用户名: 密码: 验证码:
一类欠驱动机械系统的非线性控制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
欠驱动机械系统是指控制输入数目少于系统自由度的机械控制系统,它广泛存在于机器人、航天航空和交通运输等各个领域,由于控制输入的缺失使得其控制问题成为控制领域富有挑战性的研究热点之一。吊车作为一个典型的欠驱动机械系统,研究其控制问题不但具有很强的实用价值,而且有助于促进欠驱动机械系统控制理论的发展。论文以欠驱动机械系统的非线性控制为理论研究主体,以欠驱动吊车系统的非线性控制为应用研究对象,结合哈尔滨工业大学实验设备开发基金项目“龙门吊车实物仿真技术研究”,展开一类欠驱动机械系统的非线性控制研究。
     本文基于拉格朗日算子定义了简单机械系统,在此基础上建立了机械系统的动力学模型,讨论了机械控制系统的几种常见类别,即全驱动机械系统、欠驱动机械系统、平滑机械系统和非完整机械系统,并着重分析了欠驱动机械系统的动力学特征。另外,利用拉格朗日方程建立了三维欠驱动吊车系统的数学模型,并通过简化所建立的三维吊车系统模型得到二维和一维吊车系统的数学模型。
     鉴于已有的非线性控制算法难于直接用来进行欠驱动机械系统的控制设计,在分析欠驱动机械系统动力学模型的基础上,根据其动能对称性的特点和形态变量的驱动情况,基于拉格朗日算子设计了闭环的坐标变换;其将欠驱动机械系统的动力学转换成具有结构特征的级联非线性系统。文中将这些具有结构特征的级联非线性系统称为欠驱动机械系统的级联规范型,分为三种,即严格反馈规范型、严格前馈规范型和非三角规范型。为了验证设计坐标变换的有效性,采用设计的坐标变换分别给出了TORA(Translational Oscillator with Rotational Actuator)系统、车摆系统和Pendubot系统的严格反馈规范型、严格前馈规范型和非三角规范型。
     针对欠驱动机械系统的非线性级联规范型,给出了具有一般性的欠驱动机械系统的非线性控制方案。欠驱动机械系统的三角规范型可以通过已有的Backstepping步骤和嵌套饱和方案进行控制器的设计;针对非三角规范型的控制问题,本文重点研究了不动点控制方案,该方案将不动点方程的解作为系统的非线性状态反馈算法,即可通过递归的方法设计系统的控制器;同时文中还研究了不动点控制器的存在条件。分别采用Backstepping步骤、嵌套饱和方案和不动点控制方案设计了TORA系统、车摆系统和球棒系统的稳定控制器,并通过仿真实验证明了控制方案的有效性。
     最后,针对吊车这一具体的欠驱动机械系统设计了易于工程实现的非线性控制器并进行了实物实验研究。对于变绳长的三维和二维吊车系统,选择模型中直接激励的自由度作为系统输出,经过配置部分反馈线性化对其进行轨迹跟踪控制;将欠驱动的自由度作为内部动态考虑并保证其稳定,从而实现吊车负载的定位。仿真结果表明,所设计的非线性控制器可有效实现吊车系统快速防摆和精确定位的要求;为了进一步验证该控制方案的实用性,在一个变绳长的二维吊车实验装置上实现了该算法,实验结果同样表明所设计的控制方案可有效实现负载的快速定位要求。
Underactuated mechanical systems (UMS) are mechanical control systems with fewer control inputs than the number of configuration variables. Control of underactuated mechanical systems is currently an active and challenging field of research due to the lack of control inputs and their broad applications in robotics, aerospace vehicles, and transportation vehicles. As a typical underactuated mechanical system, control of underactuated crane system is not only very practical but also helpful to the development of control theory on UMS. This dissertation is devoted to nonlinear control of a class of UMS, which is supported by the fund of Experimental Equipment Exploitation in Harbin Institute of Technology“Practical simulation technology of gantry crane system”.
     Based on the Euler-Lagrange equation for mechanical control system, the important classes of mechanical control systems are discussed, namely, fully-actuated mechanical systems, UMS, flat mechanical systems, and nonholonomic mechanical systems, particularly, dynamics and control problems of UMS are focused. In addition, the dynamical model of three-dimensional crane system is derived by using Lagrange equations, which can be easily simplified into the dynamical models of two-dimensional and one-dimensional crane systems.
     A procedure to reduce control design for original UMS is developed by considering that almost all real-life mechanical control systems possess kinetic symmetry properties, i.e. their kinetic energy only depends on a subset of configuration variables called shape variables. As a result, several closed-loop changes of coordinates are designed to transform several classes of UMS into cascade nonlinear systems with structural properties that are convenient for control design purposes. The obtained cascade normal forms are three classes of nonlinear systems, namely, systems in strict feedback form, feedforward form, and nontriangular form. The proposed changes of coordinates are successfully employed to transform the original dynamics of the Translational Oscillator with Rotational Actuator (TORA) system, the Cart-Pole system, and the Pendubot system into strict feedback normal form, feedforward normal form, and nontriangular normal form, respectively.
     Once the reduced nonlinear cascade system is obtained, the special structural property of the normal forms is considered to the following control design of the UMS. The triangular normal forms of underactuated mechanical systems can be controlled using existing Backstepping procedures and nested saturation scheme. However, there is still no totally effective control design scheme for the nontriangular normal forms. In this work, the problem is addressed by introducing a fixed pointed controller based on the solutions of fixed-pointed equations as stabilizing nonlinear state feedback law. This controller can be obtained via a recursive method that is convenient for implementation, and also the sufficient conditions for global existence of the controller are provided. The stabilization control of the TORA system, the Cart-Pole system, and Beam-and-Ball system is realized by using Backstepping procedure, nested saturation scheme, and fixed pointed controller, repectively, and simulation results demonstrated the feasibility of the proposed approaches.
     Finally, this dissertation focuses on control design and experiment implement of underactuated crane system. A nonlinear controller design scheme based on partial feedback linearization technique is presented for the three-dimensional and two-dimensional crane systems with various cord length. By choosing the actuated degrees corresponding to the freedom as the outputs, the controller is designed to track the trajectories of outputs while providing internal dynamics stability of unactuated degrees. The analysis of the internal dynamics shows that the stability of the zero dynamics guarantees the stability of the control system. Simulation results are presented to show the feasibility of the presented scheme. To verify its practicability, the nonlinear controller is used to realize the anti-swaying and positioning control of a two-dimensional scaled gantry crane system which can do hoisting and traveling motions simultaneously, and implemental results are given and discussed.
引文
1 F. E. Udwadia. Recent Advances in Multi-Body Dynamics and Nonlinear Control. Journal of the Brazilian Society of Mechanical Sciences and Engineering. 2006, 28(3): 311~315
    2 Isidori. Nonlinear Control Systems. Springer-Verlag, 1995
    3 R. Sepulchre, M. Jankovic, and P. Kokotovic. Constructive Nonlinear Control. Springer-Verlag, 1997
    4 M. Reyhmoglu, A. van der Scbaft, N. H. McClamroch, et al. Dynamics and Control of a Class of Underactuated Mechanical Systems. IEEE Transactions on Automatic Control. 1999, 44(9): 1663~1671
    5 M. Reyhanoglu, S. Cho, and N. H. McClamrcoh. Discontinuous Feedback Control of a Special Class of Underactuated Mechanical Systems. International Journal of Robust and Nonlinear Control. 2000, 10(4):265~281
    6 M. W. Spong. Partial Feedback Linearization of Underactuated Mechanical Systems. Proc. IEEE International Conference on Intelligent Robots and Systems, Munich, Germeny. 1994: 314~321
    7 M. W. Spong. The Swingup Control Problem for the Acrobot. IEEE Control Systems. 1995, 15(1): 49~55
    8 M. W. Spong. Underactuated Mechanical Systems. International Workshop on Control Problems in Robotics and Automation, San Diego, CA USA. 1997: 1~15
    9 M. W. Spong, P. Corke, and R. Lozano. Nonlinear Control of the Reaction Wheel Pendulum. Automatica. 2001, 37:1845~1851
    10 R. Ortega, M. W. Spong, F. Gomez-Estern, et al. Stabilization of a Class of Underactuated Mechanical Systems via Interconnection and Damping Assignment. IEEE Transactions on Automatic Control. 2002, 47(8): 1218~1233
    11 I. Fantoni, R. Lozano, and M. W. Spong. Energy Based Control of the Pendubot. IEEE Transactions on Automatic Control. 2000, 45(4): 725~729
    12 I. Fantoni and R. Lozano. Non-linear Control for Underactuated Mechanical Systems. Springer-Verlag, 2002
    13 R. Olfati-Saber and A. Megretski. Controller Design for a Class of Underactuated Nonlinear Systems. IEEE Conference on Decision and Control, Tampa, Florida USA. 1998: 4182~4187
    14 R. Olfati-Saber and A. Megretski. Controller Design for the Beam-and-Ball System. IEEE Conference on Decision and Control, Tampa, Florida USA. 1998: 4555~4560
    15 R. Olfati-Saber. Fixed Point Controllers and Stabilization of the Cart-Pole System and the Rotating Pendulum. IEEE Conference on Decision and Control, Phoenix, Arizona USA. 1999: 1174~1181
    16 R. Olfati-Saber. Trajectory Tracking for a Flexible One-Link Robot Using a Nonlinear Noncollocated Intput. IEEE Conference on Decision and Control, Sydeney, Australia. 2000: 4024~4029
    17 R. Olfati-Saber. Nonlinear Control of Underatuated Mechanical Systems with Apllication to Robotics and Aerospace Vehicles [PHD thesis]. Massachusetts Institute of Technology, 2001
    18 R. Olfati-Saber. Normal Forms for Underactuated Mechanical Systems with Symmetry. IEEE Transactions on Automatic Control. 2002, 47(2): 305~308
    19 R. Olfati-Saber. Global Configuration Stabilization for VTOL Aircraft with Strong Input Coupling. IEEE Transactions on Automatic Control. 2002, 47(11): 1949~1952
    20 刘殿通. 一类欠驱动机械系统的智能控制研究[博士学位论文]. 中国科学院, 2004
    21 J. E. Marsden and T. S. Ratiu. Introduction to Mechanics and Symmetry: A Basic Exposition of Classical Mechanical Systems. Springer, 1999
    22 R. M. Murray. Nonlinear Control of Mechanical Systems: A Lagrangian Perspective. Annual Reviews in control. 1997, 21: 31~45
    23 A. M. Bloch, M. Reyhanoglu, and N. H. McClamroch. Control and Stabilization of Nonholonomic Dynamic Systems. IEEE Transactions on Automation and Control. 1992, 37(11): 1746-1757
    24 E.D. Sontag and H. J. Sussmann. Time-Optimal Control of Manipulators. IEEE International Conference on Robotics and Automation, San Francisco, CA USA. 1986: 1692~1697
    25 A. D. Lewis and R. M. Murray. Configuration Controllability of SimpleMechanical Control Systems. SIAM Review. 1999, 41(3): 555~574
    26 J. A. Acosta, Romeo Ortega, A. Astolfi, et al. Interconnection and Damping Assignment Passivity-Based Control of Mechanical Systems with Underactuation Degree One. IEEE Transactions on Automatic Control. 2005, 50(12): 1932~1955
    27 H. J. Sussmann. A General Theorem on Local Controllability. SIAM Journal of Control and Optimization. 1987, 25(1): 158~194
    28 K. A. Morgansen. Controllability and Trajectory Tracking for Classes of Cascade-Form Second Order Nonholonomic Systems. IEEE Conference on Decision and Control, Orlando, Florida USA. 2001: 3031~3036.
    29 K. A. Morgansen and R.W. Brocket. Nonholonomic Control Based on Approximate Inversion. Proceedings of the Americal Control Conference, San Diego, CA USA. 1999: 3515-3519
    30 R. M. Bianchini and M. Kawski. Needle Variations that Cannot be Summed. SIAM Journal of Control and Optimal. 2003, 42(1): 218~238
    31 A. D. Lewis. Simple Mechanical Control Systems with Constraints. IEEE Transactions on Automation and Control. 2000, 45(8): 1420~1436
    32 J. Cortes, S. Martinez, J. P. Ostrowski, et al. Simple Mechanical Control Systems with Constraints and Symmety. SIAM Journal of Control and Optimization. 2002, 41(3): 851~874
    33 J. Cortes, S. Martinez, and F. Bullo. On Nonlinear Controllability and Series Expansions for Lagrangian Systems with Dissipative Forces. IEEE Transactions on Automation and Control. 2002, 48(1): 1396~1401
    34 R. M. Murray and S. S. Sastry. Nonholonomic Motion Planning: Steering Using Sinusoids. IEEE Transactions on Automation and Control. 1993, 38(5): 700~716
    35 A. C. Wit and O. J. Sordalen. Exponential Stabilization of Mobile Robots with Nonholonomic Sonstraints. IEEE Transaction on Automation and Control. 1992, 37(11): 1791~1797
    36 J. B. Pomet. Explicit design of Time-Varying Stabilizing Control Laws for a Class of Controllable Systems without Drift. System & Control Letters. 1992, 18: 147~158
    37 A. Astolfi. Discontinuous Control of Nonholonomic Systems. Systems &Control Letters. 1996, 27: 37~45
    38 T. Floquet, J. Barbotb, and W. Perruquettia. Higher-order Sliding Mode Stabilization for a Class of Nonholonomic Perturbed Systems. Atuomatica. 2003, 39: 1077~1083
    39 A. Samson. Control of Chained Systems: Application to Path Following and Time-Varying Point-Stabilization of Mobile Robots. IEEE Transaction on Automation and Control. 1995, 40 (1): 64~77
    40 I. Kolmanovsky, M. Reyhanoglu, and N. H. McClamroch. Switched Mode Feedback Control Laws for Nonholonomic Systems in Extended Power Form. Systems and Control Letters. 1996, 27: 29~36
    41 I. Kolmanovsky and N. H. McClamroch. Developments in Nonholonomic Control Systems. IEEE Control System Magazine. 1995, 15(6): 20~36
    42 胡跃民, 周其节, 裴海龙. 非完整控制系统的理论与应用. 控制理论与应用. 1996, 13(1): 2~11
    43 H. McClamroch and I. Kolmakovsky. A Hybrid Switched Mode Control for V/STOL Flight Control Problems. IEEE conference on Decision and Control, Kobe, Japan. 1996: 2648~2653
    44 A. Palomino, P. Castillo, I. Fantoni, et al. Control Strategy Using Vision for the Stabilization of an Experimental PVTOL Aircraft Setup. IEEE Transactions on Control System Technology. 2005, 13(5): 847~850.
    45 G. Song and B. N. Agrawal. Vibration Suppression of Flexible Spacecraft during Attitute Control. Acta Astronautica. 2001, 49(2): 73~83
    46 J. C. Vilchis, B. Brogliato, A. Dzul, et al. Nonlinear Modeling and Control of Helicopters. Automatica. 2003, 39: 1583~1596
    47 R. Mahony and T. Hame. Robust Trajectory Tracking for a Scale Model Autonomous Helicopter. International Journal of Robust Nonlinear Control. 2004, 14: 1035-1059.
    48 O. Egeland, M. Dalsmo, and O. J. Soadalen. Feedback Control of a Nonholo-Underwater Vehicle with Constant Desired Configuration. International Journal of Robotics Research. 1996, 15: 24~35
    49 K. Y. Pettersen and O. Egeland. Time-varying Exponential Stabilization of the Position and Attitude of an Underactuated Autonomous Underwater Vehicle. IEEE Transactions on Automatic Control. 1999, 44(1): 112~115
    50 A. Astol, D. Chhabra, and R. Ortega. Asymptotic Stabilization of some Equilibria of an Underactuated Underwater Vehicle. Systems and Control Letters. 2002, 45: 193~206
    51 K. D. Do, J. Pan, and Z. P. Jiang. Robust and Adaptive Path Following for Underactuated Autonomous Underwater Vehicles. Ocean Engineering. 2004, 31: 1967~1997
    52 Z. P. Jiang. Global Tracking Control of Underactuated Ships by Lyapunov Direct Method. Automatica. 2002, 38: 301~309
    53 K. D. Do, Z. P. Jiang, and J. Pan. Robust Adaptive Path Following of Underactuated Ships. Automatica. 2004, 40: 929~944
    54 A. Lefeber, K. Y. Pettersen, and H. Nijmeijer. Tracking Control of an Underactuated Ship. IEEE Transactions on Automatic Control. 2003, 11(1): 52~61
    55 K. D. Do, J. Pan. Robust Path-following of Underactuated Ships: Theory and experiments on a model ship. Ocean Engineering. 2006, 33: 1354~1372
    56 K. D. Do, J. Pan. Underactuated Ships Follow Smooth Paths with Integral Actions and without Velocity Measurements for Feedback: Theory and Experiments. IEEE Transactions on System Technology. 2006, 14(2): 308~322
    57 F. Grasser, A. Arrigo, S. Colombi, et al. JOE: A Mobile, Inverted Pendulum. IEEE Transactions on Industrial Electronics. 2002, 49(1): 107~114
    58 K. D. Do, Z. P. Jiang, and J. Pan. A Global Output-Feedback Controller for Simultaneous Tracking and Stabilization of Unicycle-Type Mobile Robots. IEEE Transactions on Automatic Control. 2004, 20(3): 589~594
    59 E. Maaloufa, M. Saada, and H. Saliahb. A Higher Level Path Tracking Controller for a Four-wheel Differentially Steered Mobile Robot. Robotics and Autonomous Systems. 2006, 54: 23~33
    60 F. Bullo and M. Zefran. On Mechanical Control Systems with Nonholonomic Constraints and Symmetries. Systems & Control Letters, 2002, 45:133~143
    61 S. Iannitti and K. M. Lynch. Minimum Control-Switch Motions for the Snakeboard: A Case Study in Kinematically Controllable Underactuated Systems. IEEE Transactions on Automatic Control. 2004, 20(6): 994~1006
    62 C. Sabourin and O. Bruneau. Robustness of the Dynamic Walk of a BipedRobot Subjected to Disturbing External Forces by Using CMAC Neural Networks. Robotics and Autonomous Systems. 2005, 51: 81~99
    63 B. L. Luk, D. S. Cooke, S. Galt, et al. Intelligent Legged Climbing Service Robot for Remote Maintenance Applications in Hazardous Environments. Robotics and Autonomous Systems. 2005, 53: 142~152
    64 A. Crespi, A. Badertscher, and A. Guignard, et al. AmphiBot I: an Amphibious Snake-like Robot. Robotics and Autonomous Systems. 2005, 50:163~175
    65 C. Frangos and Y. Yavin. Control of the Motion of a Small-Scale Car with Four Steerable Wheels. Computers and Mathematics with Applications. 2004, 48: 437~453
    66 K. A. Moustafa and A. M. Ebeid. Nonlinear Modeling and Control of Overhead Crane Load Sway. Transactions of the ASME Journal of Dynamic Systems, Measurement and Control. 1998, 110: 266~271
    67 K. A. Moustafa, M. B. Trabia, and M. I. Ismail. Stability Analysis and Control of Overhead Crane with Time-Dependent Flexible Cable. International Conference on Advanced Intelligent Mechatronics. Monterey, CA USA, 2005: 1500~1504
    68 H. H. Lee. Modeling and Control of a Three-Dimensional Overhead Crane. Journal of Dynamic Systems. Measurement and Control. 1998, 120: 471~476
    69 H. H. Lee. A New Motion-Planning Scheme for Overhead Cranes with High-Speed Hoisting. Journal of Dynamic Systems. Measurement and Control. 2004, 126: 359~364
    70 Y. Fang, W. E. Dixon, D. M. Dawson, et al. Nonlinear Coupling Control Laws for an Underactuated Overhead Crane System. IEEE/ASME Transactions on Mechatronics. 2003, 8(3): 418~423
    71 D. T. Liu, J. Q. Yi, D. B. Zhao, et al. Adaptive sliding mode fuzzy control for a two-dimensional overhead crane. Mechatronics. 2005, 15: 505~522
    72 R. Fierro, F. L. Lewis, and A. Lowe. Hybrid Control for a Class of Underactuated Mechanical Systems. IEEE Transactions on Automatic Control. 1999, 29(6): 649~654
    73 赖旭芝,蔡自兴,吴敏. 一类欠驱动机械系统的模糊与变结构控制. 自动化学报. 2001, 27(16): 850~854
    74 T. Fukuda and Y. Hasegawa. Mechanism and Control of Mechatronic System with Higher Degrees of Freedom. Annual Reviews in Control. 2004, 28: 137~155
    75 朱江滨, 易建强. 非线性欠驱动系统的实时控制. 自动化学报. 2004, 30(1): 131~136
    76 S. Nair and N. E. Leonard. A Normal Form for Energy Shaping: Application to the Furuta Pendulum. IEEE Conference on Decision and Control, Las Vegas, Nevada USA. 2002: 516~521
    77 K. J. Astrom and K. Furuta. Swinging up a Pendulum by Energy Control. Automatica. 2000, 36(2): 287~295
    78 R. Teel. Using Saturation to Stabilize a Class of Single-Input Partially Linear Composite Systems. Proceedings of the IFAC Symposium on Nonlinear Control Systems Design, Bordeaux, France. 1992: 369~374
    79 R. Teel. A Nonlinear Small Gain Theorem for the Analysis of Control Systems with Saturation. IEEE Transactions on Automatic Control. 1996, 41(9): 1256~1270
    80 C. J. Wan, D. S. Bernstein, and V. T. Coppola. Global Stabilization of the Oscillating Eccentric Rotor. IEEE Conference on Decision and Control, Lake Buena Vista, FL USA. 1994:4024~4029
    81 M. Jankovic, D. Fontaine, and P. V. Kokotovic. TORA Example: Cascade and Passivity-Based Control Designs. IEEE Transactions on Control Systems Technology. 1996, 4(3): 292~297
    82 蒋怀伟,王石刚,徐威等. 纳米生物机器人研究与进展. 机器人. 2005, 27(6): 569~574
    83 B. R. Donald, C. G. Levey, C. D. McGray, et al. An Untethered, Electrostatic, Globally Controllable MEMS Micro-Robot. Journal of Micromechanical Systems. 2006, 15(1): 1~15
    84 D. C. D. Oguamanam and J. S. Hansen. Dynamics of a Three-Dimensional Overhead Crane System. Journal of Sound and Vibration. 2001, 242(3): 411~426
    85 Y. S. Kim, H. S. Seo, and S. K. Sul. A New Anti-Sway Control Scheme for Trolley Crane System. IEEE Conference on Industry Applications, Chicago, Illinois USA. 2001: 548~552
    86 A. Ciua, C. Sentzu, and C. Usai. Observer-Controller Design for Cranes Via Lyapunov Equivalence. Automatica. 1999, 35: 669~678
    87 T. Matsuo, R. Yoshino, Haruo Suemitsu, et al. Nominal Performance Recovery by PID+Q Controller and Its Application to Antisway Control of Crane Lifter with Visual Feedback. IEEE Transction on Control Systems Technology. 2004, 12(1): 156~166
    88 A. Z. Al-Garni, K. A. F. Moustafa, and S. J. Nizami. Optimal Control of Overhead Cranes. Control Engineering Practice. 1995, 3(9): 1277~1284
    89 A. Piazzi and A. Visioli. Optimal Dynamic-Inversion-Based Control of and Overhead Crane. IEE Proceedings: Control Theory Applications. 2002, 149(5): 405~411
    90 Z. H. Wang and B. W. Surgenor. A Problem with the LQ Control of Overhead Cranes. Journal of Dynamic Systems, Measurment, and Control. 2006, 28: 436~440
    91 M. Utierrez and R. Soto. Fuzzy Control of a Scale Prortotype Overhead Crane. IEEE Conference on Decision and Control, Tampa, Florida USA. 1998: 4266~4268
    92 Y. C. Liang and K. K. Koh. Concise Anti-Swing Approach for Fuzzy Crane Control. Electronics Letters. 1997, 33(2): 167~168
    93 A. Benhidjeb and G. L. Gissinger. Fuzzy Control of an Overhead Crane Performance Comparison with Classic Control. Control Engineering Practice. 1995, 3(12): 1687~1696
    94 H. Butler, G. Honderd, and J. V. Amerongen. Model Reference Adaptive Control of a Gantry Crane Scale Model. IEEE Control Systems Magazine. 1991, 11(1): 57~62
    95 T. Burg, D. Dawson, C. Rahn, et al. Nonlinear Control of an Overhead Crane via the Saturating Control Approach of Teel. Robotics and Automation, Proceedings of 1996 IEEE International Conference. 1996: 3155~3160
    96 K. Yoshida and H. Kawabe. A Design of Saturating Control with a Guaranteed Cost and Its Application to the Crane Control. IEEE Transactions on Automation Control. 1992, 37(1): 121~127
    97 J. Collado, R. Lozano, and I. Fantoni. Control of Convey-Crane Based on Passivity. Proceedings of the American Control Conference, Chicago, IllinoisUSA. 2000: 1260~1264
    98 B. Vikramaditya and R. Rajamani. Nonlinear Control of a Trolley Crane System. Proceedings of the American Control Conference, Chicago, Illinois USA. 2000: 1032~1036
    99 G. Bartolini, A. Pisano, and E. Usai. Second Sliding-Mode Control of Container Cranes. Automatica. 2002, 38: 1783~1790
    100 W. Singhose, L. Porter, M. Kenison, et al. Effects of Hoisting on the Input Shaping Control of Gantry Cranes .Control Engineering Practice. 2000, 8: 1159~1165
    101 K. L. Sorensen, W. Singhose, and S. Dickerson. A Controller Enabling Precise Positioning and Sway Reduction in Bridge and Gantry Cranes. Control Engineering Practice. 2007, 15: 825~837
    102 Z. N. Masoud and M. F. Daqaq. A Graphical Approach to Input-Shaping Control Design for Container Cranes with Hoist. EEE Transactions on Control System Technology. 2006, 14(6): 1070~1077
    103 H. M. Omar and A. H. Nayfeh. Gantry Cranes Gain Scheduling Feedback Control with Friction Compensation. Journal of Sound and Vibration. 2005, 281: 1~20
    104 L. Moreno, L.Acosta, J. A.Mendez, et al. A Self-Tuning Neuromorphic Controller: Applicaiotn to the Crane Problem. Control Engineering Practice. 1998, 6: 1475~1483
    105 L. F. Mendonca, J. M. Sousa, and J. S. Costa. Optimizaiton Problems in Multivariable Fuzzy Predictive Control. International Journal of Approximate Reasoning. 2004, 36: 199~221
    106 华克强,高淑玲,朱齐丹. 吊车防摆技术的研究. 控制理论与应用. 1992, 9(6): 631~637
    107 华克强. 桥式吊车模糊防摆控制.中国民航学院学报. 2000, 18(3): 12~15
    108 刘业良, 李伟. 天车抓斗防摆控制方法的研究. 信息与控制. 1993, 22(1): 50~55
    109 李伟,张桂青,陈鹏. 基于时间最优的起重机消摆控制策略. 山东工业大学学报. 1998,28(2): 107~111
    110 李伟,张桂青. 起重机最优消摆对策. 山东建筑工程学院学报. 1998, 13(3): 41~46
    111 李伟,李瑞华. 起重机智能控制的发展现状与思考. 煤矿机械. 2006,27(8): 3~4
    112 邹军,陈志坚. 桥式起重机水平运行及抓斗防摆规律研究. 山东大学学报. 1998,33(4): 393~397
    113 邹军,陈志坚. 桥式起重机抓斗的防摆控制. 山东大学学报. 1999, 34(1): 58~62
    114 刘殿通,易建强,谭民. 适于长距离运输的分段吊车模糊控制. 控制理论与应用. 2003, 20(6): 908~912
    115 王伟,易建强,赵冬斌,刘殿通. 基于滑模方法的桥式吊车系统的抗摆控制. 控制与决策. 2004, 19(9): 1013~1017
    116 王伟,易建强,赵冬斌,柳晓菁. 一类非确定欠驱动系统的串级模糊滑模控制. 控制理论与应用. 2006, 23(1): 53~59
    117 B. N. 阿诺尔德. 经典力学的数学方法. 齐民友译. 高等教育出版社,1992: 52~92
    118 H. G. Tanner and K. J. Kyriakopoulos. Backstepping for Nonsmooth Systems. Automatica. 2003, 39: 1259~1265
    119 F. Mazenc and A. Iggidr. Backstepping with Bounded Feedbacks. Systems and Control Letters. 2004, 51: 235~245
    120 F. Mazenc and L. Praly. Adding Integrations, Saturated Controls, and Stabilization for Feedforward Systems. IEEE Transactions on Automatic Control. 1996, 41(11): 1559~1578
    121 G. Kaliora and A. Astolfi. On the Stabilization of Feedforward Systems with Bounded Control. Systems and Control Letters. 2005, 54: 263~270
    122 P. Krishnamurthy and F. Khorrami. A High-Gain Scaling Technique for Adaptive Output Feedback Control of Feedforward Systems. IEEE Transactions on Automatic Control. 2004, 49(12): 1777~1783
    123 S. Celikovsky. Local Stabilization and Controllability of a Class of Nontriangular Nonlinear Systems. IEEE Transactions on Automatic Control. 2000, 45(10): 1909~1913
    124 E. D. Sontag. Remarks on Stabilization and Input-to-State Stability. IEEE Conference on Decision and Control, Tampa, Florida USA. 1989: 1376~1378
    125 H. K. Khailil. Nonlinear Systems. Third Edition. Prentice-Hall Inc, 1996
    126 T. B. Robert, S. B. Dennis, and T. C. Vincent. A Benchmark Problem forNonlinear Control Design. International Journal of Robust and Nonlinear Control, 1998, 8(4): 307~310
    127 R. Sepulchre. Slow Peaking and Low-gain Designs for Global Stabilization of Nonlinear systems. IEEE Transactions on Automatic Control. 2000, 45(3): 453~461
    128 张晓华. 系统建模与仿真. 清华大学出版社,2006

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700