用户名: 密码: 验证码:
江苏省部分地区农田土壤中多环芳烃(PAHs)的分布与生态风险
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
持久性有机污染物(POPS)在环境中的分布及其对人体健康和生态系统的影响已引起了全球性的关注。多环芳烃(PAHs)是一类环境中最为重要的致癌有机污染物。本论文主要以美国环保署(EPA)列为环境优控污染物的16种PAHs为研究对象,探讨其在江苏省部分地区农田土壤中的污染来源、污染程度及其生态风险;从宏观和微域2个方面研究PAHs在土壤剖面和土壤团聚体颗粒组中的分布,探讨PAHs在土壤中的吸附和运移,结果有助于了解PAHs在农田土壤中的归宿与生态环境风险。
     1、江苏省部分地区农田土壤中16种PAHs的污染程度及来源。江苏省兴化市、吴江市、宜兴市、南京市六合区的农田表层土壤(0~15cm)中16种PAHs总量介于45.6-2286.8μg/kg。兴化市、吴江市土壤中PAHs平均含量分别为1370.3、801.1μg/kg,污染严重;宜兴市、南京市六合区两地土壤中PAHs平均含量分别为210.8、126.7μg/kg,为轻微污染或无污染。根据多环芳烃环数相对丰度、菲(Phe)/蒽(Ant)、荧蒽(Fla)/芘(Pyr)比值和对4地的实际调查表明,研究地区PAHs污染源为多源污染,主要有机动车尾气排放、煤燃烧、草和木材的燃烧、石油泄漏等。因此,农田土壤由于污染来源广泛,潜在环境风险大。
     2、PAHs在农田土壤剖面中的纵向分布及其影响因素。分析了宜兴市和南京市4个土壤剖面中16种PAHs的总量,发现PAHs总量在土壤剖面的纵向分布总体上是随着土壤深度的加深而降低,在0-30cm土层中PAHs总含量下降剧烈,30cm以下土层中含量低且相对稳定。多环芳烃的单一组分含量也随土壤深度的加深而逐渐降低,在土壤剖面底层主要分布的是低环PAHs(≤3环)。2环的萘和3环的菲在0-80cm土层中都有分布,4环的芘和5环的苯并[a]芘在犁底层以下含量较少甚至检测不到。PAHs在农田土壤剖面中的纵向分布与土壤有机质的含量与性质、PAHs的疏水性能及人为扰动土壤活动有很大的关系。
     3、农田土壤团聚体颗粒组中PAHs的分布及其环境意义。以黄泥土、青紫泥、白土等3种农田水稻土为研究对象,测定了土壤团聚颗粒组中16种PAHs的含量。结果表明,供试水稻土不同粒径团聚体颗粒组中PAHs含量分布存在差异,PAHs总含量以<2μm粒径的颗粒组最高,其次是200~2000μm粒径的颗粒组,PAHs在这2个颗粒组有明显富集现象(富集系数为1.25~3.92);而20~20μm和2~2μm粒径的颗粒组中PAHs含量小于本土,呈现亏缺现象(富集系数为0.64~0.88)。水稻土这种PAHs的团聚体颗粒组分布格局其环境意义不同,200~200μm粒组中PAHs易重新进行分配,<2μm粒径的颗粒组中PAHs易在土-水和土-气间发生迁移,具有一定的环境风险。
     不同粒径团聚体颗粒组中PAHs的含量与其总有机碳(r=0.73,P<0.01)、腐殖质碳(r=0.81,P<0.01)、胡敏酸碳(r=0.85,P<0.01)都呈显著相关,说明不同粒径团聚体颗粒组中有机碳含量控制和影响了PAHs在土壤中的吸附和分配。
     4、农田土壤中菲含量的动态变化。在水稻土黄泥土中添加0.4~3.2μg/g的菲进行培养,土壤中菲含量随着培养时间的延长而逐渐下降,其下降幅度随着土壤中菲添加量的增加而迅速增大。培养56天后,菲添加浓度为3.2和1.6μg/g的土壤中菲含量下降最快,分别下降了77.0%和65.0%,菲添加浓度为0.8和024μg/g的分别下降了48.3%和25.0%,下降幅度相对较小。这可能是因为添加到土壤中的菲浓度越大,被土壤微生物降解和土壤固定吸附的菲也越多。
     5、农田土壤中菲污染对土壤酶活性和微生物多样性的影响。在土壤中添加菲进行培养实验的条件下,研究了土壤中酶活性变化及其与菲污染量之间的关系。结果显示,黄泥土中添加菲对土壤脲酶和磷酸酶活性有影响。在1-7天内菲对土壤脲酶活性有抑制作用,与对照相比,添加浓度超过3.2μg/g时抑制作用显著;菲对土壤磷酸酶活性在1-28天内有激活作用,当添加浓度超过1.6μg/g时,土壤磷酸酶活性与对照存在显著差异。在培养的56天中,不同处理的菲污染对过氧化氢酶的活性没有影响。因此,磷酸酶和脲酶都可以作为菲污染土壤的生态毒理指标,敏感诊断期为1-7天,磷酸酶比脲酶更敏感。
     采用PCR-DGGE分子生物技术对菲含量不同(0.05~1.60μg/g)的水稻土中微生物多样性进行研究,发现土壤在小于1.60μg/g菲污染水平下,没有影响土壤微生物多样性,但在菲污染的土壤中,出现了特有的微生物种,这些特有微生物可能具有降解菲的能力。
Persistent organic pollutants(POPs) have been of great concern due to their persistence in the environment,their bioaccumulation potential in the tissues of animals and humans through the food chain,and their toxic properties for human and wildlife.Polycyclic aromatic hydrocarbons(PAHs) are widespread contaminants in the environment.Some of the PAHs proved to be mutagenic,carcinogenic and teratogenic,and are listed as priority pollutants in the U.S.EPA.This study focuses on the contents,distribution,sources and ecological risk of 16 PAHs in soils of farmlands of parts of Jiangsu.The results acquired in this study will make us understand fate and risk of PAHs in soil.
     1.Contents and sources of 16 PAHs in soils of farmlands in parts of Jiangsu
     Contents of PAHs varied widely from 45.6~2286.8μg/kg in studied areas, averaging 1370.3 and 801.1μg/kg,respectively,for samples from Xinghua and Wujiang,signifying severe pollution,and 210.8 and 126.7μg/kg,respectively,for those from Yixing and Nanjing,meaning slight pollution or zero pollution.Based on the relative abundances of PAHs different in ring numbers,the ratios of Phe/Ant, Fla/Pyr and the finding of the site investigation,it was found that PAHs in the soils came from a number of sources,such as exhaust from automotives,combustion of coal,burning of straws and wood,leaking of petroleum,etc.
     2.Distribution characteristics of PAHs of soil profiles in farmlands and its affecting factor
     Contents of PAHs of soil profiles in Yixing and Nanjing were determined. Concentration of total PAHs and every kind specie peaked at the soil surface and decline with depth,reducing rapidly in 0-30cm and keeping stability below 30cm of soils.Naphthalene and phenanthrene were detected from 0 to 80cm soil profiles, meaning high ability of transplant.Concentration of pyrene and benzo[a]pyrene was found lower than the limit of detection below the plough layer.Contents and characteristic of total organic carton(TOC),the physical and chemical features of PAHs,and human activity played major roles in affecting distribution of PAHs in soil profiles.
     3.Distrbution characteristic and the environmental significance of PAHs in particle size fractions of soils of farmland
     Top soil of three types of paddy soils were studied and contents of PAHs of 16 species both in bulk samples and their particle size fractions were determined.The concentration of the total PAHs varies with the size of the particle fractions,which the order from higher level to lower is in those of<2μm,200~2000μm,20~200μm and 2~20μm.Compared to that of bulk samples,PAHs are enriched either in the sand-sized or in the clay-sized fractions(with an enrichment ratio of 1.25-3.92) and depleted in the silt-sized fractions(with an enrichment ratio of 0.64-0.88).There is different environmental significance because of distrbution characteristic of PAHs in particle size fractions.Contents of PAHs in 200~2000μm can be distributed again and those in 2μm can be transplanted in soil-water and soil-atmosphere,then there exists environmental risk.
     There existed a general correlation of the total PAHs content with the contents of soil organic carbon,humus carbon and humis acid carbon respectively.The absorption and distribution of total PAHs in these different size fractions are mainly controlled by organic carbon content.
     4.The dynamic change of contents of phenanthrene in soils of farmland
     The laboratory incubation of one kind of paddy soils with different concentration of phenanthrene added to soil were studied and found that contents of phenanthrene decreased gradually.Degradation rate of phenanthrene accelerated with its concentration increasing.After incubation for 56d,contents of phenanthrene in paddy soil decreased quickly with 3.2 and 1.6μg/g concentration,the rate being 77.0%and 55.0%respectively,and degradation rate slowly with 0.8 and 0.4μg/g concentration being 48.3%and 25.0%respectively.The reason is that the more contents of phenanthrene added to soil,the more contents biodegraded and absorbed by paddy soil.
     5.The effect of phenanthrene in soils of farmland on enzyme activity and microbial diversity
     The dynamic changes of soil enzyme activities were researched with incubation experiment under condition of phenanthrene was added to soil.The relationship between enzyme activities and different phenanthrene concentrations were studied. The results showed that there is influence of phenanthrene in soil on urase and phosphotase.Compared to CK,urease activity was inhibited within 7 day under condition of phenanthrene concentration>3.2μg/g.However,the activity of phosphatase was activated by phenanthrene from 1day to 28 days under condition of phenanthrene concentration>1.6μg/g.There is no significant change of catalase activity in the phenanthrene with range of 0.4 to 3.2μg/g in the period of 56 day.It was concluded that soil urease activity and phosphatase activity may be considered as diagnoses indicators of soil contamination with phenanthrene,and the most sensitive period of the diagnoses was from the first day to the seventh day after phenanthrene contamination.Phosphotase activity is more sensitive.
     Molecular technique of PCR-DGGE on different types of paddy soils with different contents of phenanthrene(0.05~1.60μg/g) was used to study microbial gene diversity.The results indicated that microbial gene diversity did not change under condition of phenanthrene concentration≤1.60μg/g.However,there existed special gene diversity which can degrade phenanthrene in polluted soils.
引文
1. Aamot E, Steinnes E, Schmid R. Polycyclic aromatic hydrocarbons in Norwegian forest soils: impact of long range atmospheric transport[J]. Environment Pollution, 1996,92(3):275-280
    2. Aannokkee G J. MT-TNO research into the biodegradation of soils and sediments contaminated with oils and PAHs [A].// Contaminated soil [C]. New York: Kluwer Academic Publishes, 1990: 941-945
    3. Adami G, Barbieri P, Pisell S, et al. Detecting and characterizing sources of persistent organic pollutants (PAHs and PCBs) in surface sediments of an industrialized area (harbor of Trieste, northern Adriatic Sea) [J]. Environ. Monit. 2000,12(2): 261-265
    4. Ahmad R., R.S. Kookana, A.M. Alston, et al. The nature of organic matter affects sorption of pesticides. 1. Relationships with carbon chemistry as determined by ~(13)C CPMAS NMR spectroscopy[J]. Environ Sci Technol,2001,35(5): 878-884
    5. Amellal N, Portal J M, Berthelin J. Effect of soil structure on the bioavailability of polycyclic aromatic hydrocarbons within aggregates of a contaminated soil[[J].Applied Geochemistry ,2001,16:1611-1619
    6. Amelung W., W. Zech, X. Zhang, et al. Carbon, nitrogen, and sulfur pools in particle-size fractions as influenced by climates[J]. Soil Sci. Soc. Am. J. 1998, 62:172-181
    7. An Li, Xiaoyu Liu. Combined Effects of Aging and Cosolvents on Sequestration of Phenanthrene in Soils. Journal of Environmental Engineering, 2005,131 (7) :1068-1072
    8. Andreoni V., Cavalca L. , Rao M.A.. Bacterial communities and enzyme activities of PAHs polluted soils[J]. Chemosphere, 2004,57(2):401-412
    9. Baek S.O., RA. Field, M.E. Goldstone, et al. A review of atomospheric polycyclic aromatic hydrocarbons: sources, fate, and behavior[J]. Water, Air, and Soil Pollution, 1991, 60:279-300
    10. Balashova N V, Kosheleva I A, Golovchenko N P, et al. Phenanthrene metabolism by Pseudomonas and Burkholderia strains[J]. Process Biochemistry, 1999,35:291-296
    11. Bel Froid A, Sikken K M , Vangestel, et al. The toxic kinetic behaviour of chlorobenzenes in eart hworms ( Eisenia andrei) , experiment s in soil [J]. Environ Toxicol Chem, 1994, 13 :93-99
    12. Benlahcen K T, Chaoui A, Budzinski H, et al. Distribution and sources of polycyclic aromatic hydrocarbons in some Mediterranean coastal sediments [J].Mar Pollut Bull, 1997, 34( 5):298-305
    13. Brandt H C A, Degroot P C. Aqueous leaching of polycylic aromatic hydrocarbons from bitumen and asphalt [J]. Wat. Res. 2001,35(17): 4200-4207
    14. Broholm K, Jhrgensen P R, Hansen A B. Transport of creosote compounds in a large, intact, macroporous clayey till column [J]. Journal of Contaminant Hvdroloev, 1999,39:309-329
    15. Brusseau M.L., P.S.C. Rao. Sorption nonideality during organic contaminant transport in porous media[J]. Crit. Rev. Environ. Control, 1989, 19:33-99
    16. Brusseaum L, Jessupr E, Raops C. Nonequilibrium sorption of organic chemical : elucidation of rate limiting process[J]. Environ Sci Technol, 1991, 25 (1) :134-142
    17. Budzinski H, Jones I, Bellocq J et al. Evaluation of Sediment Contamination by Polycyclic Aromatic Hydrocarbons in the Gironde Estuary[J]. Marine Chemistry, 1997,58:85-97
    18. Chefetz B., A. P. Deshmukh, and P. G Hatcher. Pyrene sorption by natural organic matter [J]. Environ Sci Technol, 2000,34(14): 2925-2930
    19. Chen Y, Senesi N, Schnitzer M. 1977. Information provide on humic substances by E4/E6 ratios[J]. Soil Sci Soc AmJ, 41:352-358
    20. Chung N, Alexander M. Relationship between nanoporosity and other properties of soil[J]. Soil Sci., 1999,164: 726-730
    21. Chung N,Alexander. Effect of concentration on sequest ration and bioavailability of two polycyclic aromatic hydrocarbons[J]. Environ Sci Technol, 1999,33 (20) :3605-3608
    22. Cindy H Nakatsu, Vigdis Torsvik, Liseveras. Soil Community Analysis Using of 16S rDNA Polymerase Chain Reaction Products[J]. Soil Sci. Soc. AM. J., 2000, 64:1382-1388
    23. Conte P, Agretto A, Spaccini R, et al. Soil remediation: Humic acids as natural surfactants in the washings of highly contaminated soils[J]. Environmental Pollution, 2005,135: 515-522
    24. Conte P, Zena A, Pilidis G, et al. Increased retention of polycyclic aromatic hydrocarbons in soils induced by soil treatment with humic substances [J]. Environmental Pollution, 2001, 112:27-31
    25. CornelissenG, Vannoortp C M , Groversh A J. Mechanisms of slow desorption of organic compounds f rom sediments a study using model sorbents [J ]. Environ Sci Technol, 1998a , 32:3124-3131
    26. Cousins I T, Gevao B, Jones K C. Measuring and modeling the vertical distribution of semi-volatile organic compounds in soils. I: PCB and PAH soil core data [J]. Chemosphere, 1999, 39(14): 2507-2518
    27. Du Four V A,Van Larebeke N,Janssen C R.Genotoxic and mutagenic activity of environmental air samples in Flanders Belgium[J].Mutat Bes,2004,558(1-2): 155-167
    28. Edwards N T, Ross-Todd R M,Garver E G . Uptake and metabolism of 14Cantravene by sybean(Glycine Max)[J]. Envi r on Exp Bot. 1982,22(3)349-357
    29. Edwards N.T. Polycyclic aromatic hydrocarbons (PAHs) in the terrestrial environment-a review[J]. J. Environ. Qual., 1983,12:427-441
    30. Ellwardt. P. Variation in content of polycyclic aromatichy drocarbons in soil and plants by using municipal waste comkposts in agricultuer[R] 1977
    31. Enell A, Reichenberg F, Warfvinge P, et al. A column method for determination of leaching of Polycyclic aromatic hydrocarbons from aged contaminated soil[J]. Chemosphere , 2004,54:707-715
    32. Feraandes M B, Sicre M A, Boireau A, et al. Polyaromatic hydrocarbon(PAH) Distributions in the Seine River and its Estuary [J]. Marine Pollution Bulletion, 1997,34(11): 857-867
    33. Freeman D J, Cattell F C. Woodburning as a source of atmospheric polyciclic aromatic hydrocarbons[J]. Environ. Sci. Technol., 1990,24:1581-1585
    34. Gevao B, Mordauntc, Semple K T, et al. Bioavailability of nonextractable (bound) pesticide residues to earthworms[J]. Environ. Sci. Technol, 2001, 35:501-507
    35. Guddal, E. Isolation of polynuclear aromatic hydrocarbons from roots of Chrysnthemun Vulgare Barnh[J].Acta.Chem.Scand. 1959.13(4):834-835
    36. Guerin W F, Boyd S A. Differential bioavailability of soil sorbed naphthalene to two bacterial species[J]. Applied Environ Microbiology, 1992,58 :1142-1152
    37. Guggenberger G, B.T. Christensen, W. Zech. Land-use effects on the composition of organic matter in particle-size separates of soil: Lignin and carbohydrate[J]. Eur. J. Soil Sci., 1994, 45:449-458
    38. Guggenberger G, Zech W. , Haumaier L., et al. Land-use effects on the composition of organic matter in particle-size separates of soil: II CPMAS and solution 13C NMR analysis[J]. Eur. J. Soil Sci., 1995,46:147-158
    39. Gunther,F.A.,Buzzetti F. Havior of polynuclear hydrocarbonson and inoranges [J].Residue Rev. 1967,17:81-104
    40. Hatzinger P B,, Alexander M. Effect of aging of chemicals in soil on their biodegradability and extractability[J]. Environ Sci Technol ,1995 ,29 (2) :537-545
    41. Helmut R, Andreas P, Loibner, M H, et al. Behavior of PAHs during cold storage of historically contaminated soil samples [J]. Chemosphere, 2002, 49(8):1239-1246
    42. Henny van den Heuvel, Paul C.M. van Noort. Competition for adsorption between added phenanthrene and in situ PAHs in two sediments[J]. Chemosphere, 2003,53:1097-1103
    43. Huang W., Scnlautman M.A., Weber W.J. A distribution reactivity model for sorption by soils and sediments. 5. the influence of near-surface characteristics in mineral domains[J]. Environmental Science & Technology, 1996,30:2993-3000
    44. Hulscherthe M, BrindbA, Vannoortp C M, et al. Temperature effects on very slow desorption of native chlorobenzenes from sediment to water[J].Envrion Toxicol Chem, 2004, 23(7):1634-1639
    45. Hundal L, Thompson M, Laird D, Carmo M. Sorption of phenanthrene by reference smectites[J]. Environ. Sci Technol, 2001,35:3456-3461
    46. Hwang S, Cutright T J. Biodegradation of aged pyrene and phenanthrene in a natural soil[ J] . Chemosphere, 2002,47:891-899
    47. Hwang S, Cutright T J. Statistical implications of pyrene and phenanthrene sorptive phenomena: Effects of sorbent and solute properties[J]. Arch. Environ. Contam. Toxicol, 2003,44:152-159
    48. Hwang S., Cutright T. J.. Biodegradability of aged pyrene and phenanthrene in a natural soil. Chemoshere, 2002, 47:891-899
    49. Ian T. Cousins, Bondi Gevao, Kwvin C. Jones. Measuring and modeling the vertical distribution of semivolatile organic compounds in soil[[J]. I:PCB and PAH soil. Chemosphere,1999,39(14):2507-2518
    50. Irena Atanassova, Gerhard W. Brummer. Polycyclic aromatic hydrocarbons of anthropogenic and biopedogenic origin in a colluviated hydromorphic soil of Western Europe[J]. Geoderma, 2004,120:27-34
    51. Jnogeh D E , Frei I ,Verstraten J M ,et al . Relation between bioavailability and fuel oil hydrocarbon composition in contaminated soils [J]. Environ Sci Technol, 1997, 31:771-775
    52. Karimi-Lotfabad S, Pickard M A, Gray M R. Reactions of polynuclear aromatic hydrocarbons on soil[J]. Environ. Sci Technol, 1996,30:1145-1151
    53. Kavouras I G, Koutrakis P, Tsapakis M, et al. Source Apportionment of urban particulate aliphatic and polyciclic aromatic hydrocarbons(PAHs) using multivariate methods[J|. Environ. Sci. Technol.,2001,35:2288-2294
    54. Kelsey J W, Alwxander M. Declining bioavailability and inappropriate estimation of risk of persistent compounds[J]. Environ Toxicol Chem ,1997,16 :582-585
    55. Kocan R M, Marty G D, Okihiro M S, et al. Reproductive success and histopathology of individual Prince William Sound pacific herring 3 years after the Exxon valdez oil spill[J].Can J Fish Aquat Sci,1996,53:2388-2393
    56. Kogel-Knabner I, Kai U T, Bernd R. Desorption of PAHs from soil in the presence of dissolved organic matter:Effect of solution composition and aging[J]. J. Environ. Qual. 2000, 29(3):906-916
    57. Kotter B D, White J C, Kelsey J W. Influence of soil moisture on the sequestration of organic compounds in soil[J]. Chemosphere .2001.( 42):893-898
    58. Krauss M., W. Wilcke. Polychlorinated naphthalenes in urban soils: analysis, concentrations, and relation to other persistent organic pollutants[J]. Environmental Pollution, 2003,122:75-89
    59. Lassen P, Poulsen M E, Lauridsen F S, et al. Leaching of selected PAH's and hetero-analogued from an organic matrix into synthetic ground water. Influence of dissolved humic material[J]. Chemosphere, 1997,34(2):335-344
    60. Leboeuf E J , Weber W G . Mcromolecular characteristics of natural organic matter[J]. Environ Sci Technol, 2000, 34(17):3632-3640
    61. Lee M L. Analytical Chemistry of Polycyclic Aromatic Compounds[J]. Academic Press, 1981:3-10
    62. Leyval C, Binet P. Efect cf polyclic aromatic hydrocarbons in soil on arbuscular mycorrhizal plants[J].J Environ Qual ,1998,7:402-407
    63. Li J H, Pan G X. Sorption of pyrene on two paddy soils and their particle-size fractions[J]. Journal of Environmental Sciences, 2005,17 (6):962-965
    64. Lueking AD, Huang W, Soderstrom-Schwarz S,et al. Relationship of soil organic matter characteristics to organic contaminant sequestration and bioavailability [J]. J. Environ. Qual, 2000,29:317-323
    65. Ma L.L., Chu S.G.,Wang X.T. , et al. Polycyclic aromatic hydrocarbons in the surface soils from outskirts of Beijing, China[J]. Chemosphere, 2005,58:1355-1363
    66. Mader B.T., Uwe-Goss K. , Eisenreich S.J. . Sorption of nonionic, hydrophobic organic chemicals to mineral surfaces[J]. Environmental Science & Technology,, 1997,31:1079-1086
    67. MakeyevaA V. I. Effect of wetting and drying on the soil structure[J].Soviet Soil Sci, 1989, (21):81-89
    68. Malekani K, Rice J A, Lin J S. The effect of sequential removal of organic matter on the surface morphology of humin[J]. Soil Sci., 1997,162,333-342
    69. Maliszewska K B. Polycyclic aromatic hydrocarbons in agricultural soils in Poland: preliminary proposals for criteria to evaluate the level of soil contamination [J]. Appl. Geochem, 1996,11(1-2):121-127
    70. Margesin R, Walder G,Schinner F. The impact of hydrocarbon remediation (diesel oil and polycyclic aromatic hydrocarbon) on enzyme activities and microbial properties of soilfJ]. Acta Biotechnol ,2000,20:313-333
    71. Martin. Ageing , bioavailability , and overestimation of risk from environment pollutant s[J] . Environ Sci Technol, 2000,34:4259-4265
    72. Maruya K A, Risebrough R W, Home A J. Partitioning of polynucleararomatic hdrocarbons between sediments from San Francisco Bay andtheir porewaters[J]. Environ Sci Technol, 1996,30(10):2942-2947
    73. Maskaoui K, Zhou J L, Hong H S, et al. Contamination by polycyclic aromatic hydrocarbons in the Jiulong River Estuary and Western Xiamen Sea, China[J]. Environ Pollut, 2002 , 118(1) :109-122
    74. Mayer LM. Relationships between mineral surfaces and organic carbon concentrations in soils and sediments[J]. Chem. Geol., 1994,114: 347-363
    75. McCarthy J F, Williams T M,Ling L, et al. Mobility of natural organic matter in a sandy aquifer[J].Environ. Sci. Technol., 1993, 27:667-676
    76. Morrison D E , Robertson K, Alexander M. Bioavailability to earthworms of aged DDT , DDE, DDD , and dieldrin in soil [J]. Environ Sci Technol, 2000 , 34 (4): 709-713
    77. Morrison R T, Boyd R N. 1983. Organic Chemistry[M], Part 17. Allyn and Bacon Inc.: Newton, Massachusetts, USA.
    78. Muller S., Wilcke W., Kanchanakool N., et al. Polycyclic aromatic hydrocarbons (PAHs) and polychlorinated biphenyls (PCBs) in particle-size separates of urban soils in Bangkok, Thailand[J]. Soil Science, 2000,165(5): 412-419
    79. Murphy E M , Achara J M , Smiths C. Influence of mineral bound humic substances on the sorption of hydrophobic or ganic compounds [J]. Environ Sci Technol, 1990,24 :1507-1516
    80. Nadal M, Schuhmacher J L, Domingo J L. Levels of PAHs in soil and vegetation samples from Tarragona County, Spain[J]. Environmental Pollution, 2004,132:1-11
    81. Nam K,Chung N , AlexanderL M. Relationship between organic matter content of soil and the sequestration of phenanthrene [J]. Environ Sci Technol ,1998 ,32 (23) :3785-3788
    82. Nam K, Alexander M. Role of nanoporosity and hydrophobicity in sequestration and bioavailability: Tests with model solids[J]. Environ. Sci. Technol, 1998, 32: 71-74
    83. Nam K., Kim J.Y. , Oh D.I.. Effect of soil aggregation on the biodegradation of phenanthrene aged in soil. Environmental Pollution, 2003,121:147-151
    84. Nasci C, Da Ros L, Nesto N, et al. Biochemical and histochemical responses to environmental contaminants in clam, Tapes Philippinarum, transplanted to different polluted areas of Venice Lagoon Italy[J]. Mar. Environ. Res.,2000,50:425-430
    85. Nzengung V A , Wampler J M . Organic cosolvent effects on sorption equilibrium of hydrophobic organic chemicals by organoclays[J]. Environ Sci Technol, 1996,30(1): 89-96
    86. Onken B M, Traina S J. The sorption of pyrene and anthracene to humic acid-mineral complexes: Effect of fractional organic carbon content[J]. J. Environ. Qual., 1997,26: 126-132
    87. Ophoff H., Stork A., Veerkamp W.,et al. Volatilization and mineralization of [3-~(14)C]fluoranthene after soil incorporation and soil surface application[J]. Intern. J. Environ. Anal. Chem., 1996, 64:97-109
    88. Pagano P, De Zaiacomo T,Scarcella E, et al. Mutagenic activity of total and particle-sized fractions of urban particulate matter[J]. Environ Sci Technol,1996,30(12):3512-3516
    89. Park K.S., R.C. Sims, R.R. Dupont, et al. Fate of PAH compounds in two soil types: influence of volatilization, abiotic loss and biological activity[J]. Environ. Toxicol. Chem., 1990, 9:187-195
    90. Perminova I V, Grechishcheva NY, Kovalevskii DV, et al. Quantification and prediction of the detoxifying properties of humic substances related to their chemical binding to polycyclic aromatic hydrocarbons[J].Environ. Sci. Technol,2001,35:3841-3848
    91. Peter B, Andrew C, Bondi G, et al. Nonextractable pesticide residues in soil [J] . Environ Sci Technol A-pages, 2003 ,37 (7) :139A-144A
    92. Peter H. Roos, Sebastian Tschirbs, Frank Pfeifer, et al. Risk potentials for humans of original and remediated PAH-contaminated soils: application of biomarkers of effect[J]. Toxicology, 2004, 205:181-194
    93. Petruzzelli L., L. Celi, A. Cignetti, et al.. Influence of soil organic matter on the leaching of polycyclic aromatic hydrocarbons in soil. J. Environ. Sci. Health, 2002,8(3):187-199
    94. Pichler M., Guggenberger G., Hartmann R., et al. Polycyclic aromatic hydrocarbons (PAHs) in different forest humus types[J]. Enviorn. Sci. Pollut. Res., 1996,3:24-31
    95. Pignatello J.J, B. Xing. Mechanism of slow sorption of organic chemicals to natural particles[J]. Environmental Science & Technology,, 1996,30:1-11
    96. Raber B, Kbgel- Knabner I, Stein C, et al. Partitioning of polycyclic aromatic hdrocarbons to dissolved organic matter from different soils[J]. Chemosphere,1998, 36 :79-97
    97. Raber B, Kogel-Knabner I. Influence of origin and properties of dissolved organic matter on partition of polycyclic aromatic hdrocarbons[J]. European Journal of Soil Science, 1997, 48 :443-455
    98. Reemtsma T, Mehrtens J. Determination of polycyclic aromatic hydrocarbon(PAH) leaching from contaminated soil by a column test with on-line solid phase extraction[J]Chemosphere ,1997,35(11):2491-2501
    99. Reid B J , Jones K C, Semple K T. Bioavailability of persistent organic pollutants in soils and sediments 2. a perspective on mechanisms , consequences and assessment [J]. Environ Pollut, 2000,108 :103-112
    100. Reilley K A, BanksM K. Dissipation of PAHs in the rhzospere[J].J Environ Qual ,1996 ,25 :212-219
    101. Richnow H H, Eschenbach A, Mahro B, et al. The use of 13C-labelled polycyclic aromatic hydrocarbons for the analysis of their transformation in soil [J].Chemosphere,1998,36 (4) :2211-2224
    102. Rockne K J, Shor L M, Young L Y et al. Distributed sequestration and release of PAHs in weathered sediment: The role of sediment structure and organic carbon properties [J]. Environ Sci Technol,2002, 36(12): 2636-2644
    103. Rogge W F, Hildemann L M, Mazurek M A, et al. Sources of fine organic aerosol 2 noncatalyst and catalyst-equipped automobiles and heavy-duty diesel trucks[J]. Environment Science and Technology, 1993,27(2): 636-651
    104. Saccorriandi,F., Gianfreda,L..Can intrinsic microbial population restore an aged heavily NAPL-polluted site? In: Prospect and Limits of Natural Attenuation at tar Oil Contaminated Sites. Dechema e.V., pp. 486-492.2001
    105. Sack U, Heinze T M, Deck J, et al. Novel metabolites in phenanthrene and pyrene transformation by Aspergillus niger[J].Applied and Environmental Microbiology, 1997, 63: 2906-2909
    106. Samanta S K, Singh O V, Jain R K. Polycyclic aromatic hydrocarbons: Environmental pollution and bioremediation[ J]. Trendsin Biotechnology, 2002,20-24
    107. Schulten H R, Leinweber P. 2000. New insights into organic-mineral particles: composition, properties and models of molecular structure [J], Biol Fertil Soils, 30:399-432
    108. Sim R.C., Overcash M.R.. Fate of polynuclear aromatic compounds (PAHs) in soil-plant system[J]. Res. Rev.,, 1983, 88:1-68
    109. Simcik M F, Eisenreich S J, Lioy P J. Source apportionment and source/sink relationships of polyciclic aromatic hydrocarbons(PAHs) in the coastal atmosphere of Chicago and Lake michigan[J]. Atmos Environ.,1999,33(30):5071-5079
    110. Soclo H H, Garrigues P H, Ewald M. Origin of polycyclic aromatic hydrocarbons(PAHs) in coastal marine sediments: case studies in Cotonou(Benin) and Aquitaine(France)Areas[J]. Marine Pollution Bulletion, 2000,40:387-396
    111. Stanislaw Baran, Jolanta E. Bielinska, Patryk Oleszczuk. Enzymatic activity in an airfield soil polluted with polycyclic aromatic hydrocarbons[J]. Geoderma, 2004,118: 221-232
    112. Steinbergs M, Pignatello J J. Persistence of 1,2-dibromoethane in soils :entrapment in intraparticle micropores [J]. Environ Sci Technol, 1987, 21(12):1201-1208
    113. Sverdrup L. E., J. Jensen, P. H. Krogh, et al. Studies on the effect of soil aging on the toxicity of Pyrene and phenanthrene to a soil-dwelling springtail[J]. Environmental Toxicology and Chemistry, 2002, 21(3):489-492
    114. Tam N F Y, Guo C L, Yau W Y, et al. Perliminary study on biodegradation of phenanthrene by bacteria isolatec from mangrove sedments in Hong Kong[ J]. Marine Pollution Bulletin. 2002, 45:316-324
    115. Tian L, Ma P. Zhong J J. Kinetics and key enzyme activities of phenanthrene degradation by Pseudo monas mendocina[J].Process Biochemistry,2002,37:1431-1437
    116. Trapido M. Polycyclic aromatic hydrocarbons in Estonian soil: contamination and profiles[J].Environ. Pollut.,1999,105(1):67-74
    117. Volkering F, Breure A M. Influence of nonionic surfactants on bioavailability and biodegradation of polycyclic aromatic hydrocarbons [J]. Appl Environ Mcrobiol. 1995,61(5) :1699-1705
    118. Wang X. C, Zhang Y. X. ,Chen R.F. Distribution and partitioning of polycyclic aromatic hydrocarbons (PAHs) in different size fractions in sediments from Boston Harbor, United States[J]. Marine Pollution Bulletin, 2001, 42:1139-1149
    119. Weber W.J., Mcginley P.M., Katz L.E.. A distribution reactivity model for sorption by soils and sediments. I conceptual basis and equilibrium assessments[J]. Environ. Sci. Technol., 1992, 26:1955-1962
    120. Weigand H, Totsche K U, Knahner I K. Effect of fluctuating input of dissolved organic matter on long-term mobility of polycyclic aromatic hdrocarbons in soils [J]. Phys. Chem. Earth, 1998,23(2):211-214
    121. Weisenfels W.D.,Klewer H. J. , Langhoff J.. Adsorption of polycyclic aromatic hydrocarbons (PAHs) by soil particles: influence on biodegradability and biotoxicity [J]. Appl. Microbiol. Biotechnol. 1992,36(3):689-696
    122. White J C , KelseyJ W , Hatzinger P B, et al . Factors affecting sequestration and bioavailability of phenanthrene in soils[J]. Environ Toxicol Chem, 1997,16 :2040-22045
    123. Wilcke W. Polycyclic aromatic hydrocarbons (PHAs) in soil - a review[J]. J. Plant Nutr. Soil Sci., 2000,163:229-248
    124. Wild S R, Jones K C. Polynuclear aromatic hydrocarbons in the United Kingdom environment: a preliminary source in inventory and budget [J]. Environment Pollution, 1995, 101(1): 91-108
    125. Wild S R, Waterhouse K S, Mcgrath S P, et al. Orangic contamination in an agricultural soil with a known history of sewage sludge amendment: Polynuclear Aromatic Hydrocarbons. Environ[J]. Sci Technol, 1990,24 (13) :1706-1711
    126. Wilson L, Bouwer E. Biodegradation of aromatic compounds under mixed oxygen/denitrifying conditions: a reviewfj]. Journal of Indian Microbiology and Biotechnology, 1997,18:116-130
    127. Xing B. Sorption of naphthalene and phenanthrene by soil humic acids[J]. Environmental Pollution,2001,111:303-309
    128.Xing B.,Pignatello J.J..Dual-model sorption of low-polarity compounds in glassy poly(viny chloride) and soil organic matter[J].Environmental Science & Technology,1997,31(3):792-799
    129.Yerushal M,Rocheleaus L,Cimpoia R.et al.Enhanced biodegradation of petroleum hydrocarbons in contaminated soil[J].Bioremediation Journal,2003,7:37-51
    130.Yunker M B,Macdonald R W,Vingarzan R.,et al.PAHs in the Fraser River Basin:a Critical Appraisal of PAH Ratios as Indicators of PAHs Source and Composition[J].Organic Geochemistry,2002,33:489-515
    131.安琼,董元华,王辉,等.苏南农田土壤有机氯农药残留状况[J].土壤学报,2004,41(3):414-419
    132.安琼,董元华,王辉.苏南某市农田土壤有毒有害元素分布状况及影响因素[J].土壤,2005,37(2):147-151
    133.安琼,董元华,王辉,等.长江三角洲典型地区农田土壤中多氯联苯残留状况[J].环境科学,2006,27(3):528-532
    134.安中华,董元华,安琼,等.苏南某市农田土壤环境质量评价及其分级[J].土壤,2004,36(6):631-635
    135.陈建海,李慧蓉.黄孢原毛平革菌对多环芳烃菲的生物降解[J].江苏石油化工学院学报,2000,9(3):177-180
    136.陈静,王学军,陶澍.天津地区土壤多环芳烃在剖面中的纵向分布特征[J].环境科学学报2004,24(2):286-290
    137.陈静,王学军,陶澍.天津地区土壤有机碳和粘粒对PAHs纵向分布的影响[J].环境科学研究,2005,18(4):79-83
    138.陈静,王学军,陶澍.天津污灌区耕作土壤中多环芳烃的纵向分布[J].城市环境与城市生态,2003,16(6):272-274
    139.陈静,王学军,胡俊栋,等.表面活性剂对人工污染土壤装填土柱中PAHs迁移渗透的影响[J].环境科学,2005,26(2):190-194
    140.陈来国,冉勇,麦碧娴,等.广州周边菜地中多环芳烃的污染现状[J].环境化学,2004,23(3):341-344.
    141.陈颖,王子健.用彗星试验检测土壤污染对蚯蚓活体基因损伤[J].土壤学报,2005,42(4):577-583
    142.成杰民,潘根兴,郑金伟.太湖地区水稻土pH及重金属元素有效态含量变化影响因素初探[J].农业环境保护,2003,24(3):101-103
    143.代静玉,秦淑平,周江敏.土壤中溶解性有机质分组组分的结构特征研究[J].土壤学报, 2004,41(5):721-727
    144.党志,于虹.土壤/沉积物吸附有机污染物机理研究的进展[N].化学通报,2001,(2):81-85
    145.丁克强,骆永明,刘世亮.利用改进的生物反应器研究不同通气条件下土壤中菲的降解[J].土壤学报,2004,41(2):245-251
    146.丁克强,骆永明.多环芳烃污染土壤的生物修复[J].土壤,2001,33(4):169-178
    147.丁克强,骆永明,刘世亮,等.多环芳烃菲对淹水土壤微生物动态变化的影响[J].土壤,2002,34(2):229-232,236
    148.丁克强,骆永明,刘世亮,等.黑麦草对菲污染土壤修复的初步研究[J].土壤,2002,34(4):233-236
    149.丁克强,骆永明,刘世亮.利用改进的生物反应器研究不同通气条件下土壤中菲的降解[J].土壤学报,2004,41(2):245-251
    150.丁克强,王奎武,薛云波,等.土壤中多环芳烃的降解与土壤酸度及微生物的关系[J].南京工程学院学报(自然科学版),2006,4(4):9-14
    151.段永红,陶澍,王学军,等.天津表层土壤中多环芳烃的主要来源[J].环境科学,2006,27(3):524-529
    152.葛成军,安琼,董元华.钢铁工业区周边农业土壤中多环芳烃(PAHs)残留及评价[J].农村生态环境,2005,21(2):66-69,73
    153.葛晓立,谢文明,罗松光,等.北京密云房山地区土壤中多环芳烃的组成与分布特征[J].岩矿测试,2004,23(2):132-136
    154.宫璇,李培军,张海荣.土壤的芘污染与土壤酶活性[J].农村生态环境,2004,20(3):53-55,59
    155.宫璇,李培军,张海荣,等.菲对土壤酶活性的影响[J].农业环境科学学报,2004,23(5):981-984
    156.关松荫.土壤酶及其研究法[M].北京:农业出版社,1986
    157.何炜,屠幼英,林道辉,等.多环芳烃的吸收累积对茶叶化学成分的影响[J].茶叶,2005,31(4):220-223
    158.郝明亮,张光辉,韩美清,等.河北省土壤苯并(a)芘含量的空间变异特性[J].生态与农村环境学报,2006,22(4):48-51
    159.何孟常,邓焕哲,李杏茹,等.土壤胡敏酸对菲的吸附特征研究[J].环境科学学报,2005,25(7):982-988
    160.胡俊栋,陈静,王学军等.多环芳烃室内土柱淋溶行为的CDE模型模拟[J].环境科学学报2005,25(6):821-828
    161.姜霞,区自清,应佩峰.14C菲在“植物-火山石-营养液-空气”系统中的迁移和转化[J].应用 生态学报,2001,12(3):451-454
    162.雷萍,聂麦茜,温晓玫.优势黄杆菌对葸、菲、芘混合物的降解特征研究[J].西安交通大学学报,2004,38(6):657-660
    163.李桂英,唐小玲,毕新慧,等.广州市不同粒径大气颗粒物有机提取物的致突变性研究[J].环境科学学报,2005,25(3):319-323
    164.李红,曾凡刚,邵龙义,等.可吸入颗粒物对人体健康危害的研究进展[J].环境与健康杂志,2002,19(1):85-87
    165.李久海,董元华,曹志洪,等.史前水稻土剖面中多环芳烃(PAH s)的分布特征[J].农业环境科学学报,2007,26 4):224-229
    166.李久海,董元华,曹志洪等.6000年以来水稻土剖面中多环芳烃的分布特征及来源初探[J].土壤学报,2007,44(1):41-46
    167.李久海,潘根兴.外加芘在2种水稻土及其团聚体培养中的老化及其可浸提性和生物有效性的变化[J].环境科学,2005,26(6):131-136
    168.李恋卿,潘根兴,张平究,等.太湖地区水稻土表层土壤10年尺度重金属元素积累速率的估计[J].环境科学,2002,23(3):119-123
    169.李恋卿,郑金伟,潘根兴,等.太湖地区不同土地利用影响下水稻土重金属有效性库变化[J].环境科学,2003,24(3):101-104
    170.李培军,巩宗强,井欣.生物反应器法处理PAHs污染土壤的研究[J].应用生态学报,2002,13(3):327-330
    171.凌婉婷,朱利中,高彦征.植物根对土壤中PAHs的吸收及预测[J].生态学报,2005,25(9):2320-2325
    172.李秀华,倪进治,骆永明.土壤不同粒径组分对菲的吸附解吸行为的研究[J].土壤,2006,38(5):584-590
    173.林秀梅,潘波,刘文新,等.天然土壤有机质中菲的分配行为[J].环境科学,2006,27(4):748-753
    174.刘磊,李习武,刘双江,等.降解多环芳烃的菌株Gordonia sp.He4的分离鉴定及其在菲污染土壤修复过程中的动态变化环境科学,2007,28(3):617-622
    175.刘敏,侯立军,邹惠仙,等.长江口潮滩表层沉积物中多环芳烃分布特征[J].中国环境科学,2001,21(4):343-346
    176.刘世亮,骆永明,曹志洪,等.多环芳烃污染土壤的微生物与植物联合修复研究进展[J].土壤,2002(5):257-265
    177.刘树庆.保定市污灌区土壤的Pb、Cd污染与土壤酶活性关系研究[J].土壤学报,1996,33(2):175-182
    178.鲁如坤.土壤农业化学分析方法[M].北京:中国农业科技出版社,1999:12-14,106-109.
    179.罗雪梅,刘昌明.微生物对土壤和沉积物吸附多环芳烃动力学的影响[J].环境化学,2006,25(6):701-704
    180.马健,翟永越,王东辉.多环芳烃在松花江水环境中的富集及对生态环境的影响[J].环境科学与管理,2006,31(1):91-92
    181.孟范平,吴方正.土壤的PAHs污染及其生物处理技术进展[J]土壤学进展,1995,23(1):32-41
    182.倪进治,骆永明,张长波.长江三角洲地区土壤环境质量与修复研究Ⅲ农业土壤不同粒径组分中菲和苯并[a]芘的分配特征[J].2006,43(5):717-722
    183.潘根兴.地球表层系统土壤学[M].北京:中国地质出版社,2000:32-39
    184.潘根兴,高建琴,刘世梁,等.活化率指示苏南土壤环境重金属污染冲击初探[J].南京农业大学学报,1999,22(2):46-49
    185.潘根兴,成杰民,高建琴,等.江苏吴县土壤环境中某些重金属元素的变化[J].长江流域资源与环境,2000,9(1):51-55
    186.祁士华,盛国英,傅家谟,等.拉萨市城区大气和拉鲁湿地土壤中的多环芳烃(J).中国环境科学,2002,22(2):118-122
    187.曲健,宋云横,苏娜.沈抚灌区上游上壤中多环芳烃的含量分析[J].中国环境监,2006,22(3):29-31
    188.任加云,潘鲁青,苗晶晶.苯并(a)芘和苯并(k)荧蒽混合物对栉孔扇贝毒理学指标的影响[J].环境科学学报,2006,26(7):1180-1186
    189.沈德中.污染环境的生物修复[M].北京:化学工业出版社,2002:18-124
    190.沈国清,陆贻通,洪静波.重金属和多环芳烃复合污染对土壤酶活性的影响及定量表征[J].应用与环境生物学报,2005,11(4):479-482
    191.史坚,黄成臣,徐鸿,等.杭州市大气总悬浮颗粒物中多环芳烃的HPLC分析[J].环境化学,2003,22(6):629-630
    192.宋玉芳,常士俊,李利.污灌土壤中多环芳烃(PAHs)的积累与动态变化研究[J].应用生态学报,.1997,8(1):93-98
    193.宋玉芳,孙铁珩,许华夏,等.TW-80对污染土壤中菲和芘的生物降解影响[J].应用与环境生物学报,1999,5(Suppl):151-154
    194.宋玉芳,周启星,宋雪英,等.沈阳西部污灌渠沉积物中污染物积累与生态毒性研究[J].应用生态学报,2004,15(10):1926-1930
    195.宋玉芳,常士俊,李利,等.污灌土壤中多环芳烃的积累与动态变化研究[J].应用生态学报,1997,8(1):93-98
    196.宋玉芳,周启星,许华夏,等.菲,芘,1,2,4-三氯苯对土壤高等植物根伸长抑制的生态毒性效应[J].生态学报,2002,22(11):1945-1950
    197.宋玉芳,周启星,许华夏,等.菲、芘、1,2,4-三氯苯对蚯蚓的急性毒性效应[J].农村生态环境,2003,19(1):36-39
    198.宋玉芳.土壤、植物样品中多环芳烃分析方法研究[J].应用生态学报,1995,6(2):56-59
    199.孙韧,朱坦.天津局部大气颗粒物上多环芳烃分布状态[J].环境科学研究,2000,13(4):14-17
    200.孙铁珩,宋玉芳.植物法生物修复PAHs和矿物油污染土壤的调控研究[J].应用生态学报,1999,10(2):225-229
    201.汤莉莉,唐翔宇,朱永官,等.北京地区土壤中多环芳烃的分布特征[J].解放军理工大学学报(自然科学版),2004,5(2):95-99
    202.滕应,黄昌勇,骆永明,等.铅锌银尾矿区土壤微生物活性及其群落功能多样性研究[J].土壤学报,2004,41(1):113-119
    203.万红友,周生路,赵其国,等.苏南经济快速发展区土壤重金属含量的空间变化研究[J].地理科学,2005,25(3):329-335
    204.万红友,周生路,赵其国,等.苏南经济快速发展区土壤有效态镉含量影响因素及分布特征[J].长江流域资源与环境,2006,15(2):213-218
    205.万显烈,杨凤林.大连市区大气中PAHs来源、分布及随季节变化分析[J].大连理工大学学报,2003,43(2):160-163
    206.万寅婧,占新华,周立祥.土壤中芘、菲、萘、苯对小麦的生态毒性影响[J].中国环境科学,2005,25(5):563-566
    207.王海,张甲耀.等离子注入法选育高效降解葱的鞘氨醇单胞菌突变株[J].环境科学,2005,26(1):150-153
    208.王静,朱利中.空气中多环芳烃的污染源研究[J].浙江大学学报(理学版),2001,28:303-308
    209.王新,李培军,巩宗强,等.采用固定化技术处理土壤中菲、芘污染物[J].环境科学,2002,23(3):84-87
    210.王新,李培军.一种动胶杆菌的固定化及其降解土壤中菲、芘的研究[J].中国环境科学,2000,20(6):515-518
    211.王学军,任丽然,戴永宁,等.天津市不同土地利用类型土壤中多环芳烃的含量特征[J].地理研究,2003,22(3):360-366
    212.魏德洲,秦煌民.H_2O_2在石油污染土壤微生物治理过程中的作用[J].中国环境科学,1997,17(5):429-431
    213.吴启航,麦碧娴,杨清书,等.珠江广州河段重污染沉积物中多环芳烃赋存状态初步研究[J].地球化学,2004,33(1):37-45
    214.吴文铸,占新华,周立祥.水溶性有机物对土壤吸附-解吸菲的影响[J].环境科学,2007,28(2):267-271
    215.吴鑫,杨红.可溶性有机物对土壤中主要有机污染物环境行为的影响[J].生态环,2003,12(1):81-85
    216.邢维芹,骆永明,李立平.影响土壤中PAHs降解的环境因素及促进降解的措施[J].土壤通报,2007,38(1):173-178
    217.熊巍,凌婉婷,高彦征,等.水溶性有机质对土壤吸附菲的影响[J].应用生态学报,2007,18(2):431-435
    218.熊毅等编著.土壤胶体(第二册).北京:科学出版社,1985
    219.徐圣友,陈英旭,林琦.玉米对土壤中菲芘修复作用的初步研究[J].土壤学报,2006,43(2):226-232
    220.杨敏,倪余文,苏凡,等.辽河沉积物中多环芳烃的污染水平与特征[J].环境化学,2007,26(2):217-220
    221.杨志新,刘树庆.重金属Cd、zn、Pb复合污染对土壤酶活性的影响[J].环境科学学报,2001,21(1):60-63
    222.易筱绮,党志,石林.有机污染物污染土壤的植物修复[J].农业环境保护,2002,21(5):477-479
    223.殷波,顾继东.环境污染物萘、蒽、菲、芘的好氧微生物降解[JI.热带海洋学报,2005,24(4):14-21
    224.于强,李亚明,张华,等.利用GC/MS测定海洋中贻贝、牡蛎体内的多环芳烃[J].化学分析计量,2001,10(2):20-21
    225.俞飞,林玉锁.城市典型工业生产区及附近居住区土壤中PAHs污染特征[J].生态环境,2005,14(1):6-9
    226.占新华,周立祥,黄楷.水溶性有机物对菲的表观溶解度和正辛醇冰分配系数的影响[J].环境科学学报,2006,26(1):105-110
    227.占新华,万寅婧,周立祥.水溶性有机物对土壤中菲的生态毒性影响[J].环境科学,2004,25(3):120-124
    228.张从,夏立江.污染土壤生物修复技术[M].北京:中国环境科学出版社,2000:160-161
    229.张晖,宋孟,HUANG Chin-Pao.菲污染土壤原位臭氧化修复的一维模型[J].高校化学工程学报,2003,17(4):466-470
    230.张晶,张惠文,丛峰,等.长期灌溉含多环芳烃污水对稻田土壤酶活性与微生物种群数量的影响[J].生态学杂志,2007,26(8):1193-1198
    231.张平究,李恋卿,潘根兴,等.长期不同施肥下太湖地区黄泥土表土微生物碳氮量及基因多样性变化[J].生态学报,2004,24(12):2818-2814
    232.张树才,张巍,王开颜,等.北京东南郊大气TSP中多环芳烃的源解析[J].环境科学学报,2007.27(3):452-458
    233.张天彬,杨国义,万洪富,等.东莞市土壤中多环芳烃的含量、代表物及其来源.土壤,2005,37(3):265-271
    234.张先明,潘波,刘文新,等.天然土壤中菲的解吸行为特征研究[J].环境科学,2007,28(2):272-276
    235.张勇,常艳文,马可,等.可吸入颗粒上多环芳烃来源的识别和解析[J].中国环境监测,2006,22(6):96-100
    236.张枝焕,王学军,陶澍等.天津地区典型土壤剖面多环芳烃的垂向分布特征[J].地理科学,2004,24(5):562-567
    237.仉磊,袁红莉.一株菲降解细菌的分离及特性[J].环境科学,2005,26(1):159-163
    238.赵其国,董元华.长江三角洲地区农业与环境问题及其持续发展对策[J].土壤,1996,28(2):285-289,310
    239.赵其国,骆永明.开展我国东南沿海经济快速发展地区资源与环境质量问题研究建议[J].土壤,2000,32(3):169-172
    240.赵振华.多环芳烃的环境健康化学[M].北京:中国科学技术出版社,1993
    241.赵振华.焦炉气中颗粒物的化学污染及某些生物效应[J].环境科学丛刊(增刊),1986
    242.赵作媛,朱江,陆贻通,等.镉-菲复合污染对蚯蚓急性毒性效应的研究[J].上海交通大学学报(农业科学版),2006,24(6):553-557
    243.郑一,王学军,刘瑞民,等.天津地区土壤多环芳烃的克里格插值与污染评价[J].中国环境科学,2003,23(2):113-116
    244.周保学,李金花,周筱帆,等.水溶性有机酸对萘溶解度及迁移性能的影响[J].环境化学,2005,24(6):678-681
    245.周江敏,代静玉,潘根兴.土壤中水溶性有机质的结构特征及环境意义[J].农业环境科学学报,2003,22(6):731-735
    246.周礼恺.土壤酶学[M].北京:科学出版社,1987
    247.周岩梅,刘瑞霞,汤鸿霄,等.溶解有机质在土壤及沉积物吸附多环芳烃类有机污染物过程中的作用,环境科学学报,2003,23(2):216-223
    248.朱道玉,张培玉.蒽对太平洋牡蛎不同发育时期抗氧化酶活性差异性影响[J].动物学杂志,2006,41(4):6-9
    249.朱利中.杭州市地面水中多环芳烃污染现状及风险.中国环境科学.2003,23(5):485-489
    250.朱先磊,刘维立,卢妍妍,等.焦化厂多环芳烃成分谱特征的研究[J].中国环境科学,2001,21(3):266-269
    251.祝儒刚,钟鸣,周启星.一株菲降解细菌的分离鉴定及其特性[J].应用生态学报,2006,17(11):2117-2120
    252.邹德勋,骆永明,滕应,等.多环芳烃长期污染土壤的微生物强化修复初步研究[J].土 壤,2006,38(5):652-656

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700