用户名: 密码: 验证码:
环渤海13城市主要化学污染物排海总量控制方案研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
改革开放近30年来,随着环渤海地区社会经济的快速发展,化学污染物的排海数量不断增加,渤海海水水质不断恶化,而原有的浓度控制和目标总量控制制度已不能满足海洋环境管理的需求。实施污染物排海容量总量控制是改善海洋环境质量的重要措施,具体包括污染物排海通量估算、海洋环境容量与流域分配容量计算、沿海城市容量的优化分配等,其中污染物排海通量估算是总量控制实施的基础,而海洋环境容量的计算与优化分配则是排海总量控制的核心和关键。本文针对水环境管理科学中容量的优化分配这一前沿领域和热点问题,在渤海主要化学污染物海洋环境容量和主要河流流域分配容量研究工作的基础上,依据多目标非线性规划原理,研究了环渤海城市COD和DIN的总量控制方案,并在此基础上对天津产业/行业结构进行了优化调整,主要研究方法与成果如下:
     (1)系统汇总、分析了渤海的污染源,建立了污染物排海通量估算的原则及方法,并据此估算了环渤海13城市COD、石油烃、营养盐、溶解态重金属等污染物的历年排海通量。结果表明,自20世纪70年代以来,环渤海13城市COD排海总量总体上表现出倒“U”形变化趋势,年均排海通量150万t/a左右。石油烃表现出倒“N”形变化趋势,年均排海通量1.5万t/a左右。DIN表现“N”形变化趋势,年均排海通量15万t/a左右。其它污染物TDP、挥发酚、Hg、Cd、Cr、Pb、砷、氰化物、悬浮固体年均排海通量分别为2万t/a、300 t/a、30 t/a、400 t/a、2000 t/a、1400 t/a、2000 t/a、800 t/a和480万t/a左右。
     (2)对污染的来源进行系统分析结果表明,入海河流是渤海污染物的主要来源,对于石油烃海上污染源是污染物的重要来源,仅次于河流;对于DIN、DIP、COD、Hg、挥发酚排污口也是污染物的重要来源;对于COD、Pb大气沉降的作用不可忽视。对于不同的污染物,13个城市污染物排放比例有所不同,总体上说来,污染物主要来源于东营、营口、盘锦、唐山、天津和潍坊,其它城市所占比例较小。
     (3)规范了排放容量概念,建立了估算城市污染物允许排放容量的原则与原理并依据多目标非线性规划方法,以实现渤海海洋环境容量、流域分配容量、城市允许排放容量最大为目标函数,以经济与人口增长、污染物排放、环境投资等为约束条件建立城市允许排放容量的估算模型,优化结果表明,在国家一类海水水质标准下,对于环渤海13城市COD,除秦皇岛和唐山外其余城市都需要不同程度的削减,其中营口的削减量最大为7.3万t/a,沧州的削减量最小为1.2万t/a;对于削减比例,盘锦的削减比例最大,潍坊的削减比例最小。在国家一类海水水质标准下,环渤海13城市的DIN均需要不同程度的削减,其中天津的削减量最大为2.11万t/a,烟台的削减量最小为0.16万t/a。对于削减比例,营口的削减比例最大,相当于基准年排海通量的86%,唐山的削减比例最小。
     (4)以实现第一、二、三产业各部门允许排放容量最大为目标函数,以经济增长、产业结构比例、污染物排放强度等为约束条件建立产业允许排放容量计算的多目标非线性规划模型,结果表明,在国家一类海水水质标准下,规划年各产业部门的COD均需不同程度的削减,其中第二产业中的工业部门的COD削减数量最大,约2万t/a,而林业部门的削减数量最小。第一、二、三产业结构比例由3.0:56.0:41.0调整为2.0:55.6:42.4。
     (5)以实现工业各部门允许排放容量最大为目标函数,以经济增长、污染物排放强度、水耗、能耗、劳动生产率等为约束条件建立行业允许排放容量计算的多目标非线性规划模型,结果表明,工业部门中,建材、医药、汽车、机械、电信和环保等6个行业的COD允许排放容量有一定的盈余,其中医药行业还可额外排放的数量最大为0.03万t/a,汽车行业可额外排放的比例最大。其他行业的COD需不同程度的削减,其中造纸行业的削减数量为1.4万t/a,削减比例也最大,相当于基准年的48%。在实现各产业/行业允许排放量最大前提下,天津工业各行业中,需大力发展电信、汽车、医药、机械等行业;适当发展服装、建材、石油、化工、环保、能源等部门;适当限制纺织、造纸、化学等行业,严格限制采掘、冶金、食品行业。
     本论文的研究成果为我国近海总量控制的实施提供了必要的理论基础和技术支撑,对渤海生态环境治理以及沿海城市的产业结构优化调整具有直接的指导意义。
In the past 30 years of reform and opening up in China, with the rapid development of society and economy of the Bohai Rim Region, more and more pollutants have been discharged into Bohai Sea, thus it leads to deteriorating seawater quality. However, the original concentration control and target total emission control systems are unable to meet the demand of modern management of the marine environment. The implementation of capacity total emission control of pollutants is an important and effective measure to improve marine water quality. The capacity total emission control contains estimation of pollutant fluxes into the sea, calculation of marine environmental capacity and allocated capacity, optimization and allocation of capacity. The pollutant flux estimation is the base, and the calculation, allocation and optimization of capacity is the key of the research.
     Aimed at the optimization and allocation of capacity, a forefront and hotspot of this field, the research is carried out based on the study of marine environmental capacity and allocated capacity. The allowable emission capacities of chemical oxygen demand (COD) and dissolved inorganic nitrogen (DIN) are calculated according to the principle of multi-target nonlinear programming and the scheme of total emission control is proposed, meanwhile, the industrial and industry structure is optimized and adjusted. The methods and results of research are showed as follows:
     (1) Various pollution sources of Bohai Sea are summarized and analyzed, the principle and method of estimating the pollutant fluxes into the sea are established, and the law of annual fluxes of COD, petroleum hydrocarbons, nutrients, heavy metals and other pollutants into Bohai Sea from 1979 to 2005 is obtained. The results show that the COD flux from 13 coastal cities presents an inverted U-shape with an average flux of 1,500 thousand t/a, the petroleum hydrocarbons flux presents an inverted N-shape with an average flux of 150 thousand t/a, the DIN flux presents an N-shape with an average flux of 15 thousand t/a. The annual fluxes of total dissolved phosphorus (TDP), volatile phenol, Hg, Cd, Pb, As, Cyanide, suspended solids(SS) are 20 000 t/a, 300 t/a, 30 t/a, 400 t/a, 1 400 t/a 2 000 t/a, 800 t/a, 4800 000 t/a, respectively.
     (2) The sources of various pollutants are analyzed and the results show that rivers are the primary pollution source, the sea is an important source for petroleum hydrocarbons, sewage outfalls are also an important source for DIN, TDP, COD, Hg and volatile phenol. The role of atmospheric deposition can not be ignored for COD and Pb pollution. The percentages of various pollutants in 13 cities are different. On the whole, the pollutants in Bohai Sea mainly come from Dongying, Yingkou, Panjin, Tangshan, Tianjin, and Weifang.
     (3) The concept of allowable emission capacity is defied and the principle and method of estimating the allowable emission capacity of pollutants in 13 different cities are established. According to multi-objective nonlinear programming, the objective function of the model is the maximization of marine capacity, allocated capacity and emission capacity, and the model constrains contain economic growth, population growth, pollutant emission intensity, environmental investment, and so on. The optimal results show that 13 cities except Qinhuangdao and Tangshan should reduce their discharge of COD under GradeⅠof the National Seawater Quality Standards (NSQS),, the largest reduced quantity of Yingkou is 73 000 t/a, and the least reduced quantity of Cangzhou is 12 000 t/a. As for the reduced rate, Panjin is the largest and Weifang is the least. Under GradeⅠof NSQS, the discharge of DIN also should be reduced in 13 cities, the largest reduced quantity of Tianjin is 21 100 t/a, and the least reduced quantity of Yantai is 1 600 t/a. The reduced rate of 86% in Yingkou is the largest and the reduced rate in Tangshan is the least.
     (4) The model of multi-objective nonlinear programming is established based on the objective function of maximizing different industrial sectors’emission capacity, and the constraints of economic growth, industrial structure proportion, pollutant emission intensity. The results show that the discharge of COD in all industrial sectors in Tianjin should be reduced in 2010 under GradeⅠof NSQS. The largest reduced quantity in 13 cities was 20 000 t/a in Industry Sector of the second industry and the reduced quantity in Forestry Sector is the least. Accordingly, the proportion of the first, second and ternary industry is adjusted from 3.0:56.0:41.0 to 2.0:55.6:42.4.
     (5) The model of multi-objective nonlinear programming is established based on the objective function of maximizing different industry sectors’emission capacity, and the constraints of economic growth, pollutant emission intensity, water consumption, energy consumption, labor productivity. The results show that the allowable emission capacity of Building Material Industry, Medicine Industry, Automotive Industry, Machinery Industry, Telecom Industry, and Environmental Protection Industry exceeds the discharge in base year (2005). The largest surplus allowable emission quantity of 6 industry sectors is 300 t/a in Medicine Industry and Automotive Industry account for the largest percentage. All the remaining industry sectors should reduced their discharge quantity. The largest reduced quantity of COD is14 000 t/a in Paper Industry, and its reduced rate is also the largest. To maximize the allowable emission capacity of industry sectors, Tianjin government should vigorously develop Telecom Industry, Automotive Industry, Medicine Industry and Machinery Industry, properly develop Garment Industry, Building Material Industry, Oil Industry, Chemical Engineering Industry, Environmental Protection Industry, Energy Industry. On the other hand, Textile Industry, Paper Industry, Chemical Industry should be reasonably restricted and Mining Industry, Metallurgical Industry should by strictly restricted.
     The research work supply necessary theoretical foundation and technical support for the implement of total emission control in coastal waters in China, furthermore, it can direct the ecological environmental governance and the optimization and adjustment of industrial structure of coastal cities.
引文
1.白月华,李怀正,傅威.雨水就地处置方式的环境风险评价.上海环境科学, 2003,22(8): 552-587.
    2.包存宽,张敏,尚金城.流域水污染物排放总量控制研究——以吉林省松花江流域为例.地理科学,2000,20(1):61-64.
    3.蔡喜明,翁文斌,史惠斌.基于宏观经济的区域水资源多目标集成系统.水科学进展,1995 ,6(2):2-7.
    4.曹芦林.感潮河段水环境容量计算方法探讨.上海环境科学, 1998, (1):15-18.
    5.曹瑞钰,顾国维.水环境治理工程费用优化模型.同济大学学报,1997,25(5):548-552.
    6.曹升乐,于翠松,孙秀玲.年降水量和年径流量序列中特大(小)值分析处理方法研究.水文,1998,2: 22-26.
    7.柴宁.大辽河水系主要污染物特征分析.环境保护科学, 2006,32(3):19-21.
    8.常原飞,贾振邦,赵智杰等.辽河COD变化规律及其原因探讨.北京大学学报(自然科学版),2002,38(4): 535-542.
    9.车伍,刘燕,李俊奇.国内外城市雨水水质及污染控制.给水排水, 2003,29(10): 37-42.
    10.陈春华.海口湾海水表观重金属络合容量研究.海洋学报, 1997, 19(5): 68-75.
    11.陈静生,周家义.中国水环境重金属研究.北京:中国环境科学出版社,1992.
    12.陈力群.莱州湾海洋环境评价与污染总量控制方法研究.青岛:中国海洋大学硕士学位论文, 2004.
    13.陈满荣,王安宝,俞立中.扬州雨水质量分析及其利用.光谱实验室, 2006,23(2): 316-320.
    14.陈文颖,侯盾.基于多人合作对策思想的总量控制优化治理投资费用分摊方法.环境科学学报,1999,19(1):57-62.
    15.陈文颖,方栋,薛大知.总量控制规划中允许排放量的平权分配.环境污染与防治, 1998, 20(4):4-7.
    16.陈泽夏等.厦门西海域环境容量和水质控制规划研究.1993, 11.
    17.陈治谏.模糊最优化方法在河流水质规划中的应用.中国环境科学,1989,9(1):64-68.
    18.程进豪,李景芝,刘存功等.黄河山东段化学耗氧量超标问题论证分析.水资源保护,1997,1:27-31.
    19.程进豪,王宁,李景芝等.黄河山东段水环境污染动态分析.水资源保护,1995,1:48-53.
    20.程进豪.黄河山东河段水质评价.人民黄河, 1992,9: 18-21.
    21.程天文,赵楚年.我国主要河流入海径流量、输沙量及对沿岸的影响.海洋学报,1985,7(4):460-471.
    22.崔力拓,李志伟,齐凤生.新开河入海口的水质污染特征.水利渔业, 2005,25(5):72-73.
    23.崔拓.河口生态环境需水量研究.青岛:中国海洋大学博士论文, 2004.
    24.崔毅,陈碧鹃,陈聚法.黄渤海海水养殖自身污染的评估.应用生态学报,2005,16(1):180-185.
    25.崔毅,陈碧鹃,任胜民等.渤海水域生物理化环境研究现状.中国水产科学,1996,3(2):1-12.
    26.大连环保局.大连市环境环境状况公报(1999~2006).2000~2007.
    27.董双林,李德尚,潘克厚.论海水养殖的养殖容量.青岛海洋大学学报,1998 ,28(2):245-250.
    28.董雪娜.黄河水质变化浅析.人民黄河,1992,3:15-21.
    29.方凤满,王起超,李东侠等.长春市大气颗粒汞污染特征及影响因子分析.环境科学学报, 2001,21(3):368-372.
    30.方国洪,杨景飞.渤海潮运动的一个2D数值模型.海洋与湖沼,1985,15(5):337-346.
    31.方国洪,王凯,郭丰义等.近30年渤海水文和气象状况的长期变化及其相互关系.海洋与湖沼,2002,33(5):515-523.
    32.方秦华,张珞平,洪华生.水污染负荷优化分配研究.污染控制,2005,12:29-31.
    33.方秦华,张珞平,王佩儿等.象山港海域环境容量的二步分配法.厦门大学学报(自然科学版)2004,43(增): 217-220.
    34.冯金鹏,吴洪寿,赵帆.水环境污染总量控制回顾、现状及发展探讨.南水北调与水利科技,2004,2(1):45-47.
    35.冯士笮,王辉.全国基础研究科学发展和优先领域“十五”计划和2015年远景规划,海洋科学,北京:海洋出版社,2001.
    36.符文侠,刘国贤.锦州湾水文特征与泥沙状况分析.海洋通报,1994,13(3):42-52.
    37.高传德,崔树彬.黄河干流水质现状分析评价.1986,5:14-20.
    38.高璞.渤海COD季节分布及影响因素数值模拟.大连:大连理工大学硕士学位论文,2006.
    39.郭宏飞,倪晋仁,王裕东.基于宏观经济优化模型的区域污染负荷分配.应用基础与工程科学学报,2003,11(3):133-142.
    40.郭希利,李文岐.总量控制方法类型及分配原则.中国环境管理,1997,5:47-48.
    41.国家海洋环境监测中心.中国海洋环境监测网, http://www.mem.gov.cn/docs/operation/operationContent4.jsp. 2005.
    42.国家海洋局.渤海综合整治规划(2001~2015),http://hbs.coi.gov.cn/WEBPAGE/guihua/bohaizonghezhengzhi/mulu.htm. 2001.
    43.国家海洋局.中国海洋环境质量公(年)报(1990~2006). 1991~2007.
    44.国家环保总局.渤海碧海行动计划(2001~2015), http://www.sicpdata.com/uploadfile/185-1.doc. 2001.
    45.国家环境保护局,中国环境科学研究院.城市大气污染总量控制典型范例.北京:中国环境科学出版社, 1993: 5.
    46.国家环境保护局.第四次全国环境保护会议文件.北京:中国环境科学出版社,1996.
    47.国家科委海综办.全国海洋综合调查报告.中华人民共和国科学技术委员会海洋组海洋综合调查办公室. 1964.
    48.何优选.总量控制下排污指标分配的原则.嘉应大学学报,2001,19(3):28-32.
    49.何云雅.天津市水资源合理配置研究.天津:天津大学硕士学位论文,2005.
    50.河北省海洋局.河北省海洋环境质量公报(2001~2006) .2002~2007.
    51.河北省环保局.河北省环境状况公报(1998~2006) .1999~2007.
    52.河北省水利厅.河北省水资源公报(2000~2006). 2001~2007.
    53.何磊.海湾水交换数值模拟方法研究.天津:天津大学硕士学位论文, 2004.
    54.胡伯谦,刘会霞.河北省入出境及入海水量计算方法与成果分析.河北水利水电技术,2003(增刊),101~103.
    55.胡康萍,许振成.水体污染物允许排放总量分配方法研究.中国环境科学,1991,11(6):447-451.
    56.环境科学大辞典编委会.环境科学大辞典.北京:中国环境科学出版社,1991.
    57.黄祖珂.渤海潮流系统及其变迁.青岛海洋大学学报,1991,12(2):1-12.
    58.惠二青.小清河流域陆源无机氮非点源入海通量的研究.青岛:中国海洋大学硕士学位论文, 2003.
    59.葛丽颖.河北省水资源与水环境现状及其生态系统服务功能研究.河北师范大学硕士学位论文, 2004.
    60.葛明,王修林,阎菊等.胶州湾营养盐环境容量计算.海洋科学, 2003, 27 (3): 36-42.
    61.郭良波,江文胜,李凤岐等.渤海COD与石油烃环境容量计算.中国海洋大学学报, 2007, 37(2):310-316.
    62.郭良波.渤海环境动力学数值模拟及环境容量研究.青岛:中国海洋大学硕士研究生学位论文, 2005.
    63.贾玉霞,鞠复华.辽河水系水质污染特征分析.中国环境监测,1999,15(2):51-53.
    64.贾振邦,赵智杰,常原飞等.辽河水体中COD的变化特征.2004, 23(4):435-440.
    65.姜嘉礼.葫芦岛市滨海地区海水入侵研究.水文,2002,22(2):27-31.
    66.姜太良,宋万先,房宪英.莱州湾西南部的物理自净能力.海洋通报, 1991, 10(2): 53-79.
    67.姜太良等.滦河口径流量和滦河口输沙分析.黄渤海海洋,1986,4(4):93-106.
    68.蒋岳文,陈淑梅,关道明等.辽河口营养要素的化学特性及其入海通量估算.海洋环境科学,1995,14(4):39-45.
    69.蒋岳文,关道明,陈淑梅等.辽河口水域夏季营养盐分布与变化特征.海洋通报,1996,15(3):92-96.
    70.鞠复华,贾玉霞.辽河流域河流水质达标现状.辽宁城乡环境科技,2000,20(1):3-5.
    71.匡国瑞,杨殿荣,喻祖祥等.海湾水交换的研究-乳山东湾环境容量初步探讨.海洋环境科学, 1987, 6(1): 13-23.
    72.郎洪钢,王海宁.河北滦河山区水资源情势及影响分析.海河水利, 2006,1:1-3.
    73.郎素秋,和褚贵发.营口地区水资源开发利用问题探讨.吉林水利,2005, 7:23-25.
    74.李秉文,贾国珍.关于水污染物总量控制方法的探讨.东北水利水电,2000,18(12):13-16.
    75.李春晖,杨志峰.黄河干流水体污染时空变化特征.水资源与水工程学报, 2004,15(2): 10-15.
    76.李桂芹,金玉玺.陡河水库水质污染状况.河北水利科技,1996,17(1):42-44.
    77.李桂芹,金玉玺.流量与污染物关系图在滦河下游引用水中的应用.河北水利科技,1998,19(3):41-43.
    78.李立平,王海红,隋秀英.辽河流域辽宁省内水文特性浅析.东北水利水电, 2001,19(8):38-39.
    79.李连科,栗俊,范国全等.大连海域大气气溶胶物质来源分析.重庆环境科学, 1997, 19(5):18-23.
    80.李嘉,张建高.水污染协同控制.水利学报,2001(12):14-18.
    81.李嘉,张建高.论水污染协同控制的基本原则.水利学报,2002(1):1-5.
    82.李开明,陈铣成.东莞运河水环境容量优化研究.环境科学研究,1991,4(5):13-15.
    83.李开明,陈铣成,许振成.潮汐河网区水污染物总量控制及其分配方法.环境科学研究,1990,3(6):36-41.
    84.李克强,王修林,阎菊等.胶州湾石油烃污染物环境容量计算.海洋环境科学,2003,22(4): 13-17.
    85.李明霞.淮河安徽段环境容量计算方法研究.合肥:合肥工业大学硕士学位论文, 2003.
    86.李娜,刘佳.河北省连续枯水年(1997-2002)水文水资源情势分析.南水北调与水利科技, 2003,1(6):25-27.
    87.李平,施重涛.佳木斯市水污染物总量控制研究.环境污染与防治,1992,14(5):7-9.
    88.李如忠.区域水污染物排放总量分配方法研究.环境工程,2002,20(6):61-63.
    89.李适宇,李耀初,陈炳禄等.分区达标控制法求解海域环境容量.环境科学, 1999, 20(4): 96-99.
    90.李艳云,王作敏.大辽河口和辽东湾海域水质溶解氧与COD、无机氮、磷及初级生产力的关系.中国环境监测,2006,22(3):70-72.
    91.李晓春.大凌河锦州段近年COD状况分析.环境保护科学,1997,23(2):5-8.
    92.李秀堂.大辽河水系水污染物总量控制目标.东北水利水电,1998,9:36-44.
    93.李彦武,张永良.污染负荷分配计算的方法研究.环境科学研究,1992,5(2):45-48.
    94.李正最,汤喜春.论三峡工程建成后长江城汉河段的综合整治.水电站设计,2002,18(4):10-16.
    95.梁博,王晓燕.我国水环境污染物总量控制研究的现状与展望.首都师范大学学报(自然科学版),2005,26(1):93-98.
    96.辽宁省海洋与渔业厅.辽宁省海洋环境质量公报(2001~2006). 2002~2007.
    97.辽宁省环保局.辽宁省环境状况公报(1990~2006). 1991~2007.
    98.辽宁省水利厅.辽宁省水资源公报(1999~2006) .2000~2007.
    99.林国强.南流江玉林城区段污染物总量控制及方案.广西水利水电,2002,1:54-57.
    100.林巍,傅国伟.冲突分析理论方法及其在环境管理中的实例研究.中国环境科学,1996a,16(2):143-147.
    101.林巍,傅国伟,刘春华.基于公理体系的排污总量公平分配模型.环境科学,1996b,17(3):35-37.
    102.刘昌岭,陈洪涛,任宏波等. 2003a.黄海及东海海域大气湿沉降(降水)中的营养元素.海洋环境科学,22(3): 26-30.
    103.刘昌岭,任宏波,陈洪涛等. .2003b.黄海及东海海域大气降水中的重金属.海洋科学,27(9): 64-68.
    104.刘成,王兆印,何耘,吴永胜.环渤海湾诸河口水质现状的分析.环境污染与防治.2003,25(4):222-225.
    105.刘春蓁,刘志雨,谢正辉.近50年海河流域径流的变化趋势研究.应用气象学报,2004,15(4):385-393.
    106.刘德绍,青长乐. 2000.关于两个功能区背景下沉降物中汞的研究.重庆环境科学,22(4): 36-38.
    107.刘国华,傅伯杰,杨平.海河水环境质量及污染物入海通量.环境科学,2001,22(4):46-50.
    108.刘年丰,罗巍,郭继孝等.生态环境质量综合评价多级灰关联识别模型应用研究.环境科学与技术,1999,22(3):24-27.
    109.刘曙光,杨守业,丁坚等.亚洲入海河流输沙量的区域性变化规律.海洋通报,2000,19(5):32-40.
    110.刘艳霞.黄河新河口泥沙运移及淤蚀变化.青岛:中科院海洋研究所硕士论文, 2006.
    111.刘勇胜.黄河入海水沙通量变化规律与三角洲演变关系.上海:华东师范大学论文, 2006.
    112.刘云波.大凌河流域水权分配研究.北京:中国农业大学硕士论文,2005.
    113.刘哲,魏皓,蒋松年.渤海多年月平均温盐场的季节变化特征及形成机制的初步研究.青岛海洋大学学报,2003,33(1):7-14.
    114.刘哲.胶州湾水体交换与营养盐收支过程数值模型研究.青岛:中国海洋大学博士学位论文, 2004.
    115.刘子刚,尚金城,姜建祥.区域环境总量控制模型研究.东北师大学报(自然科学版),1997,2:116-121.
    116.刘忠熳.松花江哈尔滨市江段地表水环境容量测算及总量控制研究.吉林:吉林大学硕士学位论文, 2006.
    117.栾天新,单丽.辽宁省地表水水污染现状及防治对策.东北水利水电,2000,18(12):41-42.
    118.陆中央,张学明.正确应用水文分析计算方法进行水资源评价.南水北调与水利科技, 1995, 3:13-16.
    119.吕宗宏,杨淑华,王显勇.龙口市黄水河综合治理工程模式.山东水利,2000,10:6-7.
    120.马德毅.第二次全国海洋污染基线调查报告.大连:国家海洋局海洋环境监测中心,2004.
    121.马灿云.秦皇岛市河流水质与防治对策.中国环境管理干部学院学报,1997,1-2:65-69.
    122.马刚,李国颖.大辽河口水体污染卫星遥感监测示范研究.辽宁城乡环境科技,2002,22(6):26-30.
    123.马吉让,李景芝.黄河山东河段水污染现状及控制对策.西北水资源与水工程,2001,12(3):59-60.
    124.马绍赛.乳山湾东流区丰水期(8月)有机物及营养盐的环境容量.海洋水产研究, 1998, 19(2): 33-36.
    125.马绍赛,辛福言,崔毅,乔向英.黄河和小清河主要污染物入海量的估算.海洋水产研究. 2004,25(5):47-51.
    126.马绍赛,辛福言,曲克明.对虾养殖对莱州湾氮、磷、COD的贡献.海洋水产研究,2002,23(2):7-11.
    127.毛战坡,李怀恩.总量控制中削减污染物合理分摊问题的求解方法.西北水资源与水工程,1999,10(1):25-30.
    128.孟伟,刘征涛,范薇.渤海主要河口污染特征研究.环境科学研究,2004,17(6):66-69.
    129.苗丰民,李光天,符文侠等.辽东湾东部砂岸严重蚀退及其原因分析.海洋环境科学,1996,15(1):66-72.
    130.穆从如,李亚良.沿海油田污染物入海通量及优化管理.油气田环境保护,1995,5(2):22-30.
    131.庞家珍,姜明星.黄河河口演变(1)——(一)河口水文特征.海洋湖沼通报, 2003,3:1-13.
    132.裴相斌,赵冬至.基于GIS的海湾陆源污染排海总量控制的空间优化分配方法研究—以大连湾为例.环境科学学报,2000,20(3):294-298.
    133.裘鑫炎.试论总量控制及其配套政策.上海环境科学, 1990, 9(12):1-4.
    134.曲格平.国家环保局,渤海黄海海域污染防治科研协作组.渤海黄海海域污染防治研究.北京:科学出版社,1990.
    135.曲格平.全国工业污染源调查评价与研究.北京:中国环境科学出版社, 1991.
    136.曲格平.从斯德哥尔摩到约翰内斯堡的道路——人类环境保护史上的三个路标.环境保护,2002,6:11-15.
    137.山东省海洋与渔业厅.山东省海洋环境质量公报(2001~2006) . 2002~2007.
    138.山东省环保局.山东省环境状况公报(1996~2006) .1997~2007.
    139.山东省环保局.山东省环境质量通报(2004~2007). 2004~2007.
    140.山东省水利厅.山东省水资源公报(2000~2006) .2001~2007.
    141.单丽.大凌河流域水环境承载能力研究.南京:河海大学硕士学位论文,2006.
    142.商少凌,洪华生. 1997.厦门海域大气气溶胶中磷的沉降通量.厦门大学学报(自然科学版),36(1): 106-109.
    143.商彦蕊.河北省水文地质环境变化及其脆弱性分析.中国人口·资源与环境, 2002,12(5):105-107.
    144.申保忠,田家怡.黄河三角洲水质污染对淡水底栖动物多样性的影响.滨州学院学报, 2005,21(6):43-46
    145.盛立芳,郭志刚,高会旺等. 2005.渤海大气气溶胶元素组成及物源分析.中国环境监测,21(1): 16-20.
    146.施晓清,王华东.论排污交易体系.环境保护,1996(2):9-11.
    147.时振阁.冀东沿海地区入海水量分析计算.河北水利科技,1994,15(1):43-47
    148.矢野雄幸.海洋科学(日), 1977, 9(1): 33.
    149.水利部.中国水资源公报(1997~2006). 1998~2007.
    150.水利部海河水利委员会.海河流域水资源公报(1998~2006). 1999~2007.
    151.水利部黄河水利委员会.黄河水资源公报(1998~2006) . 1999~2007.
    152.水利部松辽水利委员会.松辽流域水资源公报(1999~2006). 2000~2007.
    153.宋国君.论中国污染物排放总量控制和浓度控制.环境保护,2000,(6):11-13.
    154.宋国君.排污权交易.北京:化学工业出版社,2004.
    155.宋文玉.沧州水环境对国民经济和社会发展的影响.水资源保护,1998,3:52-56.
    156.宋云香,战秀文,王玉广.辽东湾北部河口区现代沉积特征.海洋学报.1997,19(5):144-148.
    157.苏国良.黄河山东段水污染状况分析.山东环境,1999,(3):44-45.
    158.苏惠波.嫩江水污染物排放总量分配方法研究.环境科学进展,1997,5(5):70-74.
    159.宿俊英,刘树坤,何少苓等.太湖水环境容量的研究.水利学报, 1992, 11: 20-36.
    160.孙韧,李玉,张瑞芝.应用模糊数学评价和预测海河的水质状况.城市环境与城市生态.1998,11(4):33-35.
    161.孙文心,江文胜,李磊.近海环境流体动力学数值模型.北京:科学出版社,2004.
    162.孙亚梅.面向农业污水灌溉的水污染物总量控制研究.保定:河北农业大学硕士学位论文,2005.
    163.孙英兰,陈时俊,俞光耀.海湾物理自净能力分析和水质预测一胶州湾.山东海洋学院学报, 1988,18(2): 60-65.
    164.孙玉兰,李漱宜,杨洁.海河流域供水水源地水资源质量评价及趋势分析.水资源保护,1995,4:68-72.
    165.孙玉兆.小清河流域城镇污水处理工程建设规划.西安:西安建筑科技大学硕士论文,2004.
    166.汤烈风.中国2000年海洋污染预测及防治对策的研究.国家海洋局2000年海洋污染预测编写组,1986.
    167.汤玉福.应用模糊数学方法评价双台子河水质.东北水利水电.2003,21(226):35-36.
    168.唐永銮.全国海岸带办公室《环境质量调查报告》编写组.中国海岸带和海涂资源综合调查专业报告集(环境质量调查报告).北京:海洋出版社, 1989.
    169.天津市海洋局.天津市海洋环境质量公报(2001~2006). 2002~2007.
    170.天津市环保局.天津市环境状况公报(1998~2006) .1999~2007.
    171.天津市水利厅.天津市水资源公报(2000~2006). 2001~2007.
    172.田建平.浅析唐山市废污水排放对水环境的影响及保护措施.河北水利,1996,1:41-42.
    173.田卫,俞穆清,刘桂琴.图们江地区水环境容量及其对区域开发的影响研究.地理科学,1998,18(2):169-175.
    174.万飚,吴贻名.河流环境容量的推求及分配方法探讨.武汉水利电力大学学报,2000,33(1):74-76.
    175.万敬华,张青新.锦州市小凌河水质污染现状调查及分析.黑龙江环境通报,2007,31(2):38-40.
    176.汪俊启,张颖.总量控制中水污染物允许排放量公平分配研究.安庆师范学院学报(自然科学版),2000,3:37-40.
    177.王得军.潘家口水库入库水量现状分析.海河水利,2006,1:9-12.
    178.王海宁.滦河近期入海量分析.河北水利科技.1999,20(4):31-33.
    179.王建,张金生.日本水质污染总量控制及其方法.环境科学与技术,1981,4: 55-64.
    180.王建华,江东,陈传友等.我国主要河流水质分析研究.贵州环保科技,1999,5(2):1-5.
    181.王丽.小凌河水污染现状与防治对策.辽宁城乡环境科技,2003,23(1):25-38.
    182.王亮.天津市重点水污染物容量总量控制研究.天津:天津大学博士学位论文,2005.
    183.王亮,张宏伟,岳琳.水污染物总量行业优化分配模型研究.天津大学学报(社会科学版) ,2006,8(1):59-63.
    184.王金南,潘向忠.线性规划方法在环境容量资源分配中的应用.环境科学,2005,26(6):195-198.
    185.王勤耕,李宗恺,陈志鹏.总量控制区域排污权的初始分配方法.中国环境科学,2000,20(1):68-72.
    186.王瑞红.黄河流域水质变化趋势及防治对策.运城学院学报,2006,24(2):66-68.
    187.王寿景.厦门西港海水交换计算.台湾海峡, 1990, 9(2):108-111.
    188.王西琴,周孝德.区域水环境经济系统优化模型及其应用.西安理工大学学报,1999,15(4):80-85.
    189.王修林,邓宁宁,李克强等.渤海夏季石油烃污染现状及其环境容量估算.海洋环境科学, 2004, 23(4): 14-18.
    190.王修林,李克强.渤海主要化学污染物海洋环境容量.北京:科学出版社,2006.
    191.王悦.M2分潮潮流作用下渤海湾物理自净能力与环境容量的数值研究.青岛:中国海洋大学硕士学位论文, 2005.
    192.王有乐.区域水污染控制多目标组合规划模型研究.环境科学学报,2002,22(1):107-110.
    193.王志敏.黄河水质污染现状及评价.人民黄河,1980,5:63-67.
    194.魏皓,田恬,周锋等.渤海水交换的数值研究-水质模型对半交换时间的模拟,青岛海洋大学学报, 2002, 32(4): 519-525.
    195.魏皓,赵亮,于志刚等.渤海浮游植物生物量时空变化初析.青岛海洋大学学报,2003,33(2):173-179.
    196.魏守林,郑漓,杨作升.河口最大浑浊带的数值模拟.海洋湖沼通报, 1990, (4):35-39.
    197.吴德星,李强,林霄沛等. 1990-1999渤海SSTa年际变化的特征.中国海洋大学学报,2005, 35(2):173-176.
    198.吴德星,牟林,李强等.渤海盐度长期变化特征及可能的主导因素.自然科学进展,2004, 14(2):191-195.
    199.吴俊,王振基.大连湾海水交换及自净能力的研究.海洋科学, 1983, 6: 30-33.
    200.吴伟,陈功玉,王烷尘等.环境污染问题的博弈分析.系统工程理论与实践,2001,(10):115-119.
    201.吴学生,亓仲芝.辽宁省葫芦岛市水资源现状分析.地下水.2005,27(1):12-13.
    202.西村肇.环境容量の概念についと.海洋科学(日), 1977, 9(1): 42-45.
    203.夏华永,殷忠斌,葛文标.钦州湾物理自净能力研究.广西科学, 1996, 3(2): 65-70.
    204.夏军,张祥伟.河流水质灰色非线性规划的理论与应用.水利学报,1993,(12):1-9.
    205.夏青,王华东,关伯仁等.总量控制技术手册.北京:中国环境科学出版社,1990.
    206.夏星辉,周劲松,杨志峰等.黄河流域河水氮污染分析,环境科学学报, 2001,21(5):563-568.
    207.肖江文,罗云峰,赵勇等.排污申报机制设计的博弈分析.系统工程理论与实践, 2002,22 (11): 87-91.
    208.辛江.试用概率方法进行大辽河水质评价.东北水利水电, 2001,19(205):44-46.
    209.熊代群.海河干流与邻近海域典型污染物的分布及其生态环境行为.儋州:华南热带农业大学硕士学位论文,2005.
    210.熊雁晖.海河流域水资源承载能力及水生态系统服务功能的研究.北京:清华大学硕士学位论文, 2004.
    211.徐斌.滦河流域地面水环境评价.河北水利科技,1999,22(4):22-26.
    212.徐财江.基于环境容量的污染物排放总量控制与系统构建研究.杭州:浙江大学硕士学位论文,2006.
    213.徐成斌.辽河流域河流水质生物评价研究.沈阳:辽宁大学硕士学位论文,2006.
    214.徐洪达,姜太良.莱州湾潮流和西南部海域污染物扩散的数值模拟.海洋通报,1990,9(4): 64-72.
    215.徐鸿德,区域水污染物总量优化分配的系统分析.上海环境科学,1990,9(7):2-4.
    216.徐鸿德.河流水污染物协调分配系统分析.中国环境科学,1991,11(4):275-278.
    217.徐平.洋河下游段有机污染评价.环境保护,1994,8:29-31.
    218.许洪余,王照之.墨水湖水污染物总量控制方案的优化研究.环境科学与技术,1993,(3):10-12.
    219.许炯心,孙季.近50年来降水变化和人类活动对黄河入海径流通量的影响.水科学进展, 2003,14(6): 690-695.
    220.严如忠.污染物总量控制指标层次分配模式研究.环境导报,2002(2):12-14.
    221.阎新兴,郑丽霞.山东潍坊北港近海区地貌特征及泥沙来源分析.海洋通报,1992,11(4):65-72.
    222.杨典照,姜福堂.浅析北胶莱河流域污染现状及对策.山东水利,2002,9:27.
    223.杨凤江,徐文丰.辽河新民段水质污染状况调查与分析.环境保护科学,2000,26(102):30-32.
    224.杨积武. 2001.近岸海域实施污染物排放总量控制的理论与实践.海洋信息, 2: 24-26.
    225.杨军.海河水环境保护管理研究.天津:天津大学硕士学位论文, 2004.
    226.杨晓东.实施污染物总量控制的要点和保证.环境科学,1998,19(8):6-12.
    227.杨玉峰,傅国伟.区域差异与国家污染物排放总量分配.环境科学学报,2001,21(2):129-133.
    228.杨志平,陆景宣.污染物排放总量控制优化分配数学模型探讨.上海环境科学,1989,8(10):9-13.
    229.杨姝影.中国组建排污权交易市场的背景与现状分析.环境保护, 2004,11: 49-53.
    230.姚宝艳.大小凌河工业污染现状分析.辽宁地质,1996,4:308-310.
    231.殷林春,王作敏,李晓敏.大辽河水质污染规律及污染趋势分析.辽宁城乡环境科技,2004,24(1):16-18.
    232.尹军,李晓君,宫正.水污染控制系统污染物削减量优化分配.环境科学丛刊,1989,10(3):49-53.
    233.营口水文分局. 2005年营口市水资源公报. 2006.
    234.于建中,王贵琛.锦西市五里河沿岸农业生态环境污染综合防治对策.农业环境与发展,1994,1:35-40.
    235.俞穆清,田卫,王国平等.环境影响评价中实施污染物总量控制的初探.环境科学,1998,S1: 18-22.
    236.袁有宪.黄渤海环境质量与生态变化研究.《黄渤海环境质量与生态变化研究》编写组,1996.
    237.曾刚.厦门港海水交换的初步计算.海洋通报, 1984, 3(5):7-11
    238.张存智,韩康,张砚峰等.大连湾污染排放总量控制研究—海湾纳污能力计算模型.海洋环境科学,1998,17(3):1-5
    239.张桂珍,贾贵茂.辽河流域水污染治理探讨.东北水利水电,1998,8:5-7.
    240.张国辉,谢大勇.大凌河流域水文特性对辽化水源的影响浅析.吉林水利,2006,1:41-42.
    241.张国森,陈洪涛,张经等. 2003.长江口地区大气湿沉降中营养盐的初步研究.应用生态学报, 14(7): 1107-1111.
    242.张金良,于志刚,张经,等.黄海西部大气湿沉降(降水)中各元素沉降通量的初步研究.环境化学,2000,19(4):352-356.
    243.张锦玉、李志新,田雨.小凌河流域水文特征分析.东北水利水电,1995,3:28-33.
    244.张锦玉,孟祥军.辽西渤海岸流域水文特征,2004,22(238):13-14.
    245.张明旭.上海市全面实行排污许可证交易的可行性探讨.上海环境科学, 2003, 4(22):238-240.
    246.张少文.黄河流域天然年径流变化特征分析及其预测.成都:四川大学博士论文, 2005.
    247.张曙光,赵沛伦,李雅卿.泥沙对黄河水体含砷量及鱼体砷残留量的影响.人民黄河,1994,9:8-11
    248.张天柱.区域水污染物排放总量控制系统的理论模式.环境科学动态,1990,(1):1-23.
    249.张天柱.水污染物排放总量控制管理的经济原则.环境科学,1990,11(6):2-6.
    250.张兴山,严乐漪,郑海春。污染源调查与评价.海洋通报,1991,10(2):7-16.
    251.张娜,何大伟,陈静生,崔树彬.黄河水系氮污染特征初探.环境化学, 2003,22(2):105-109.
    252.张相峰,魏玉琴.海河口演变特性分析.海洋通报, 1995,14(1):37-45.
    253.张祥伟,王敦春.城市河段污染控制灰色动态规划的应用.城市环境与城市生态,1994,7(3):37-42.
    254.张煦荣.海洋环保应从海域环境容量管理入手--从厦门市海域环境质量变化看实施海域环境容量管理的必要性.中国海洋报, 2004.厦门市海洋与渔业局, http://www.coi.gov.cn/oceannews/hyb1277/32.htm.
    255.张学庆,孙英兰,蔡惠文等.胶州湾COD, N, P污染物浓度数值模拟.海洋环境科学, 2005, 24(3): 64-67 .
    256.张永良.水环境容量基本概念的发展.环境科学研究,1992,5(3):59-61.
    257.张永良,水环境容量及开发利用展望,环境科学论文集,北京:中国环境科学出版社,1990 .
    258.张永胜.浙江省象山港入海污染物总量控制规划研究.青岛:中国海洋大学硕士学位论文,2005.
    259.张玉清.河流功能区水污染物容量总量控制的原理和方法.北京:中国环境科学出版社, 2001.
    260.张治昊.黄河口水沙过程变异与演变响应.北京:中国水利水电科学研究院硕士学位论文, 2005.
    261.张振雄,金玉玺.秦皇岛市(三区)水质现状及评价.河北水利水电技术,1996,1:27-30.
    262.张志强.天津市水污染物容量总量控制方法研究.天津:河北工业大学硕士学位论文,2006.
    263.郑雯,韩志梅,赵藏闪.天津市区海河漂浮物现状调查与治理对策研究.环境卫生工程,2001,9(3):123-126.
    264.张志耀,张海明.污染物排放总量分配的群体决策方法研究.系统科学与数学,2001,21 (4): 473-479.
    265.赵亮.渤海浮游植物生态动力学模型研究.青岛:青岛海洋大学博士学位论文,2002.
    266.赵亮,魏皓,冯士筰.渤海氮磷营养盐的循环和收支.环境科学, 2002, 23(1): 78-81.
    267.赵军.小凌河污染对沿岸地下水的影响.锦州师范学院学报(自然科学版).2003,24(3):19-21.
    268.赵伟纯.洋河水系中下游段有机污染的治理对策.环境保护,1995,5:11-13.
    269.赵希梅.天津市工业污染源结构分析与产业政策建议.城市环境与生态,2000,13(5):33-35
    270.赵玉华.洋河流域水环境问题及保护对策.河北水利科技,1999,20(2):28-30.
    271.郑英铭,周晶璧,袁国兵.控制排污总量的河流水质管理—实例介绍.水资源保护,1993(2):13-18.
    272.郑英铭.控制排污总量的水质管理.水资源保护,1993,(6):2-3.
    273.钟成华,幸治国,蒋良伟等.长江嘉陵江重庆段水环境容量研究.重庆环境科学,1994,16(3):43-50.
    274.中村武弘,富坚宏由.海水交换率によゐ大村湾の水质污浊预测に关すゐ研究.第27回海岸工程学讲演论文集, 1980, 487-491.
    275.中国海湾志编纂委员会.中国海湾志第十四分册(重要河口).北京:海洋出版社,1998.
    276.中国水产科学研究院.渔业生产对海洋环境影响调查报告. 1998.
    277.周密,王华东,张义生.环境容量.长春:东北师范大学出版社,1987.
    278.周诗贲,陈聚法,马绍赛等.海水增殖水文环境及年代变异特点.海洋水产研究,1997, 18(2):86-100.
    279.朱庚申.环境管理学.北京:中国环境科学出版社,2002.
    280.朱来东.海河口水污染遥感分析.海洋环境科学,1983,3: 98-104.
    281.朱兰部,张法高. 1989年夏季黄河口及其附近海域某些自然环境特征及其水型分布.海洋科学集刊,1994,35:23-31.
    282.朱连奇.日本水质保护的现状及趋势.中国人口资源与环境,1999,(4):107-109.
    283. Baretta, J.W., Ebenh?h, W. and Ruardij, P. The European Regional Seas Ecosystem Model (ERSEM), a complex marine ecosystem model. Netherlands Journal of Sea Research, 1995, 33(3/4): 233-246.
    284. Baretta-Bekker, J. G., and Baretta, J. W. European Regional Seas Ecosystem Model (ERSEM) II. Journal of Sea Research, 1997, 38(3-4):169-438.
    285. Baretta-Bekker, J.G., Baretta, J.W., Hansen, A.S. and Riemann, B. An improved model of carbon and nutrientdynamics in the microbial food web in marine enclosures. Aquat. Microb. Ecol., 1998, 14: 91-108.
    286. Blumberg A F, Mellor G L. A description of a three-dimensional coastal ocean circulation model. In Three-dimensional Coastal Ocean Models, Coastal and Estuarine Sciences, 1987, Washington, DC: AGU, 1-16.
    287. Burn D H, Yulianti J S. Waste load allocation using genetic algorithms[J]. Journal of Water Resources Planning and Management, 2001, 127(2):121-129.
    288. Cairns, John Jr. Matching Heated Waste Water Discharges to Environmental Assimilative Capacity, Symp on Energy Prod and ThermEff , Proc, Oak Brook, IL, USA, Sep 10-11, 1973.
    289. Cardwell H, Ells H. Stochastic dynamic programming models for water quality management. Water Resources Research, 1993, 29 (4):803-813.
    290. Chih sheng Lee, Ching gung Wen. Application of muti-objective programming to water quality management in a river basin. Journal of Environment Management, 1996, 47:11-26.
    291. Clinton. President Clinton Announces New Clean Water Action Plan. Water Quality Professional, 1998,2(4):3-5.
    292. Committee to Review the New York City Watershed Management Strategy Water Science and Technology Board (WSTB), Management for potable water supply [M]. National Academy Press, Washington D C, 2000.
    293. Cramton, P. and Kerr S. Tradeable carbon permit auctions: How and why to auction notgrandfather , Energy Policy,2002 (30): 333-345.
    294. Deininger, R. A. Water Quality Management: The Planning of Economically Opti-mal Pollution Control Systems. Ph.D. Thesis, Northwestern University, 1965.
    295. Donald H. B., Edward A. M., Optimization modeling of water quality in an uncertain environment, Water Resources Research, 1985, 21(7): 934-940.
    296. Donald H. B, Barbara J L. Comparison of optimization formulations for waste-load allocations. Journal of environmental engineering, 1992, 118(4):597-612.
    297. Drapper D, Tomlinson R, Williams P. Pollution concentration in road runoff: southeast Queensland case study. Journal of Environmental Engineering, 2000, (4):313-320.
    298. Duarte E. A., Neto I., Alegrias M., R. Barroso. "Appropriate technology" for pollution control in corrugated board industry - the Portuguese case. Water Science and Technology, 1998, 38(6):45-53.
    299. Duce R A, Liss P S, Merrill J T et al. The atmospheric input of trace species to the world ocean. Global Biogeochem Cycles, 1991, 5:193-259.
    300. Duka GG. et al. Investigation of Natural Water Self-purification Capacity under Simulated Conditions, Water Resource, 1996, 23(6): 619-622.
    301. Ecker G H. A Geometric Programming Model for Optimal Allocation of Stream Dissolved Oxygen. Management Science, 1975, 21(6):581-591.
    302. Edwards T H, Hutton J P. Allocation of carbon permits within a country: a general equilibrium analysis of the United Kingdom. Energy Economics, 2001,23 (4): 371-386.
    303. Ellis J H. Stochastic water quality optimization using imbedded chance constraints. Water Resource Res, 1987,23(12):2227.
    304. Electronic Code of Federal Regulations (ECFR). This Current As the Federal Register Dated May 1. 2003, 40CFR CHAPTEI PART130.
    305. Evans, G.T. and Garcon, V.C. One-dimensional models of water column biogeochemistry. JGOFS Report, 1997, 23: 85.
    306. Fransz, H. G., Mommaerts, J. P. and Radach G.. Ecology modelling of the North Sea. Nethertands Joural of Sea Research, 1991, 28: 67-140.
    307. Fujiwara O, Gnanandran S K, Ohgaki S. River quality management under stochastic stream flow. Journal of Environmental Engineering, 1986, 112(2):185-198.
    308. GESAMP. (Joint Group of Experts on the Scientific Aspects of Marine Pollution). Environmental capacity: An approach to marine pollution prevention. UNEP REG. SEAS REP. STUD. 1986,80:62 .
    309. Hakanson, L. The role of characteristic coefficients of variation in uncertainty and sensitivity analyses, with examples related to the structuring of lake eutrophication models. Ecological Modeling, 2000,131: 1-20.
    310. Hathhorn W E, Tung Y K. Waste load allocation in stochastic stream environments[R]. WWRC-8709. Laramie, Wyoming:Wyoming Water Research Center, 1987.
    311. Hernz-Christian Baumgart, et al. Managing the Lower Lippe. Water Quality Internation. 1999, 10(1):46-51.
    312. Hisano T, Hayase T. Countermeasures againstwater pollution in enclosed coastal seas in Japan. Marine Pollution Bulletin, 1991, 23: 479-484.
    313. Hofmann, E.E. How do we generalize coastal models to global scale? In: R.F.C. Mantoura, J.M. Martin and R. Wollast(Editors), Ocean Margin Processes in Global Change. DahlemWorkshop. John Wiley and Sons, Chichester, 1991, 401-417.
    314. Hofmann, E.E. and Lascara, C.M. Overview of interdisciplinary modeling for marine ecosystems. In: K.H. Brink and A.R. Robinson (Editors), The Sea. The global coastal ocean. John Wiley and Sons, Inc., New York, 1998, 507-540.
    315. Jamart, B.M., Winter, D.F., Banse, K., Anderson, G.C. and Lam, R.K.. A theoretical study of phytoplankton growth and nutrientdistributionin the Pacific Ocean off the northwestern U.S. Coast. Deep-Sea Research, 1977, 24: 752-773.
    316. Jan O. Backhaus. A semi-implicit scheme for the shallow water equations for application to shelf sea modeling. Continental ShelfResearch,1984, 2(4):243-254.
    317. Jan O. Backhaus. A Three-Dimensional Model for the Simulation of Shelf Sea Dynamics. Dt. Hydrogr., 1985, 38(4):165-187.
    318. Jesper J, Tobias R. Allocation of CO2 emission permits: a general equilibrium analysis of policy instruments.Journal of Environmental Economics & Management, 2000,40 (2): 111-136.
    319. Jhih-Shyang Shih, Armistead G. Russell, Gregory J. McRae. An optimization model for photochemical air pollution control. European Journal of Operational Research, 1998,106(1): 1-14.
    320. Jiang Wensheng. A three dimensional modelling of suspended particulate matter dynamics in the Bohai Sea.Berichte aus dem Zentrum fur Meeres-und Klimaforschung der Universitat Hamburg, Reihe B, Ozeanographie, 1999, 34:1-104.
    321. Joshi V, Modak P. Heuristic algorithms for waste load allocation in a river basin . Water Sci. Tech., 1989, 21: 1057-1064.
    322. Kishi, M.J. and Ikeda, S. Population dynamics of red tide organisms in eutrophicated coastal waters-numerical experimentof phytoplankton bloom in the eastseto inland sea. Ecological Modelling, 1986, 31: 145-174.
    323. Kling Catherine L., Zhao, Jinhua. On the long-run efficiency of auctioned vs free permits.EconomicsLetters,2000,(69):235-238.
    324. Krom, M.D. et al. Determination of the environmental capacity of Haifa Bay with respectto the inputof mercury. Mar.Pollut. Bull., 1990, 21:349-354.
    325. Lancelot, C., Spitz, Y., Gypens, N., et al. Modelling diatom and Phaeocystis blooms and nutrientcycles in the Southern Bightof the North Sea: the MIRO model. Marine Ecology Progress Series, 2005, 289: 63-78.
    326. Leonard Ortolano. Environmental Planning and Decision Making. New York, 1984.
    327. Li Shiyu , Tohru Morioka. Optimal allocation of waste loads in a river with probabilistic tributary flow under transverse mixing . Water Environmental Research, 1999,71(2):156-162.
    328. Liebman J. C., Lynn W. R., The Optimal Allocation of Stream Dissolved Oxygen, Water Resource Research, 1966, 2(3): 581-591.
    329. Lohani B N, Thanh N C. Probabilistic water quality control polices, Journal of Environmental Eneineering Division, 1979, 105(EE4): 713-725.
    330. Loucks D. P., Revelle C. S., Lynn W. R., Management Models for Water Quality Contral, Management Science, l967, 14(4): 166-181.
    331. Lyn B I, et al. Use of regression models for analyzing stormwater loads. Journal of Environmental Engineering, 2000,13(3):231-233.
    332. Margeta, J., Baric, A., Gacic, M. Environmental capacity of the Kastela Bay. EIGHTHINTERNATIONAL OCEAN DISPOSAL SYMPOSIUM, 1989, 9-13.
    333. Mellor G L. Users Guide for A Three-dimensional Primitive Equation, Numerical Ocean Model. Program in Atmosphere and Oceanic science, Princeton University, Princeton, NJ 08544-0710, 1998.
    334. Mironov OG; Kiryukhina LN; Kucherenko MI; et al. Self-purification in the coastal area of the Black Sea. Kiev(USSR): Naukova Dumka, 1975,143 p.
    335. Moll A. Assessmentof three-dimensional physical-biological ECOHAM1 simulations by quantified validation for the North Sea with ICES and ERSEM data, Journal of Marine Science, 2000, 57: 1060-1068.
    336. Moll A, Radach G. Review of three-dimensional ecological modelling related to the North Sea shelf system Part1: models and their results. Progress in Oceanography, 2003, 57(2): 175-217.
    337. Mohamed A A. Water Demand Management in Egypt: Policy objectives and strategy measures. Physics and chemistry of the Earth Part B. Hydrology. Oceans Atmosphere, 2000.25(3):243-249.
    338. Nischke Lutz Schussler. Walter. Surface Water Pollution by herbicides from effluents of waste water treatment plants. Chemosphere, 1998.36(1):35-41.
    339. Nash J F. The Bargaining Problem. Econometrica, 1950, 18:155-162.
    340. Nazarov N. D., Cook H. F., Water Pollution Control Issues in an Independent Ukraine. Water and environment, 1997, 6(5): 23-26.
    341. Ortolanol. Environmental Planning and Decision Making. New York: John Wiley&Sons. 1984.
    342. Piet Odendael. Integrated Urban Water Management—A vision for Developing countries [J]. New World Water, 2000,5(3):10-13.
    343. Radach, G. and Maier-Reimer, E. The vertical structure of phytoplankton growth dynamics-a mathematical model. Mem. Soc. R. Sci. Liège, 7, 1975, (6): 113-146.
    344. Radach, G. and Moll, A. State of the artin algal bloom modelling. Water Pollution Research Report, 1990, 12: 115-149.
    345. Revelle C. S., Loucks D. P., Lynn W. R., Linear Programming Applied to Water Quality Management, Water Resource Research, 1968, 4(1): l-9
    346. Riley G A. Factors controlling phytoplankton populations on Georges Bank. J. Mar. Res. 1946, 6: 54-73.
    347. Riley, G.A. A theoretical analysis of the zooplankton population of Georges Bank. Journal of Marine Research, 1947, 7(2): 104-113.
    348. Riley, G.A., Stommel, H. and Bumpus, D.F. Quantitative ecology of the plankton of the western North Atlantic. Bulletin of the Bingham Oceanographic Collection, 1949, 12: 1-169.
    349. Ruochuan Gu, Mei Dong. Water quality modeling in the watershed–based approach for waste load allocations. Water Science and Technology,1998,38(10):165-172.
    350. Scherer, Charles R. On the Efficient Allocation of Environmental Assimilative Capacity: The Case of Thermal Emissions to A Large Body of Water, Water Resource Research, 1975, 11(1): 180-181.
    351. Seok soon park, Yong Seok Lee .A water modeling study of the Nekdong River ,Korea. Ecological Modelling, 2002,152:65-75.
    352. Skogen M D, Svendsen E, Berontsen J, et al. Modelling the primary production in the NorthSea using a coupled three-dimensional physical-chemical-biological ocean model. Estuarine Coast Shelf Sci., 1995, 21: 545-565.
    353. Stebbing, A. R. D.The environmental capacity conceptand the precautionary principle. Counc. Meet. of the Int. Counc. for the Exploration of the Sea (La Rochelle (France)), (26 Sep-4 Oct1991).
    354. Subhankar, Karmakar, P.P. Mujumdar. A two-phase grey fuzzy optimization approach for water quality management of a river system.Advances in Water Resources, 2007, 30, (5): 1218-1235.
    355. Subimal Ghosh, P.P. Mujumdar. Risk minimization in water quality control problems of a river system. Advances in Water Resources, 2006,29(3):458-470.
    356. Su, J. L. and D, L. X. Application of numerical models in marine pollution research in China. Marine Pollution Bulletin. 1999, 39 (1-12): 73-79.
    357. Steele, J.H. Environmental control of photosynthesis in the sea. Limnology and Oceanography, 1962, 7(2): 137-150.
    358. Sveinn T. Thorolfsson. A new direction in the urban runoff and pollution management in the city of Bergen, Norway. Water Science and Technology, 1998,5(10): 123-130.
    359. Tapani Kohonen J. Finnish strategies for reduction and control of effluents to the marine environment—examples from agriculture, municipalities and industry . Marine Pollution Bulletin , 2003, 47:162-168.
    360. Thomann R V, Sobel M S. Estuarine Water Quality Management and Forecasting. Journal of Sanitary Engineering Division, ASCE, 1964, 89(5):9-36.
    361. Thorolfsson S. T. A new direction in the urban runoff and pollution managementin the city of Bergen, Norway. Water Science and Technology, 1998,38(10): 123-130.
    362. Tovar A, Moreno C, Manuel M P, et al. Environmental impacts of intensive aquaculture in marine waters. Wat Res, 2000,34(1):334-342.
    363. URSRS. Environmental capacity: An approach to marine pollution prevention. Unep. Reg. Seas Rep. Stud., l988, 80: 62.
    364. USEPA. Protocol for developing nutrient TMDLs .Office of Water 4503F Washington D C 20460, EPA 841-B-99-007, 1999.
    365. USEPA, 1999. Protocol for Developing NutrientTMDLs. Office of Water 4503F Washington DC 20460, EPA 841-99-007.
    366. USEPA, US Environmental Protection Agency. New York/New Jersey Harbor Estuary Program, final comprehensive conservation and managementplan, Region 2, US Environmental Protection Agency, New York, NY. 1996.
    367. Walsh, J.J., Dieterle, D.A. and Meyers, M.B. A simulation analysis of the fate of phytoplankton within the Mid-Atlantic Bight. Continental Shelf Research, 1988, 8(5-7): 757-787.
    368. Wang xiulin,Li keqiang,Shi xiaoyong et al. Pollution condition of petroleum hydrocarbon pollutant and estimation of its environmental capacities in summer in the Bohai Sea. Marine Science Bulletin, 2005, 7 (2): 21-29.
    369. Wroblewski, J.S. and Hofmann, E.E. U.S. interdisciplinary modeling studies of coastal-offshore exchange processes: Pastand future. Progress in Oceanography, 1989, 23: 65-99.
    370. Water Science and Technology Board (WSTB). Committee to Review the New York CityWatershed Management Strategy.Watershed Management for Potable Water Supply. National Academy Press, Washington D. C., 2000.
    371. X.S. Qin, G.H. Huang, G.M. Zeng, A. Chakma, Y.F. Huang. An interval-parameter fuzzy nonlinear optimization model for stream water quality management under uncertainty. European Journal of Operational Research, 2007,180(3):1331-1357.
    372. Yhdego M. Environmental pollution management for Tanzania, towards pollution prevention . Journal of Cleaner Production, 1995, 3(3):143-151.
    373. Zhang, J, Yu Z G, Raabe T, et al. Dynamics of inorganic nutrient species in the Bohai seawaters. Journal of Marine Systems, 2004,44: 189- 21.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700