用户名: 密码: 验证码:
液压驱动六自由度振动试验系统控制策略研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文以哈工大电液伺服仿真及试验系统研究所承接的国防863项目“三向六自由度液压振动试验系统”为背景,对六自由度液压振动试验系统的控制策略进行理论和实验研究。
     六自由度振动台控制系统由伺服控制系统和振动控制系统两部分组成。伺服控制系统的主要作用是将自由度驱动信号转化为各单系统的驱动信号,驱动平台运动,实现振动台的自由度控制。仅采用伺服控制方法可以控制平台运动,但此时系统的响应信号与输入的期望信号相比会有很大偏差。因此在伺服控制系统的外环加入振动控制系统,对驱动信号进行迭代补偿,使得系统的响应信号能够高精度地复现期望信号。
     振动台伺服控制系统主要由自由度合成及分解控制器、三状态控制器和压力镇定控制器三个部分组成。本文首先简述传统的六自由度控制策略,然后提出在原有六自由度控制回路中增设两个扭曲自由度的控制回路,采用所谓“八自由度控制策略”控制平台运动。采用六自由度控制策略时,驱动量的解不唯一,而且各激振器间内力受负载和油温等因素影响变化较大。采用八自由度控制方式时,驱动量的解唯一,各激振器间的内力变换较小,有利于提高系统的控制精度。接着对传统压力镇定控制器进行改进,将控制器的可调参数缩减为两个,且参数间相互独立,简化了调节过程。最后通过实验验证了八自由度控制策略及改进后压力镇定控制器的有效性。
     在振动台传统伺服控制系统中,自由度合成及分解矩阵都是基于零位线性化的假设得出的,而且在平台运动过程中矩阵元素值始终不变,控制算法不完善。本文对六自由度振动台进行运动学分析,给出基于运动学分析的振动台系统位姿控制结构,采用正解算法及雅可比阵分别代替传统伺服控制系统中的自由度合成和分解矩阵。仿真分析及实验研究表明,与传统矩阵控制方法相比,采用基于运动学分析的位姿控制策略能够有效改善振动台系统低频段的加速度均匀度,减小加速度横向分量。
     多自由度波形复现传统振动控制算法中大多采用H1法进行频响函数估计,而H1法假设系统输入端不存在噪声,其估计值为系统真实频响函数的欠估计。本文提出基于EV模型进行频响函数估计。在输入端和输出端均存在噪声的前提下,给出了基于EV模型的系统频响函数估计法。并根据多自由度波形复现试验系统的特点,对频响函数估计进行了简化。仿真分析及实验研究表明,在波形复现控制系统中应用基于EV模型的频响函数估计法可明显提高试验的控制精度。
     为进一步提高随机振动功率谱(PSD, power spectral density)复现的精度,在驱动谱迭代和驱动信号生成两个方面对传统功率谱迭代算法进行了改进。首先,提出将驱动谱迭代公式中的修正系数由实数变为实向量,在不同频段取不同修正系数,即采用分频段变步长法对驱动谱进行修正,提高了迭代算法的收敛速度。其次,提出利用驱动谱的信息采用Parks-McClellan法设计FIR滤波器,利用滤波器对白噪声信号进行滤波生成时域驱动信号,由于避免了传统控制算法中的时域随机化过程,缩短了算法的执行时间。仿真分析及实验研究表明,改进后的功率谱复现控制算法能够明显提高功率谱复现的精度。
Upon the background of National Defense 863 Project to develop 3 axis 6 DOF (degree-of-freedom) hydraulic vibration test system, which is developed by IEST (Institute of Electro-hydraulic Servo Simulation & Test System), the control strategy of the vibration test system has been theoretically and experimentally studied.
     The control system of 6 DOF vibration table consists of servo control system and vibration control system. The servo control system is used to realize the DOF control mode, i.e., to convert the DOF drive signals to single actuator drive signals. There have large deviations between response signals and input signals with the only servo control system. So the vibration control system is added in the outer control loop of the servo control system. Based on the FRF (frequency response function) of the system, the drive signals are corrected so that the response signals can replicate the expect signals in high degree of accuracy.
     The servo control system of vibration table consists of DOF composition and decomposition controller, three variable controller and force balance controller. Based on the analysis of 6 DOF matrix control method, 8 DOF matrix control method is presented in this dissertation. Two torsion DOF control loop are added to the original 6 DOF control loop. As the existence of no uniqueness solutions of actuator drive signals in the 6 DOF control mode, the inner forces among actuators vary within wide limits. In 8 DOF control mode, the solutions of actuator drive signals are uniqueness, so the inner forces among actuators are almost constant. The const inner forces are favorable to improve the control precision. Then, the conventional force balance controller is improved. The number of adjustable parameters is reduced to two. The two parameters are independent and can be adjusted individually. At last, experimental results validated the 8 DOF matrix control method and the improved force balance controller.
     The DOF composition and decomposition matrixes in classical servo control system are got based on the assumption of linearization near the zero position. The matrixes are invariant. This indicates that the conventional matrix control method is inaccurate. Kinematics analysis and the pose control structure of 6 DOF vibration table are presented in this dissertation. Forward solution and jacobian matrix replace the DOF composition and decomposition matrixes in the conventional servo control system. Simulation and experimental results show that the pose control structure based on the kinematics analysis of 6 DOF vibration table is favorable to improve the performance indices of acceleration evenness degree and transverse components in the low-frequency band.
     FRF H1 estimator is used in the classical 6 DOF waveform replication algorithm to estimate the FRF of the system. It’s well known that the H1 estimator is influenced by the noise in the input signals and generates an under-estimation of the true FRF. This paper presents the FRF estimator based on the EV model to reduce the bias error of FRF H1 estimator. The FRF estimator based on the EV model takes into account the errors in both the inputs and outputs of the system and would lead to more accurate FRF estimation. Based on the features of MIMO waveform replication control system, the estimator is simplified. The results of simulation and experiment show that the waveform replication algorithm with the FRF estimator based on the EV model can improve further the control precision.
     In order to improve the control precision of random vibration PSD replication, the correction algorithm of drive signals PSD and the generation of time domain drive signals are improved in the classical algorithm. First, the drive signals PSD iteration algorithm with different step length in different frequency band is presented to raise the rate of convergence. Second, the method of generating the drive signal in time domain by filtering a series of independent white noise with designed FIR filter is presented. The FIR filter is designed by the Parks-McClellan algorithm with the information contained in the in the drive signal PSD. Due to avoiding the time domain randomization procedure, the execution time of the algorithm is reduced. The results of simulation and experiment show that the improved PSD iteration algorithm is favorable to improve the control precision.
引文
1 樊世超, 冯咬齐. 多维动力学环境模拟试验技术研究. 航天器环境工程. 2006, 23(1): 23~28
    2 夏益霖, 吴家驹, 李志绩. 多轴低频振动试验技术与设备. 航天出国考察技术报告. 1996, (1): 83~89
    3 哈尔滨工业大学电液伺服仿真及试验系统研究所. 三轴六自由度液压振动试验系统研究工作总结报告. 2006: 1~4
    4 王光芦, 祝耀昌, 刘达德等. 多轴向多激励振动技术. 环境技术. 2000, (5): 2~6,19
    5 赵保平, 王刚, 高贵福. 多输入多输出振动试验应用综述. 装备环境工程. 2006, 3(3): 25~32
    6 张正平, 王宇宏, 朱曦全. 动力学综合环境试验技术现状和发展. 装备环境工程. 2006, 3(4): 7~11
    7 胡志强, 法庆衍, 洪宝林等. 随机振动试验应用技术. 中国计量出版社, 1996: 157~208, 125~129
    8 戴诗亮. 随机振动实验技术. 清华大学出版社, 1984: 134~169
    9 赵于鉴, 马栋. 多点控制在导弹随机振动试验中的应用. 国外电子测量技术. 2005, 24(10): 37~40
    10 Stroud R.C., Hamma G.A. and Underwood M. A et al. A Review of Multiaxis/Multiexciter Vibration Technology. Sound and Vibration. 1996, 30(4): 20~27
    11 Klaus L. Vibration Testing System. United States Patent: 4011749. 1977-03-15
    12 F. DE Coninck, W. Desmet, P. Sas. Increasing the Accuracy of MDOF Road Reproduction Experiments: Calibration, Tuning and a Modified TWR Approach. Proceedings of ISMA, 2004: 709~721
    13 A.R.Plummer. Modal Control for a Class of Multi-axis Vibration Table. UKACC Control 2004 Mini Symposia, 2004: 111~115
    14 张巧寿. 多向振动试验系统. 第十一届全国实验力学学术会议, 大连,2005: 1218~1222
    15 John J. Dougherty and Hossny EL-Sherief. Modeling and Identification of a Triaxial Shaker Control System. IEEE Conference on Control Applications-Proceedings, 1995: 884~889
    16 齐华. 单轴多点激励正弦振动控制算法研究及其实现. 北京航空航天大学硕士学位论文. 2001: 6~27
    17 邓阳. 单轴多点激励随机振动试验的控制方法及实现的研究. 北京航空航天大学硕士学位论文. 2003: 6~20
    18 袁宏洁,李传日. 正弦加随机振动控制技术的研究. 航空学报. 2000, 21(4): 383~384
    19 谢飞. 宽带加扫频窄带随机振动控制算法研究及软件实现. 北京航空航天大学硕士学位论文. 2000: 5~19
    20 叶建华. 多点激励随机振动试验控制技术及实现的研究. 北京航空航天大学硕士学位论文. 2004: 9~28
    21 杨云, 沈毅力, 曹阳等. 道路模拟振动台及其控制系统的研制. 系统仿真学报. 2004, 16(5): 1044~1046
    22 叶凌云. 多轴向多激励随机振动高精度控制研究. 浙江大学工学博士学位论文. 2006: 57~68
    23 王述成. 振动试验实时控制系统的研究. 浙江大学工学博士学位论文. 2006: 53~70
    24 韩军, 陈怀海, 许峰等. 基于遗传算法的多振动台随机振动控制方法. 航空学报. 2003, 24(1): 39~41
    25 沈国重. 多分辨率随机振动控制算法. 机械工程学报. 2001, 37(10): 14~18, 30
    26 陈循, 温熙森. 多轴随机激励振动控制技术研究. 国防科技大学学报. 2000, 22(1): 65~68
    27 刘小勇. 振动系统的实时信号处理与控制. 西安交通大学博士学位论文. 2003: 66~83
    28 国家科学技术工业委员会. GJB 150.15-86. 中华人民共和国国家军用标准. 军用设备环境试验方法. 加速度试验. 1986.
    29 中国机械工业联合会. GB/T 8288-2001. 中华人民共和国机械行业标准. 液压振动台. 2001
    30 国家质量技术监督局. GB/T 18238-2001. 中华人民共和国国家标准. 振动台选择指南. 2001
    31 中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会. GB/T 5170.15-2005. 电工电子产品环境试验设备基本参数检定方法. 振动(正弦)试验用液压振动台. 2005
    32 Stroud R.C. and Hamma G.A. Multiexciter and Multiaxis Vibration Exciter Control Systems. Sound and Vibration. 1988, 22(4): 18~28
    33 李洪人. 液压控制系统. 国防工业出版社. 1990: 162~167, 188~199
    34 Yasuhiro Uchiyama, Masakazu Mukai and Masayuki Fujita. Robust Acceleration Control of Electrodynamic Shaker Using μ -Synthesis. Proceedings of the 44th IEEE Conference on Decision and Control, Seville, Spain, 2005: 6170~6175
    35 Chen Thin-Huo, Liaw Chang-Ming. Vibration Acceleration Control of an Inverter-Fed Electrodynamic Shaker. IEEE/ASME Transactions on Mechatronics. 1999, 4(1): 60~70
    36 Leandro Della Flora, Hilton Abílio Gründling. Vibration Acceleration Control of an AC Power Source-Fed Electrodynamic Shaker. IEEE Power Electronics Specialists Conference, 2005: 1175~1181
    37 Chang-Ming Liaw, Wen Chin Yu and Thin-Huo Chen. Random Vibration Test Control of Inverter-Fed Electrodynamic Shaker. IEEE Trans on Industrial Electronics. 2002, 49(3): 587~594
    38 M. Stefanello, M. Eng. E. G. Carati. Environment for Random and Sinusoidal Vibration Test Control of an Inverter-Fed Electrodynamic Shaker. IEEE International Symposium on Industrial Electronics, 2003: 1093~1098
    39 韩俊伟. 三向六自由度大型地震模拟振动台的研制. 哈尔滨工业大学博士后研究报告. 1996: 27~33, 33~39
    40 韩俊伟, 于丽明, 赵慧等. 地震模拟振动台三状态控制的研究. 哈尔滨工业大学学报. 1999, 31(3): 21~23, 28
    41 黄真, 孔令富, 方跃法. 并联机器人机构学理论及控制. 机械工业出版社, 1997: 283~292
    42 吴宇列, 吴学忠, 李圣怡. 冗余并联机构的分类研究. 机械科学与技术. 2002, 21(1): 1~2
    43 David Vaes, Kris Smolders and Jan Swevers et al. Multivariable Control for Reference Tracking on Half Car Test Rig. Proceedings of the 44th IEEEConference on Decision and Control. Seville, Spain, 2005: 6498~6503
    44 Hiromu Hirai, Shin Hamano. Stability Control System for Vibration Test Device. United States Patent: 4297888. 1981-11-03
    45 Syh-Shiuh Yeh and Pau-lo Hsu. Analysis and Design of Integrated Control for Multi-Axis Motion System. IEEE Trans on Control Systems Technology. 2003, 11(3): 375~382
    46 Vincent Latendresse. Operation and Control of a Seismic Simulator. PhD thesis. University of British Columbia. 1999: 57~77
    47 Underwood, M.A. and Keller, T. Rectangular Control of Multi-Shaker Systems: Theory and Some Practical Results. Journal of the IEST. 2004, 47: 80~86
    48 Underwood, M.A. and Keller, T. Applying Coordinate Transformations to Multi Degree of Freedom Shaker Control. Sound and Vibration. 2006, 40(1): 22~27
    49 Marcos A. Underwood. Input and Output Transformations for MIMO Random and MIMO Sine. 2003
    50 D. Vaes, W. Souverijns and J. De Cuyper et al. Optimal Decoupling for Improved Multivariable Controller Design, Applied on an Automotive Vibration Test Rig. Proceedings of the American Control Conference. Denver, Colorado, 2003: 785~790
    51 Matlab on-line Help manuals. Signal Processing Toolbox: Statistical Signal Processing: Spectral Analysis. The MathWorks Inc. 2002
    52 S.M.凯依. 现代谱估计原理与应用. 黄建国, 武延祥, 杨世兴译. 科学出版社, 1999: 81~120
    53 David O. Smallwood. Multiple Shaker Random Vibration Control-An Update. Proceedings of the IEST. 1999: 212~221
    54 Patrick Guillaume, Rik Pintelon and Johan Schoukens. Nonparametric Frequency Response Function Estimators Based on Nonlinear Averaging Techniques. IEEE Trans on Instrum and Meas. 1992, 41(6): 739~746
    55 Johan Schoukens, Yves Rolain, and Rik Pintelon. Improved Frequency Response Function Measurements for Random Noise Excitations. IEEE Trans on Instrum and Meas. 1998, 47(1): 322~326
    56 Rik Pintelon and Johan Schoukens. Measurement of Frequency Response - 135 -Functions in the Presence of Correlated Input/output Errors. IEEE Instrumentation and Measurement Technology Conference, Budapest, 2001: 2~7
    57 Tadeusz P.Dobrowiecki, Johan Schoukens. Practical Choices in the FRF Measurement in Presence of Nonlinear Distortions. IEEE Trans on Instrum and Meas. 2001, 50(1): 2~7
    58 D.E.Adams and R.J.Allemang. A New Derivation of the Frequency Response Function Matrix for Vibrating Non-linear Systems. Journal of Sound and Vibration. 1999, 227(5): 1083~1108
    59 Underwood M.A. Multi-exciter Testing Applications: Theory and Practice. Proceedings-Institute of Environmental Sciences and Technology. Anaheim, CA, 2002: 1~10
    60 Underwood M. A and Keller T. Recent System Developments for Multi-actuator Vibration Control Systems. Sound and Vibration. 2001, 35(10): 16~23
    61 Tony Keller, Marcos Underwood. An Application of MIMO Techniques to Satellite Testing. Proceedings-Institute of Environmental Sciences and Technology. 2001
    62 Kazuyoshi Ueno, Yoshikado Yamauchi. Measuring System for Transfer Function Matrix of a System to Be Controlled in Multi-degree of Freedom Vibration Control. United States Patent: 6377900. 2002-04-23
    63 Nele Dedene, Rik Pintelon. Measurement of Multivariable Frequency Response Functions in the Presence of Nonlinear Distortions—Some Practical Aspects. IEEE Trans on Instrum and Meas. 2002, 51(4): 577~582
    64 Rik Pintelon, Yves Rolain and Wendy Van Moer. Probability Density Function for Frequency Response Function Measurements Using Periodic Signals. IEEE Trans on Instrum and Meas. 2003, 52(1): 61~68
    65 Ka-Veng Yuen, Lambros S.Katafygiotic, James L.Beck. Spectral Density Estimation of Stochastic Vector Processes. Probabilistic Engineering Mechanics. 2002, (17): 265~272
    66 Tadeusz P. DObrowiecki, Johan Schoukens and Patrick Guillaume. Optimized Excitation Signals for MIMO Frequency Response Function Measurements. IEEE Trans on Instrum and Meas. 2006, 55(6): 2072~2079
    67 Underwood Marcos A. The Adaptive Control of Multiexciters Using A Frequency Domain Approach. PhD thesis. University of California. 1993: 6~14
    68 陈章位, 王述成. 振动试验控制技术发展与现状. 2004, 21: 127~130
    69 Edwin A. Sloane, Charles L. Heizman. System for Digitally Controlling a Vibration Testing Environment or Apparatus. United States Patent: 3710082. 1973-01-09
    70 Edwin A. Sloane, Charles L. Heizman. Vibration Control System. United States Patent: 3848115. 1974-11-12
    71 Edwin A. Sloane. System for Determinig Transfer Function. United States Patent: 3973112. 1976-08-03
    72 Edwin A. Sloane. Vibration Control System. United States Patent: 4989158. 1991-01-29
    73 Edwin A. Sloane. Vibration Control System. United States Patent: 4991107. 1991-02-05
    74 Fisher D.K. and Posehn M.R. Digital Control System for a Multiple-Actuator Shaker. 47th Shock and Vibration Bulletin. NM: Albuquerque, 1977: 79~96
    75 Smallwood D O. Random Vibration Testing of a Single Test Item with a Multiple Input Control System. Proceedings of the Institute of Environmental Sciences’ 28th Annual Technical Meeting. USA, Dallas, TX, 1982: 42~49
    76 Peeters B. and Debilie J. Multi-axial Random Vibration Testing: a 6 Degrees-of-freedom Test Case. Proceedings of the 21st Aerospace Testing Seminar, Manhattan Beach, CA, USA, 2003: 4.47~4.62
    77 Bart Peeters and Jan Debille. MIMO Random Vibration Control Algorithm and Simulations. Proceedings of the 72nd Shock and Vbiration Symposium, San Destin, FL, USA, 2001: 1~11
    78 Bart Peeters, Jan Debille. MIMO Vibration Qualification Testing: Algorithm and Practical experience. Proceedings of ESTECH. Anaheim, CA, USA, 2002
    79 Marcos A. Underwood. Digital Signal Synthesizer. United States Patent: 4782324. 1988-11-01
    80 Marcos A. Underwood. Calibration Method and Programmable Phase-Gain Amplifier. United States Patent: 4937535. 1990-06-26
    81 Underwood M.A. Adaptive Control Method for Multiexciter Sine Tests. United States Patent: 5299459. 1994-04-05
    82 韩俊伟, 李洪人. 流体控制技术在环境模拟与仿真试验装备中的应用. 流体传动与控制. 2005, (2): 34~38
    83 姜洪洲. 计算机测试与控制讲义. 哈尔滨工业大学. 2003
    84 张尚盈. 液压驱动并联机器人力控制研究. 哈尔滨工业大学工学博士学位论文. 2005: 108~114, 22~35
    85 杨涤, 李立涛, 杨旭等. 系统实时仿真开发环境与应用. 清华大学出版社. 2002:1~11
    86 杨志东. 三轴六自由度液压振动试验系统控制策略的研究. 哈尔滨工业大学工学硕士论文. 2004: 34~36
    87 徐勇. 六自由度转台控制策略及三维动画仿真研究. 哈尔滨工业大学工学硕士论文. 2001: 8~18
    88 何景峰. 液压驱动六自由度并联机器人特性及其控制策略研究. 哈尔滨工业大学工学博士学位论文. 2006: 21~31
    89 赵强. 六自由度舰艇运动模拟器的优化设计及性能分析. 哈尔滨工业大学工学博士学位论文. 2003: 21~27
    90 赵慧, 韩俊伟. 六自由度运动平台实时控制的正/反解算法. 机床与液压. 2003, (3): 133~135,123
    91 赵慧, 韩俊伟. 六自由度并联机器人运动学分析和计算. 机床与液压, 2003, (3):70~72
    92 沈守范, 张纪元, 万金保. 机构学的数学工具. 上海交通大学出版社. 1991: 18~49
    93 张韵华,奚梅成,陈长松. 数值计算方法和算法. 科学出版社. 2000: 81~83
    94 李庆扬, 莫孜中, 祁力群. 非线性方程组的数值解法. 科学出版社. 1999: 38~46
    95 S.Koekebakker. Model Based Control of a Flight Simulator Motion System. PhD thesis. Delft University of Technology, 2001: 44~49
    96 Dong Hwan Kim, Ji-Yoon Kang, Kyo-ll Lee. Robust Tracking Control Design for a 6DOF Parallel Manipulator. 2000, 17(10): 527~547
    97 Dasgupta B. and Mruthyunjaya T. S. The Stewart Platform Manipulator: a Review. Mechanism and Machine Theory. 2000, 35(1): 15~40
    98 Kai Liu, John M. Fitzgerald and Frank L.Lewis. Kinematic Analysis of aStewart Platform Manipulator. IEEE Trans on Industiral Electronics. 1993, 40(2): 282~293
    99 薛定宇, 陈阳泉. 基于 MATLAB/Simulink 的系统仿真技术与应用. 清华大学出版社. 2002: 406~420
    100 Spectral Dynammics, Inc. Real-time Control, Random Control, Swept Sine Control. Review the SD History Document. 2003
    101 H. Bassan, H.A. Talebi, R.V. Patel et al. Real-Time Vibration Control of an Industrial Manipulator Mounted on a Compliant Base. Proceedings of the 2004 American Control Conference. Boston, Massachusetts, 2004: 5766~5771
    102 Spectral Dynamics, Inc. Jaguar Systems On-line Operating Manuals: MIMO Waveform Replication. 2003
    103 LMS, Inc. Basic Signal Processing. 2003: 42~44
    104 D.E.纽兰. 随机振动与谱分析概论. 方同等译. 机械工业出版社, 1980: 71~87
    105 张令弥. 振动测试与动态分析. 航空工业出版社, 1992: 220~238
    106 应怀樵. 波形和频谱分析与随机数据处理. 中国铁道出版社, 1983: 314~400
    107 吴三灵. 实用振动试验技术. 兵器工业出版社, 1993: 69~97
    108 刘习军, 贾启芬, 张文德等. 工程振动与测试技术. 天津大学出版社, 2002: 215~221
    109 杨福生. 随机信号分析. 清华大学出版社, 1988: 142~208
    110 A.V.奥本海姆. R.W.谢弗. 离散时间信号处理. 黄建国, 刘树堂译. 科学出版社, 2000: 589~595
    111 汪荣鑫. 随机过程. 西安交通大学出版社, 2000: 67~91
    112 Cyril M.Harris, Allan G.Piersol. Harris’ shock and vibration book. 5th edition. New York, McGraw-Hill, 2001: 27.1~27.36
    113 Marcos A.Underwood. Apparatus and Methods for Adaptive Closed Loop Control of Shock Testing System. United States Patent: 5517426. 1996-05-14
    114 程绍革, 张自平, 贺军等. 大型高性能振动模拟地震实验室. 工程抗震与加固改造. 2006, 28(5): 39~42
    115 方重. 模拟地震振动台的近况及其发展. 第五届全国地震工程学术会议, 北京, 1998: 867~869
    116 吴家驹. 振动试验中的多台并激技术. 强度与环境. 1992, (1): 1~5
    117 贾叔仕, 邹冬冬. 地震计量用标准振动台技术总结. 强度与环境. 1994, (3): 46~61
    118 杨志钦. 电液振动台设计. 强度与环境. 1991, (3): 42~60
    119 J.S.贝达特, A.G..皮尔索. 相关分析和谱分析的工程应用. 凌福根译. 国防工业出版社, 1983: 187~209
    120 贺旭东, 陈怀海. 一种多点随机振动试验控制的新方法研究. 振动工程学报. 2004, 17(1): 49~52
    121 The MathWorks, Inc. Filter Design Toolbox: Designing Advanced Filters: Optimal Filter Design Solutions. Matlab Help Document. 2002
    122 The MathWorks, Inc. Signal Processing Toolbox: remez. Matlab Help Document. 2002
    123 Toshihiko Horiuchi, Takao Konno. Shaking Table and Method of Control the Same. United States Patent: 6189385. 2001-02-20
    124 Toshihiko Horiuchi, Masaki Nakagawa and Masatsugu Kametani. Method and System for Vibration Test. United States Patent: 5388056. 1995-02-07
    125 Kazuyoshi Ueno, Katsushi Imoto. Vibration Control System. United States Patent: 5012428. 1991-04-30
    126 Yoshitaka Morimoto, Yoshio Ichida and Ryunosuke Sato et al. Estimation of Dynamic Characteristics of Machine Structure by Pseudo Inverse Matrix. SICE Annual Conference. Hokkaido Institude of Technology, Japan, 2004: 1005~1010

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700