F. HB-EGF/HER-1 signaling in bone marrow mesenchymal stem cells: inducing cell expansion and preventing reversibly multi-lineage differentiation. Blood 2005;106(1):59-66.
    144. Prockop DJ, Gregory CA, Spees JL. One strategy for cell and gene therapy: harnessing the power of adult stem cells to repair tissues. PNAS 2003;100,Suppl:11917-23.
    145. Devine SM, Hoffman R. Role of mesenchymal stem cell in hematopoietic stem cell transplantation. Curr Opin Hematol 2000;7(6):358-63.
    146. Alsalameh S, Amin R, Gemba T, Lotz M. Identification of mesenchymal progenitor cells in normal and osteoarthritic human articular cartilage. Arthritis Rheum 2004;50(5):1522-32.
    147. Honczarenko M, Lee Y, Skierkowski M, Ghiran I, Glodek AM, Silberstein LE. Human bone marrow stromal cells express a distinct set of biologically functional chemokines receptors. Stem Cells 2006;24(4):1030-41.
    148. Bruder SP, Ricalton NS, Boynton RE, Connolly TJ, Jaiswal N, Zaia J, Barry FP. Mesenchymal stem cells surface antigen SB-10 corresponds to activated leukocyte cell adhesion molecule and is involved in osteogenic differentiation. J Bone Miner Res 1998;13(4):655-63.
    149. Katz AJ, Tholpady A, Tholpady SS, Shang H, Ogle RC. Cell surface and transcriptional characterization of human adipose-derived adherent stromal (hADAS) cells. Stem Cells 2005;23(3):412-23.
    150. Reyes M, Lund T, Lenvik T, Aguiar D, Koodie L, Verfaillie CM. Purification and ex vivo expansion of postnatal human marrow mesodermal progenitor cells. Blood 2001;98(9):2615-25
    151. Colter DC, Class R, DiGirolamo CM, Prockop DJ. Rapid expansion of recycling stem cells in cultures of plasticadherent cells from human bone marrow. PNAS 2000;97(7):3213-18.
    152. Colter DJ, Sekiya I, Prockop DJ. Identification of a subpopulation of rapidly self-renewing and multipotential adult stem cells in colonies of human marrow stromal cells. PNAS 2001;98(14):7841-45.
    153. Dennis JE, Carbillet JP, Caplan AI, Charbord P. The STRO-1+ marrow cell population is multipotential. Cells Tissues Organs 2002;170(2-3):73-82.
    154. Campagnoli C, Roberts IA, Kumar S, Bennet PR, Bellantuono I, Fisk NM. Identification of mesenchymal stem/progenitor cells in human first-trimester fetal blood, liver and bone marrow. Blood 2001;98(8): 2396-402.
    155. Kato S, Ito M, Hotta T, Ando K. Reconstitition of the functional human hematopietic microenvironment derived from human mesenchymal stem cells in the murine bone marrow compartment. Blood 2006;107(5):1878-87.
    156. Hoffman A, Czichos S, Kaps C, Bachner D, Mayer H, Zilberman Y. The T-box transcription factor Brachury mediates cartilage development in mesenchymal stem cell line C3H10T1/2. J Cell Sci 2002;115(4):769-81.
    157. Honczarenko M, Lee Y, Skierkowski M, Ghiran I, Glodek AM, Silberstein LE. Human bone marrow stromal cells express a distinct set of biologically functional chemokines receptors. Stem Cells 2006;24(4):1030-41.
    158. Yamagiwa H, Endo N, Tokunaga K. In vivo bone- forming capacity of human bone marrow- derived stromal cells is stimulated by recombinant human bone morphogenetic protein- 2. J Bone Miner Metab 2001;19(1):20-28.
    159. Kadiyala S, Young RG, ThideMA. Culture expanded canine mesenchymal stem cells possess osteochondrogenic potential in vivo and in vitro. Cell Transp lant 1997;6(2):125-34.
    160. Barry F, Boynton RE, Liu B, Murphy JM. Chondrogenic differentiation of mesenchymal stem cells from bone marrow: differentiation-dependent gene expression of matrix components. Exp Cell Res 2001;268(2):189-200.
    161. Mackay AM, Beck SC, Murphy JM. Chondrogentic differentiation of cultured human mesenchymal stem cells from marrow. Tissue Eng 1998;4(4): 415.
    162. Prockop DJ. Marrow stromal cells as stem cells for nonhematopoietic tissues. Science 1997;276(5309):71-74.
    163. Wakitani S, Saito T, Cap lan A I. Myogenic cells derived from rat bone marrow mesenchymal stem cells exposed to 5-azacytidine. Muscle Nerve 1995;18(12):1417-26.
    164. Woodbury D, Schwarz EJ, Prockop DJ, Black IB. Adult rat and human bone Marrow stromal cells differentiate into neurons. J Neurosci Res 2000;61(4):364-70.
    165. Sanchez-Ramos J, Song S, Cardozo-Pelaez F, Hazzi C, Stedeford T, Willing A. Adult bone marrow stromal cells diffrentiate into neural cells in vitro. Exp Neurol 2000;164(2):247-56.
    166. Ianus A, Holz GG, Theise ND, Hussain MA. In vivo derivation of glucose-competent pancreatic endocrine cells from bone marrow without evidence of cell fusion. J Clin Invest 2003;111(6):843-50.
    167. Kicic A, Shen WY, Wilson AS. Differentiation of marrow stromal cells into photoreceptors in the rat eye. J Neurosci 2003; 23(21):7742-9.
    168. Petersen BE, Bowen WC, Patrene KD. Bone marrow as a potential source of hepatic oval cells. Science 1999;284( 5417) :1168-70.
    169. Angoulvant D, Clerc A, Benchalal S, Galambrun C, Farre A, Bertrand Y, Eljaafari A. Human mesenchymal stem cells suppress induction of cytotoxic response to alloantigens. Biorheology 2004;41(3-4):469-76.
    170. Fibbe WE, Noort WA. Mesenchymal stem cells and hematopoietic stem cells transplantation. Ann NY Acad Sci 2003;996:235-44.
    171. Di Nicola M, Carlo-Stella C, Magni M, Milanesi M, Longoni PD, Matteucci P. Human bone marrow stromal cells suppress T-lymphocyte proliferation induced by cellular or nonspecific mitogenic stimuli. Blood 2002;99(10):3838-43.
    172. Krampera M, Glennie S, Dyson J, Scott D, Laylor R, Simpson E, Dazzi F. Bone marrow mesenchymal stem cells inhibit the response of naive and memory antigen-specific T cells to their cognate peptide. Blood 2003;101(9):3722-29.
    173. Aggarwal S, Pittinger MF. Human mesenchymal stem cells modulate alloantigen immune cell responses. Blood 2005;105(4):1815-22.
    174. Maccario R, Podestà M, Moretta A, Cometa A, Comoli P, Montagna D. Interaction of human mesenchymal stem cells with cells involved in alloantigen-specific immune response favors the differentiation of CD4+ T-cell subsets expressing a regulatory/suppressive phenotype. Haematologica 2005; 90(4): 516-25.
    175. Meisel R, Zibert A, Laryea M, G?bel U, D?ubener W, Dilloo D. Human bone marrow stomal cells inhibit allogeneic T-cell responses by indoleamine 2,3-dioxygenasemediated tryptophan degradation. Blood 2004; 103: 4619-21.
    176. Le Blanc K. Immunomodulatory effects of fetal and adult mesenchymal stem cells. Cytotherapy. 2003;5(6):485-89.
    177. Glennie S, Soeiro I, Dyson PJ, Lam EW, Dazzi F. Bone marrow mesenchymal stem cells induce division arrest anergy of activated T cells. Blood 2005;105(7):2821-27.
    178. Jiang XX, Zhang Y, Liu B, Zhang SX, Wu Y, Yu XD, Mao N. Human mesenchymal stem cells inhibit differentiation and function of monocyte-derived dendritic cells. Blood 2005;105(10): 4120-6.
    179. Goshima J, Goldberg VM, Caplan AI. The osteogenic potential of culture-expanded rat marrow mesenchymal cells assayed in vivo in calcium phosphate ceramic blocks. Clin Orthop Relat Res 1991;262:298-311.
    180. Caplan AI, Bruder SP. Mesenchymal stem cells: building blocks for molecular medicine in the 21st century. Trends Mol Med 2001;7(6):259-64.
    181. Caplan AI. Stem cell delivery vehicle. Biomaterials 1990;11:44-6.
    182. Shahdadfar A, Fronsdal K, Haug T, Reinholt FP, Brinchmann JE. In vitro expansion of human mesenchymal stem cells: Choice of serum is a determinant of cell proliferation, differentiation, gene expression and transcriptome stability. Stem Cells 2005;23(9):1357-66.
    183. Noel D, Gazit D, Bouguet C, Apparailly F, Bony C, Plence P, et al. Short-term BMP-2 expression is sufficient for in vivo osteochondral differentiation of mesenchymal stem cells. Stem Cells. 2004;22(1):74-85.
    184. Kratchmarova I, Blagoev B, Haack-Sorensen M, Kassem M, Mann M. Mechanism of divergent growth factor effects in mesenchymal stem cell differentiation. Science. 2005;308(5727):1472-77.
    185. Mauney JR, Volloch V, Kaplan DL. Role of adult mesenchymal stem cells in bone tissue engineering applications; current status and future prospects. Tissue Eng 2005;11(5-6):787-802.
    186. Mundy G, Garrett R, Harris S, Chan J, Chen D, Rossini G, et al. Stimulation of bone formation in vitro and in rodents by statins. Science 1999;286(5446):1946-9.
    187. Le Blanc K, Gotherstrom C, Ringden O, Hassan M, McMahon R, Horwitz E. Fetal mesenchymal stemcell engraftment in bone after in utero transplantation in a patient with severe osteogenesis imperfecta. Transplantation. 2005;79(11):1607–14.
    188. Chamberlain JR, Schwarze U, Wang PR, Hirata RK, Hankenson KD, Pace JM. Gene targeting in stem cells from individuals with osteogenesis imperfecta. Science. 2004;303(5661):1198-201.
    189. Ichinose S, Yamagata K, Sekiya I, Muneta T, Tagami M. Detailed examination of cartilage formation and endochondral ossification using human mesenchymal stem cells. Clin Exp Pharmacol Physiol. 2005;32(7):561-70.
    190. Hui JH, Ouyang HW, Hutmacher DW, Goh JC, Lee EH. Mesenchymal stem cells in musculoskeletaltissue engineering: a review of recent advances in National University of Singapore. Ann Acad Med Singapore. 2005;34(2):206-12.
    191. Pittenger M, Vanguri P, Simonetti D, Young R. Adult mesenchymal stem cells: potential for muscle and tendon regeneration and use in gene therapy. J Musculoskelet Neuronal Interact 2002;2(4):309-20.
    192. Nakamura K, Ito Y, Kawano Y, Kurozumi K, Kobune M, Tsuda H. Antitumor effect of genetically engineered mesenchymal stem cells in a rat glioma model. Gene Ther 2004;11(14):1155-64.
    193. Studeny M, Marini FC, Dembinski JL, Zompetta C, Cabreira-Hansen M, Bekele BN. Mesenchymal stem cells: potential precursors for tumor stroma and targeteddelivery vehicles for anticancer agents. J Natl Cancer Inst 2004;96(21):1593-603.
    194. Lu L, Zhao C, Liu Y, Sun X, Duan C, Ji M, Zhao H, Xu Q, Yang H. Therapeutic benefit of TH-engineering mesenchymal stem cells for Parkinson’s disease. Brain Res Brain Res Protoc 2005;15(1):46-51.
    195. Potapova I, Plotnikov A, Lu Z, Danilo P Jr, Valiunas V, Qu J. Human mesenchymal stem cells as a gene delivery system to create cardiac pacemakers. Circ Res 2004;94(7):952-9.
    196. Bartholomew A, Sturgeon C, Siatskas M, Ferrer K, McIntosh K, Patil S. Mesenchymal stem cells suppress lymphocyte proliferation in vitro and prolong skin graft survival in vivo. Exp Hematol 2002;30(1):42-8.
    197. Chapel A, Bertho JM, Bensidhoum M, Fouillard L, Young RG, Frick J. Mesenchymal stem cells home to injured tissues when co-infused with hematopoietic cells to treat a radiation-induced multi-organ failure syndrome.J Gene Med 2003;5(12):1028-38.
    198. Le Blanc K, Rasmusson I, Sundberg B, G?therstr?m C, Hassan M, Uzunel M, Ringdén O. Treatment of severe acute graft-versus-host disease with third party haploidentical mesenchymal stem cells. Lancet 2004;363(9419): 1439-41.
    199. Troeger A, Meisel R, Moritz T, Dilloo D. Immunotherapy in allogeneic hematopoietic stem cell transplantation-not just a case for effector cells. Bone Marrow Transplant. 2005;35:S59-64.
    200. Djouad F, Plence P, Bony C, Tropel P, Apparailly F, Sany J, et al. Immunosuppressive effect of mesenchymal stem cells favors tumor growth in allogeneic animals. Blood 2003;102(10):3837-44.
    201. Devine SM, Bartholomew AM, Mahmud N, Nelson M, Patil S, Hardy W. Mesenchymal stem cells are capable of homing to the bone marrow of non-human primates following systemic infusion. Exp Hematol 2001;29(2): 244-55.
    202. Han C, Zhang X, Xu W, Wang W, Qian H, Chen Y. Cloning of the nucleostemin gene and its function in transforming human embryonic bone marrow mesenchymal stem cells into F6 tumor cells. Int J Mol Med 2005;16(2):205-13.
    203. Rubio D, Garcia-Castro J, Martin MC, de la Fuente R, Cigudosa JC, Lloyd AC. Spontaneous human adult stem cell transformation. Cancer Res 2005;65(80:3035-9.
    204. Houghton J, Stoicov C, Nomura S, Rogers AB, Carlson J, Li H. Gastric cancer originating from bone marrow derived cells. Science. 2004;306(5761):1568-71.
    205. Kamiya M, Sohen S, Yamane T, Tanaka S. Effective treatment of mice with type II collagen induced arthritis with lethal irradiation and bone marrow transplantation. J Rheumatol 1993; 20(2):225-30.
    206. Karussis DM. Prevention of experimental autoimmune encephalomyelitis and induction of tolerance with acute immunosuppression followed by syngeneic bone marrow transplantation. J Immunol 1992;148(6): 1693-98.
    207. Zappia E, Casazza S, Pedemonte E, Benvenuto F, Bonanni I, Gerdoni E, Giunti D. Mesenchymal stem cells ameliorate experimental autoimmune encephalomyelitis inducing T-cell anergy. Blood 2005;106(5):1755-61.
    208. Weyand CM, Goronzy JJ. Stem cell aging and autoimmunity in rheumatoid arthritis. Trends Mol Med 2004;10(9):426-33.
    209. Jones EA, English A, Henshaw K, Kinsey SE, Markham AF, Emery P. Enumeration and phenotypic characterization of synovial fluid multipotential mesenchymal progenitor cells in inflammatory and degenerative arthritis. Arthritis Rheum 2004;50(3):817-27.
    210. Augello A, Tasso R, Negrini SM, Cancedda R, Pennesi G Cell Therapy Using Allogeneic Bone Marrow Mesenchymal Stem Cells Prevents Tissue Damage in Collagen-Induced Arthritis. Arthritis Rheum 2007;56(4):1175-86.
    211. Djouad F, Fritz V, Apparailly F, Louis-Plence P, Bony C, Sany J, Jorgensen C, No?l D. Reversal of the Immunosuppressive Properties of Mesenchymal Stem Cells by Tumor Necrosis Factor-α in Collagen-Induced Arthritis. Arthritis Rheum 2005;52(5):1595-603.
    212. Dimri GP, Lee X, Basile G, Acosta M, Scott G, Roskelley C. A biomarker that identifies senescent human cells in culture and in aging skin in vivo. PNAS 1995;92(20):9363-7.
    213. Gronthos S, Zannettino AC, Hay SJ, Shi S, Graves SE, Kortesidis A, Simmons PJ. Molecular and celluar characterization of highly purified stromal stem cells derived from human bone marrow. J Cell Sci 2003;116(pt9):1827-35.
    214. Zimmermann S, Voss M, Kaiser S. Lack of telomerase activity in human mesenchymal stem cells. Leukemia 2003;17(6):1146-9.
    215. David CC, Ichiro S, Darwin JP. Identification of a subpopulation of rapidly self-renewing and multipotential adult stem cells in colonies of human marrow stromal cells. PNAS 2001;98(14):7841-5.
    216. Sugiura F, Kitoh H, Ishiguro N. Osteogenic potential of rat mesenchymal stem cells after several passages. Biochem Biophys Res Commun 2004;316(1):233-9.
    217. Brittberg M, Lindahl A, Nilsson A, Ohlsson C, Isaksson O, Peterson L. Treatment of deep cartilage defects in the knees with autologous chondrocyte transplantation. N Engl J Med 1994;331(14):889-895.
    218. Imabayashi H, Mori T, Gojo S, Kiyono T, Sugiyama T, Irie R. Redifferention of dedifferentiated chondrocytes and chondrogenesis of human bone marrow stromal cells via chondrosphere formation with expression profiling by large-scale cDNA analysis. Exp Cell Res 2003;288(1):35-50.
    219. 王伯沄,李甘地. 组织病理学. 人民卫生出版社. 2002.
    220. 奥斯伯 F,布伦特 R,金斯顿 R E,等著. 精编分子生物学实验指南[M]. 北京:科学出版社, 1998.
    221. Miossec P. Are T cells in rheumatoid synovium aggressors or bystanders? Curr Opin Rheumatol 2000;12(3):181-5.
    222. Sekine T, Kato T, Masuko-Hongo K, Nakamura H, Yoshino S, Nishioka K, Yamamoto K. Type II collagen is a target antigen of clonally expanded T cells in the synovium of patients with rheumatoid arthritis. Ann Rheum Dis 1999;58(7):446-50.
    223. Kim WU, Kim KJ. T cell proliferative response to type II collagen in the inflammatory process and joint damage in patients with rheumatoid arthritis. J Rheumatol 2005;32(2):225-30.
    224. Benya PD, Padilla SR, Nimni ME. Independent regulation of collagen types by chondrocytes during the loss of differentiated function in culture. Cell 1978;15(4):1313-21.
    225. Kim HY, Kim WU, Cho ML, Lee SK, Youn J, Kim SI. Enhanced T cell proliferative response to type II collagen and synthetic peptide CII (255-274) in patients with rheumatoid arthritis. Arthritis Rheum 1999;42(10):2085-93.
    226. Chomarat P, Vannier E, Dechanet J, Rissoan MC, Banchereau J, Dinarello CA, Miossec P. Balance of IL-1 receptor antagonist/IL-1b in rheumatoid synovium and its regulation by IL-4 and IL-10. J Immunol 1995;154(7):1432-9.
    227. Katsikis PD, Chu CQ, Brennan FM, Maini RN, Feldmann M. Immunoregulatory role of interleukin 10 in rheumatoid arthritis. J Exp Med 1994;179(5):1517-27.
    228. Isoma¨ki P, Punnonen J. Pro- and anti-inflammatory cytokines in rheumatoid arthritis. Ann Med 1997;29(6):499-507.
    229. Van Roon JAG, Van Roy JLAM, Duits A, Lafeber FPJG, Bijlsma JWJ. Proinflammatory cytokine production and cartilage damage due to rheumatoid synovial T helper-1 activation is inhibited by interleukin-4. Ann Rheum Dis 1995;54(10):836-40.
    230. Van Roon JAG, van Roy JLAM, Gmelig-Meyling FHJ, Lafeber FPJG, Bijlsma JWJ. Prevention and reversal of cartilage degradation in rheumatoid arthritis by interleukin- 10 and interleukin-4. Arthritis Rheum 1996;39(5):829-35.
    231. Murphy JM, Fink DJ, Hunziker EB, Barry FP. Stem cell therapy in a caprine model of osteoarthritis. Arthritis Rheum 2003;48(12):3464-74.
    232. Jantunen E, Luosuja¨rvi R. Stem cell transplantation in autoimmune diseases: an update. Ann Med 2005;37(7):533-41.
    233. Tse WT, Pendleton JD, Beyer WM, Egalka MC, Guinan EC. Suppression of allogeneic T-cell proliferation by human marrow stromal cells: implications in transplantation. Transplantation 2003;75(3):389-7.
    234. Le Blanc K, Tammik C, Rosendahl K, Zetterberg E, Ringden O. HLA expression and immunologic properties of differentiated and undifferentiated mesenchymal stem cells. Exp Hematol 2003;31(10):890-6.
    235. Maccario R, Podestà M, Moretta A, Cometa A, Comoli P, Montagna D. Interaction of human mesenchymal stem cells with cells involved in alloantigen-specific immune response favors the differentiation of CD4+ T-cell subsets expressing a regulatory/suppressive phenotype. Haematologica 2005;90(4):516-25
    236. Cho ML, Min SY, Chang SH, Kim KW, Heo SB, Lee SH, Park SH, Cho CS, Kim HY. Transforminggrowth factor beta 1(TGF-β1) down-regulates TNF-α-induced RANTES production in rheumatoid synovial fibroblasts through NF-κB-mediated transcriptional repression. Immunol Lett 2006;105(2):159-66.
    237. Genestier L, Kasibhatla S, Brunner T, Green DR. Transforming growth factor β1 inhibits Fas ligand expression and subsequent activation-induced cell death in T cells via downregulation of c-Myc. J Exp Med 1999;189(2):231-39.
    238. Thorbecke GJ, Shah R, Leu CH, Kuruvilla AP, Hardison AM, Palladino MA. Involvement of endogenous tumor necrosis factor-α and transforming growth factor-β during induction of collagen type II arthritis in mice. PNAS 1992;89(16):7375–9.
    239. Le Blanc K, Tammik L, Sundberg B, Haynesworth SE, Ringdén O. Mesenchymal stem cells inhibit and stimulate mixed lymphocyte cultures and mitogenic responses independently of the major histocompatibility complex. Scand J Immunol 2003;57(1):11-20.
    240. Wahl SM, Allen JB, Costa GL, Wong HL, Dasch JR. Reversal of acute and chronic synovial inflammation by anti-transforming growth factor beta. J Exp Med 1993;77(1):225-30.
    241. Blass S, Union A, Raymackers J, Schumann F, Ungethum U, Muller-Steinbach S. The stress protein BiP is over expressed and is a major B and T cell target in rheumatoid arthritis. Arthritis Rheum 2001;44(4):761-71.
    242. Sehnert B, Cavcic A, B?hm B, Kalden JR, Nandakumar KS, Holmdahl R, Burkhardt H. Antileukoproteinase: modulation of neutrophil function and therapeutic effects on anti-type II collagen antibody-induced arthritis. Arthritis Rheum 2004;50(7):2347-59.
    243. Clague RB, Morgan K, Reynolds I, Williams HJ. The prevalence of serum IgG antibodies to type II collagen in American patients with rheumatoid arthritis. Br J Rheumatol 1994;33(4):336-8.
    244. Morgan K, Clague RB, Collins I, Ayad S, Phinn SD, Holt PJ. Incidence of antibodies to native and denatured cartilage collagens (types II, IX, and XI) and to type I collagen in rheumatoid arthritis. Ann Rheum Dis 1987;46(12):902-7.
    245. Clague RB, Moore LJ. IgG and IgM antibody to native type II collagen in rheumatoid arthritis serum and synovial fluid. Evidence for the presence of collagen-anticollagen immune complexes in synovial fluid. Arthritis Rheum 1984;27(12):1370-7.
    246. Kraetsch HG, Unger C, Wernhoff P, Schneider C. Cartilage-specificautoimmunity in rheumatoid arthritis:characterization of a triple helical B cell epitope in the integrin-binding-domain of collagen type II. Eur J Immunol 2001;31(6):1666-73.
    247. Cook AD, Rowley MJ, Mackay IR, Gough A, Emery P. Antibodies to type II collagen in early rheumatoid arthritis. Correlation with disease progression. Arthritis Rheum 1996;39(10):1720-7.
    248. Comoli P, Ginevri F, Maccario R, Avanzini MA, Marconi M, Groff A. Human mesenchymal stem cells inhibit antibody production induced in vitro by allostimulation. Nephrol Dial Transplant 2007;23(4):1196-202.
    249. Terato K, DeArmey DA, Ye XY, Griffiths MM, Cremer MA. The mechanism of autoantibody formation to cartilage in rheumatoid arthritis: possible cross-reaction of antibodies to dietary collagens with autologous type II collagen. Clin Immunol Immunopathol 1996;79(2):142-54.
    250. Mewar D, Wilson AG. Autoantibodies in rheumatoid arthritis: a review. Biomed Pharmacother 2006;60(10):648-55.
    251. Criscione LG, St Clair EW. Tumor necrosis factor-alpha antagonists for the treatment of rheumatic diseases. Curr Opin Rheumatol 2002;14(3):204-11.
    252. Shaw T, Quan J, Totoritis MC. B cell therapy for rheumatoid arthritis: the rituximab (anti-CD20) experience. Ann Rheum Dis 2003;62(Suppl 2):ii55-9.
    253. Agematsu K, Hokibara S, Nagumo H, Komiyama A. CD27: a memory B-cell marker. Immunol Today 2000;21(5):204-6.
    254. Fekete A, Soos L, Szekanecz Z, Szabo Z, Szodoray P, Barath S, Lakos GD. Disturbances in B- and T-cell homeostasis in rheumatoid arthritis: Suggested relationships with antigen-driven immune responses. J Autoimmun 2007;29(2-3):154-63.
    255. Kee BL, Rivera RR, Murre C. Id3 inhibits B lymphocyte progenitor growth and survival in response to TGF-β. Nat Immunol 2001;2(3):242-47.
    256. Snapper CM, Waegell W, Beernink H, Dasch JR. Transforming growth factor-β1 is required for secretion of IgG of all subclasses by LPS-activated murine B cells in vitro. J Immunol 1993;151(10):4625-36.
    257. Kopen C, Prockop DJ, Phinney DG. Marrow stromal cells migrates throughout forebrain and cerebellum, and they differentiate into astrocytes after injection into neonatal mouse brains. PNAS 1999;96 (19):10711-6.
    258. Pine PR, Chang B, Schoettler N, Banquerigo ML, Wang S, Lau A. Inflammation and bone erosion aresuppressed in models of rheumatoid arthritis following treatment with a novel Syk inhibitor. Clin Immunol 2007;124(3):244-57.
    259. Romas E, Bakharevski O, Hards DK, Kartsogiannis V, Quinn JM, Ryan PF. Expression of osteoclast differentiation factor at sites of bone erosion in collagen-induced arthritis. Arthritis Rheum 2000;43(4):821-6.
    260. Trentham DE, Townes AS, Kang AH. Autoimmunity to type II collagen an experimental model of arthritis. J Exp Med 1977;146(3):857-68.
    261. Courtenay JS, Dallman MJ, Dayan AD, Martin A, Mosedale B. Immunisation against heterologous type II collagen induces arthritis in mice. Nature 1980;283(5748):666-8.
    262. Dong L, Ito S, Ishii KJ, Klinman DM. Suppressive Oligonucleotides Protect Against Collagen-Induced Arthritis in Mice. Arthritis Rheum 2004;50(5):1686-9.
    263. Myers LK, Tang B, Brand DD, Rosloniec EF, Stuart JM, Kang AH. Efficacy of Modified Recombinant Type II Collagen in modulating autoimmune arthritis. Arthritis Rheum 2004;50(9):3004-11.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700