用户名: 密码: 验证码:
设施菜地土壤重金属的分布特征与生态风险评价研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
土壤重金属是土壤环境科学研究的重点领域,研究设施菜地土壤重金属的时空分布特征及其风险,对于设施菜地土壤环境安全及蔬菜清洁生产具有重要的理论与实践意义。本文以土壤环境化学的理论为指导,以寿光市为设施蔬菜栽培的典型区域,以人为高强度活动下的设施土壤为研究对象,在摸清设施菜地土壤重金属的时空分布特征的基础上,对土壤重金属进行了累积效应、污染风险、潜在生态风险的评价,明确了土壤重金属的不同形态与蔬菜累积之间的关系,确定了基于蔬菜质量安全的土壤重金属(镉、铅)限值;揭示了设施土壤环境质量的演变规律,明确了土壤重金属影响蔬菜安全的机理,为土壤重金属防控与设施蔬菜的清洁生产提供科学依据。主要结果如下:
     1.摸清了研究区设施菜地土壤重金属时空变化特征。随蔬菜种植年限的增长,设施土壤中的8种重金属全量、有效含量均有不同程度的增加,其活化率呈下降趋势。土壤重金属在剖面上的变化具有“表聚化”的特点,随土层深度增加,重金属全量下降,表明人为活动导致表层土壤重金属显著累积。
     2.明确了设施菜地重金属水平空间的变异特征。在乡镇区域尺度下,土壤重金属的变异系数为10.5%-87.7%。用半方差函数拟合8种重金属元素的理论模型分别为:As、Pb用指数模型,Cd、Hg、Zn用球状模型,Cr、Cu、Ni用高斯模型,决定系数R达极显著相关。As、Pb具有强空间相关性,反映出土壤母质、成土因素及土壤类型等结构性因素的影响。土壤中Cr、Cd、Cu、Zn为弱空间相关性,反映了设施菜地栽培过程中施肥、农药、耕作措施等人为活动的影响。Cr、Ni和Hg的为中等空间相关性,其空间变异是结构因素与随机因素共同作用的结果。利用Kringe插值与GIS相结合的方法,直观地表征了研究区土壤重金属的空间分布格局,不同元素的空间分布呈斑块状、条带状、散点状分布。
     3.利用重金属累积系数、污染指数对设施菜地土壤重金属进行了评价。土壤重金属的累积指数除As和Pb小于1外, Cd、Cr、Cu、Hg、Ni和Zn的单项累积指数大于1,Cd、Hg、Cu累积指数最大值分布为10.78、7.00、5.05,表现为高度积累特征。超背景值率的顺序为:Zn>Cd、Cr、Ni>Cu、Hg >As、Pb。重金属的分担率的顺序为Zn,Ni>CdCr>Hg>Cu>Pb>As。、土壤重金属的污染风险评价结果显示,Cd、Cu、Ni的超标率分别为3.31%、1.32%、22.52%,属轻度、中度污染,标率为均属轻度污染;Ni超标率为均属轻度污染。研究区151个样点中,处于清洁等级的占64.3%,处于轻、中、重度污染等级的分别占31.0 %、4.0 %、0.7%,具有土壤污染风险的占35.7%。
     4.设施菜地土壤重金属的潜在生态风险单因子平均属低值水平,由高到低的顺序为:Cd> Hg>Ni>As>Cu>Pb>Cr>Zn,土壤Cd超过可观级(Ⅲ级)水平的占2.65%。复合生态污染评价指数整体为低值风险水平(A级),高于A级的样点占3.31%,但均未超出中等风险等级。从生态风险与预警来看,单项生态风险指数具有预警风险的概率的顺序为:As、Pb>Hg>Cu>Cd>Zn>Cr>Ni;研究区综合指数有97.4%的样点处在无警级别,属于最低生态风险,有2.6%的预警级风险。
     5.采用土培和水培试验研究了设施栽培生菜和萝卜对重金属Cd、Pb的吸收和累积特征。土壤或水培溶液中的Cd和Pb对生菜和萝卜的生长具有明显的影响。随着重金属浓度的提高,生菜和萝卜的生物量表现出先升后降的趋势。土壤中Cd和Pb处于较低含量时,对蔬菜生长反而有一定的促进效果。添加外源Cd和Pb处理以后,生菜和萝卜对Cd和Pb的吸收有明显增加。生菜和萝卜可食部位的Cd含量与土壤和培养液中的Cd含量关系适宜用指数曲线进行描述;水培试验中两种蔬菜的Pb含量与培养液中的Pb含量也呈指数曲线关系,而在土培试验中生菜和萝卜可食部位Pb含量与土壤中的Pb含量只适合用线性方程表达。
     6.证明了用土壤全量作评价指标来评价菜地土壤重金属污染的传统方法存在一定局限性。根据土壤中不同形态重金属含量与蔬菜吸收累积的关系,提出了可以更好评价蔬菜重金属污染风险的指标。研究结果表明,采用土壤中的CaCl2浸提态Cd含量可以更好地评价生菜的Cd污染风险;而对于萝卜的安全生产评价,推荐使用水溶态Cd含量作为评价指标。当评价生菜和萝卜的Pb污染风险时可采用土壤中碳酸盐结合态Pb含量这一指标。
Heavy metal is the key research field in soil and environment science. The studies on temporal and spatial distributions of heavy metals in vegetable filed soil and their pollution risks are important for soil and environment safety of greenhouse soil and vegetable safe production. Based on the theories of soil and environment chemistry and the temporal and spatial distributions of heavy metals in vegetable soils, the accumulation, pollution risk, potential ecological risk and health risk were evaluated in this paper on vegetable greenhouse soils as affected by high-intensity human activities in typical region of Shouguang city, Shandong province. The relationship between heavy metal accumulation in vegetables and soil heavy metals in different forms were made clear and the threshold values of soil heavy metals for vegetable safety were brought forward. The evolutionary regularities of soil and environment quality were revealed. Also, the mechanism of soil heavy metals’effects on vegetable safety was disclosed. The whole studies provided the scientific foundation for the control of soil heavy pollution and the safe production of greenhouse vegetables.
     1. The temporal and spatial distributions of heavy metals in the soils of greenhouse vegetable fields were made clear. The results indicted that the total concentrations of 8 heavy metals or in available forms were increased with the increase of planting time, the activation rates of which had a decreasing tendency. The soil heavy metals were prone to accumulate in top layer of soil profile. With the increase of depth, the concentrations of total metals decreased due to human activites.
     2. The spatial variations of heavy metals in the soils of greenhouse vegetable fields were made definite. The CVs of soil heavy metals were 10.5%~87.7% in town scale. The theoretical models of 8 heavy metals fitted by half-variance function were as follows: exponential model for As and Pb, spherical model or Cd, Hg and Zn, Gauss model for Cr, Cu and Ni. The spatial distributions of soil heavy metal in the region were directly described using the method of associating Kringe interpolation and GIS, ie., the distributions of different elements were patchiness, stripped and scattered.
     3. The heavy metals in the soils of greenhouse vegetable fields were evaluated using accumulation index and pollution index. Except for As and Pb, the single accumulation index of Cd, Cr, Cu, Hg, Ni and Zn were above 1. The distribution of maximum accumulation index for Cd, Hg and Cu were 10.78, 7.00 and 5.05, respectively, which stands for high accumulation. Percentage of surpassing background value was in the order of Zn > Cd, Cr, Ni > Cu、Hg > As, Pb. The contributions rate of heavy metals were Zn, Ni > Cd, Cr > Hg > Cu > Pb > As. The pollution risk evaluation of soil heavy metals showed that the above-norm percentage of Cd、Cu、Ni were 3.31%, 1.32% and 22.52%, respectively. Among all the 151 experimental sites, the percentage of light, medium and heavy pollution were 31.0 %, 4.0 % and 0.7%, respectively, ie., experimental sites of 35.7% in the risk of soil pollution.
     4. The potential ecological risk single factors of greenhouse vegetable soils were averagely at low level following an order of Cd > Hg > Ni > As > Cu > Pb > Cr > Zn, 2.65% among which were above the standard of Grade-Ⅲ. The composite ecological pollution index of greenhouse vegetable soils were at low-value level (Grade-A), 3.31% among which were above the medium risk rank. Single potential ecological risk factors had the function of risk warning, the probability order of which was As,Pb > Hg > Cu > Cd > Zn > Cr > Ni. Composite index of 97.4% among experimental sites were in the rank of risk-free and that of 2.6% in the risk rank.
     5. Cadmium and Pb in soil and culture solution had significant effects on the growth of lettuce and turnip. With the increase of Cd and Pb concentrations, the biomass of lettuce and turnip increased first and then decreased. The low concentrations of Cd and Pb could enhance the growth of vegetables. The added Cd and Pb increased the concentrations of Cd and Pb in lettuce and turnip significantly. The exponential curve was suitable to describe the relationship between Cd concentration in vegetables and in soil or culture solution, the same for Pb in culture solution. However, the relationship between Pb concentration in vegetables and in soil should be described only by linear curve.
     6. The method of using total heavy content in soil to evaluate the soil heavy metal pollution was one-sided. The results indicated that CaCl2-extractable Cd in soil was a good indicator to evaluate the Cd pollution of lettuce. For the Cd pollution evaluation of turnip, water-extractable Cd in soil was more suitable. However, to evaluate the Pb pollutions of lettuce and turnip, carbonate-Pb in soil should be used respectively.
引文
白由路,李保国,胡克林.黄淮海平原土壤盐分及其组成的空间变异特征研究.土壤肥料,1999, (3): 22-26
    陈芳,蓝元华,安琼,等.长期肥料定位试验条件下土坡中重金属的含量变化.土壤,2005, 37(3): 308-311
    陈怀满著.土壤-植物系统中的重金属污染.科学出版社,1996
    陈同斌,宋波,郑袁明,等.北京市菜地土壤和蔬菜铅含量及其健康风险评估.中国农业科学,2006, 39(8): 1589-1597
    迟爱民,徐忠林.呼和浩特市蔬菜中重金属污染的研究.干旱区资源与环境, 1995, 9(1): 86-94
    单孝全,王忠文.形态分析与生物可及性.分析实验室,2001, 20(6): 103-107
    丁爱芳,潘根兴.南京城郊零散菜地土壤与蔬菜重金属含量及健康风险分析.生态环境,2003, 12(4): 409-411
    丁中元.重金属在土壤-作物中分布规律研究.环境科学,1989, 10(5): 78-84
    董占荣等.杭州市郊规模化养殖场猪粪的重金属含量及其形态.浙江农业学报,2008, 20(1): 35-39
    杜应琼,何江华,陈俊坚.铅、镉和铬在叶类蔬菜中的累积及对其生长的影响.园艺学报,2003, 30(1): 51-55
    冯恭衍,张炬.宝山区菜区土壤重金属污染的环境质量评价.上海农学院学报,1993, 11(1): 35-42
    付庆灵,胡红青,黎佳佳,等.灰潮土Cd、Pb复合污染对萝卜产量品质和矿质元素吸收的影响.农业环境科学学报,2005, 24(2): 231-235
    傅伯杰,陈利顶,马克明.黄土丘陵区小流域土地利用变化对生态环境的影响.地理学报,1999, 54(3): 241-246
    高拯民主编.土壤—植物系统污染生态研究.北京:中国科学技术出版社,1986
    龚元石,聊超子,李保国.土壤含水量和容重的空间变异及其分形特征.土壤学报,1998, 35(l): 10-15
    郭朝晖,黄昌勇.模拟酸雨对红坡中铝和水溶性有机质溶出及重金属活动性的影响.土壤学报,2003, 40(3): 380-385
    郭平,谢忠雷,康春莉,等.利用化学萃取法研究长春市土壤重金属化学形态及其影响因素.吉林大学学报(理学版),2005, (01): 116-120
    何江华,魏秀国,陈俊坚,等.广州市蔬菜地土壤-蔬菜中重金属Hg的含量及变化趋势.土壤与环境,2001, 10(4): 267-269
    何孟常,季海冰,赵承易,等.锑矿区土壤和植物中重金属污染初探.北京师范大学学报,2002;38(3): 417-420
    何孟常,王子健,汤鸿霄.乐安县沉积物重金属污染及生态风险性评价.环境科学,1999, 20(1): 7-10。
    何焰,由文辉.水环境生态风险预警评价与分析—以上海市为例.安全与环境工程,2004, 11(4): 1-4.
    何勇田,熊先哲.复合污染研究进展.环境科学,1994, 15(6): 79-83
    侯景儒,黄竞先.地质统计学的理论与方法.北京:地质出版社,1990
    胡超,付庆灵.土壤重金属污染对蔬菜发育及品质的影响之研究进展.中国农学通报,2007, 23(6): 519-523
    胡二邦.环境风险评价实用技术和方法.北京:中国环境科学出版社,1987: 1-482
    黄雅琴,杨在中.蔬菜对重金属的吸收积累特点.内蒙古大学学报,1995, 26(5): 608-615
    蒋海燕,刘敏,黄沈发,等.城市土壤污染研究现状与趋势.安全与环境与环境学报,2004, (5): 73-75
    蒋廷惠,胡霭堂,秦怀英.土壤中锌、铜、铁、锰的形态与有效性的关系.土壤通报,1989, 20(5): 228-231, 207
    金国贤,薛锐,潘春龙.植物根过滤作用对重金属的富集研究.江苏环境科技,2000,13(2): 4-6
    康绍忠.土壤水分动态的随机模拟研究.土壤学报,1990,27(1): 17-24
    李波.宁连高速公路两侧土壤和农产品中重金属污染的研究.农业环境科学学报,2005, 24(2): 266-269
    李国倜,崔慧纯,郭继孝,等.武汉市易家墩蔬菜镉污染初步研究.环境科学, 1986, 7(3): 21-24
    李红伟,李立平,邢维芹.不同小尺度下潮土重金属有效性空间变异研究.土壤,2006,38(6): 782-789
    李红伟,刑维芹,李立平.不同尺度土坡性质空间变异研究进展.河南农业科学,2006, 11: 5-8
    李菊梅,李生秀.几种营养元素在土壤中的空间变异.干旱地区农业研究,1998, 16(2):58-64
    李其林,黄昀,骆东奇.重庆市蔬菜基地土壤中重金属含量及污染特征.土壤与环境,2000, 9(4): 270-273
    李志博,骆永明,宋静,等.土壤重金属污染的生态风险评估分析:个案研究.土壤,2006, 38(5): 565-570
    梁称福,陈正法,刘明月.蔬菜重金属污染研究进展.湖南农业科学,2002, (4): 45-48
    廖敏.pH对镉在土水系统中的迁移和形态的影响.环境科学学报,1999, 19(1): 81-86
    林琦,陈怀满,郑春荣,等.根际环境中镉的形态转化.土壤学报,1998, 35(4): 461-467
    刘洪莲,李艳慧,李恋卿,等.太湖地区某地农田土壤及农产品中重金属污染及风险评价.安全与环境学报,2006, 6(5): 60-63
    刘荣乐,李书田,王秀斌等.我国商品有机肥料和有机废弃物中重金属的含量状况与分析.农业环境科学学报,2005, 24(2): 392-397
    刘霞,刘树庆,唐兆宏.河北主要土壤中Cd、Pb形态与油菜有效性的关系.生态学报,2002, 22(10): 1689-1694
    刘杏梅,徐建民,章明奎.太湖流域土壤养分空间变异特征分析—以浙江省平湖市为例.浙江大学学报,2003, 29(l): 76-82
    刘云惠,魏显有,王秀敏.土壤中铅镉的化学形态和有效态的提取和分离研究.河北农业大学学报,1998, 21(4): 44-47
    楼银林,张中俊,伍钢,等.镉在不同土壤和蔬菜中残留规律研究.环境科学学报,1990, 10(2): 153-159
    卢桂兰,韩梅,李发生.北京市通州污灌区土壤环境质量监测和蔬菜重金属污染现状研究.中国环境监测,2005, 21(5): 54-62
    鲁如坤主编.土壤农业化学分析方法.北京:中国农业科技出版社,1999
    吕军,俞劲炎.水稻土物理性质空间变异性研究.土壤学报,1990, 27(l): 8-15
    罗金发,孟维奇,夏增禄.土壤重金属(镉、铅、铜)化学形态的地理分异研究.地理研究.1998, 17(3): 266-272
    罗雪梅,陈新之,王侃,等.沈阳市蔬菜生产基地重金属污染及评价.环境保护科学,2003, 29(4): 43-45
    马往校,段敏,李岚.西安市郊区蔬菜中重金属污染分析与评价.农业环境保护,2000, 19(2): 96-98
    毛小苓,倪晋仁.生态风险评价研究述评.北京大学学报(自然科学版),2005, 41(4):646-654
    莫润苍,邹邦基.土壤锌铁铜锰形态分布及有效性.热带亚热带土壤科学.1997, 6(3): 171-175
    聂俊华,李成元.近代黄河三角洲土壤物理特性的空间变异性.山东农业大学学报,1993, 24(l): 68-72
    彭刚华.水稻土中重金属Cd的形态含量变化.福建环境,2002, 19(1): 34-35
    秦天才,吴玉树,王焕校.镉、铅及其相互作用对小白菜根系生理生态效应的研究.生态学报,1998, 18(3): 320-325
    丘孝煊,黄东风,蔡顺,等.污染调查和治理研究.福建农业学报,2000, 15(1): 16-21
    任安芝,高玉葆,刘爽.铬、镉、铅胁迫对青菜叶片几种生理生化指标的影响.应用与环境生物学报,2000, 17(2): 42-44
    任慧敏,王金达,曹会聪,等.莴笋根际土壤中铅的有效性.环境科学,2006, (08): 1559-1664
    尚爱安,刘玉荣.土壤中重金属的生物有效性研究进展,土壤,2000, 6: 294-300, 314
    邵涛,刘真,黄开明,等.金属赋存形态和生物有效性研究.中国环境科学,2000, 20(1): 57-60
    邵孝侯,邢光熹,侯文华.连续提取法区分土壤重金属元素形态的研究及其应用.土壤学进展,1994, 22(3): 40-46
    史坚,郑欧.施肥过程中的污染控制.环境污染与防治,1999, 21(3): 34-35
    孙冬韦,刘丽,郝滨.孕妇与儿童铅中毒研究进展.中华妇幼保健,2001, 16(6): 386-387
    孙羲.棉花钾素营养与土壤钾素供应水平.土壤学报,1990, 27(2): 166-171
    涂从.土壤Ni各形态的生物可利用性研究.环境科学学报,1997, 17(2): 179-186
    汪雅谷,吴其乐.上海地区绿色食品蔬菜中若干污染物容许限量的初步探讨.上海农业学报,1997, 13(3): 16-20
    汪雅谷,章国强.蔬菜区土壤镉污染及蔬菜种类选择.农业环境保护,1985, (4): 7-10
    王贵琛,赵连娣,牛文泉.灌溉水中六价铬对蔬菜生物效应的初步观察.农业环境保护,1985,4(1): 15-18
    王国庆,洛永明,宋静,等.土壤环境质量指导值与标准研究—国际动态及中国的修订考虑.土壤学报,2005, 42(4): 666-673
    王海,王春霞,王子健.太湖表层沉积物中重金属的形态分析.环境化学,2002, 21(5):430-435
    王丽凤,白俊贵.沈阳市蔬菜污染调查及防治途径研究.农业环境保护,1994, 13(2): 84-88
    王慎强,陈怀满,司友斌.我国土壤环境保护研究的回顾与展望.土壤,1999, 255-260
    王铁宇,罗维,吕永龙,等.官厅水库周边土壤重金属空间变异特征及风险分析.环境科学,2007, 28(2): 225-231
    王小骊,张永志,王钢军,等.蔬菜中有害重金属元素污染研究进展.浙江农业学报,2004, 16(5): 259-262
    王孝堂.土壤酸度对重金属形态分配的影响.土壤学报1991, 28(1): 103-107
    王新,梁仁禄,周启星.Cd-Pb复合污染在土壤-水稻系统中生态效应的研究.农村生态环境,2001, 17(2): 41-44
    王学军,李本纲,陶澎,等.土壤微量金属含量的空间分析.北京:科学出版社,2005
    王亚平,裴韬,成杭新,等.B城近郊土壤柱状剖面中重金属元素分布特征研究.矿物岩石地球化学通报,2003, 22(2): 144-148
    王永杰,贾东红,孟庆宝,等.健康风险评价中的不确定性分析.环境工程,2003, 21(6): 66-69
    王政权.地质统计学及在生态学中的应用.北京:科学出版社,1999
    吴燕玉,陈涛,张学询.沈阳张士灌区镉污染生态的研究.生态学报,1989.9(1):21-26
    武淑华,韩爱民,蔡继红.蔬菜中重金属含量与土壤质量的关系.长江蔬菜,2002,(学术专刊): 41-43
    夏汉平.土壤植物系统中的镉研究进展.应用与环境生物学报,1997, 3(3): 289-298
    夏家淇.土壤环境质量标准详解.北京:中国环境科学出版社,1996
    夏增禄,蔡士悦,许嘉琳,等.中国土壤环境容量.北京:地震出版社,1992, 238
    夏增禄,穆从如.Cd、Zn、Pb及其互相作用对烟草、小麦的影响.生态学报,1984, 4(3): 231-235
    谢建治,刘树庆,刘玉柱,高如泰.保定市郊土壤重金属污染对蔬菜营养品质的影响.农业环境保护,2002, 21(4): 325-327
    谢正苗,李静,徐建明,等.杭州市郊蔬菜基地土壤和蔬菜中Pb、Zn和Cu含量的环境质量评价.环境科学,2006, 27(4): 742-747
    许炼烽,郝兴仁,冯显湘.城市蔬菜的重金属污染及其对策.生态学报,2000, 19(1): 80-85
    许学宏,纪从亮.江苏蔬菜产地土壤重金属污染现状调查与评价.农村生态环境,2005,21(1): 35-37
    宣昊,滕彦国,倪师军,等.基于地球化学基线的土壤重金属污染潜在生态风险评价.矿物岩石,2005, 25(4): 69-72
    薛艳,沈振国,周东美.蔬菜对土壤重金属吸收的差异与机理.土壤,2005, 37(1): 32-36
    严健汉,詹重慈.环境土壤学.武昌:华中师范大学出版社,1985, 310-328
    杨金凤,卜玉山,郭小燕.土壤外源镉、铅污染对油菜生长的影响.陕西农业科学研究,2005, 3: 25-28
    余贵芬.腐殖酸对红壤中铅镉赋存形态及活性的影响.环境科学学报,2002, 22(4): 508-513
    张朝生,陶澎,袁贵平,等.天津市平原土壤微量元素含量的空间自相关研究.土壤学报,1995, 32(l): 50-57
    张德纯,刘肃,钱洪.浅析我国蔬菜产品安全质量标准.中国农业科技导报,2002, 4(5): 15-21
    张乃明.大气沉降对土壤重金属累积的影响.土壤与环境,2001, 10(2): 91-93
    张亚丽.有机肥料对镉污染土壤的改良效应.土壤学报, 2001, 38(2): 213-218
    赵肖,张娅兰,李适宇.滴滴涕对太湖经济鱼类危害的生态风险.生态学杂志,2008, (02): 295-299
    赵雪雁.西北干旱区城市化进程中的生态预警初探.干旱区资源与环境,2004, 18(6): 1-5.
    赵永存,汪景宽,王铁宇等.吉林公主岭土壤中砷、铬和锌含量的空间变异性及分布规律研究.土壤通报,2002, 33(5): 372-376
    赵勇,李红娟,孙治强.土壤、蔬菜Cd污染相关性分析与土壤污染阈值研究.农业工程学报,2006, 22(7): 149-152
    郑袁明,陈煌,陈同斌等.北京市土壤中Cr、Ni含量的空间结构与分布特征.第四纪研究,2003, 23(4): 436-445
    中国环境监测总站.中国土壤元素背景值.北京:中国环境科学出版社,1990
    周慈珍,龚子同.土壤空间变异性研究.土壤学报,1996, 33(3): 232-241
    周根娣,汪雅谷,卢善玲.上海市农畜产品有害物质残留调查.上海农业学报,1994, 10(2): 45-48
    周国华,刘占元.区域土壤环境地球化学研究—异常成因判别环境质量、污染程度评价的思路与方法.物探与化探,2003, 27(3): 223-226
    周国华,郑文,刘占元,等.平原区中大比例尺土壤地球化学调查采样方法—浙江省平湖市试验研究.第四纪研究,2005, 25(3): 306-314
    周艺敏,张金盛.天津市园田土壤和几种蔬菜中的重金属含量状况的调查研究.农业环境保护,1990, 9(6): 30-34
    朱维晃,杨元根,毕华,等.海南土壤中Zn、Pb、Cu、Cd四种重金属含量及其生物有效性的研究.2004, 24(3): 239-244
    朱元洪等.施肥和土壤养分对毛竹笋营养成分的影响.土壤学报,1991, 28(l): 40-49
    祖艳群,李元,陈海燕,等.昆明市蔬菜及其土壤中铅、镉、铜和锌含量水平及污染评价.云南环境科学,2003, 22(增刊): 55-57
    左伟,王桥,王文杰,等.区域生态风险评价指标与标准研究.地理学与国土研究,2002, 18(1): 67-71
    Yusuf A.A., Arowolo T.A. and Bamgbose O. Cadmium, copper and nick levels in vegetables from industrial and residential areas of Lago City, Nigeria. Food and Chemical Toxicology, 2003, 41: 375-378
    Adriao D. C. Trace elements in the terrestrial environment. New York: Springer-verlag, Inc., 1-21, 107-154. 1986
    Assadian N.W., Esparra L.C., et al. Spatial variability of heavy metals in irrigation alfalfa field in the upper Rio Grand River basin. Agricultural Water Management. 1998, (36): 141-156
    Baveye P., Murray B., McBride M.B., Bouldin D., et al. Mass balance and distribution of sludge-borne trace elements in a silt loam soi1 following long -term applications of sewage sludge . The Science of the Total Environment , 1999, 227(l): 13-28
    Bloemcn M, Bernd M. and Helmut L. The distribution of Cd, Cu, Pb and Zn in topsoils of, in relation to land use. Science of The Total Environment ,1995. 166(l-3): 137-148
    Burgos P., Engracia M., Alfredo P., et al. Spatial variability of the chemical characteristics of a trace-element-contaminated soi1 before and after remediation, Geoderma, 2005. In Press, Corrected Proof
    Burrough P. Soil variability: a late 20th century view. Soils and Fertilizers, 1993, 56(5): 529-562
    Chen Huaiman, Zheng Chunrong and Wang Shenqiang. Combined Pollution andPollution Index of Heavy Metals in Red Soil. Pedosphere, 2000, 10(2) : 117-124
    Dach J. and Dick S. Heavy metals balance in Polish and Dutch agronomy: Actual state and previsions for the future. Agriculture, Ecosystems & Environment, 2005, 107 (4): 309 -316
    De G., Peijnenburg A.C. van den Hoop W.J.G.M., Ritsema R. and van Veen RPM. 1998. Heavy metals in Dutch field soils: An experimental and theoretical study on equilibrium partitioning. Rep. 607220-001; RIVM, Bilthoven, The Netherlands, 1998
    Dudka S.Accumulation of potentially toxic elements in plants an d their transfer to human food chain.Journal of Environment Science and Health,l999, B34(4): 68l-708
    Facchinclli A. Sacchi E. and Mallen L. Multivariate statistical and GIS–based approach to identify heavy metal sources in soils. Environmenta1 Pollution, 2001, 1l4(3): 313-324
    Fotovat A. Nardu R. changes in composition of soil aqueous phase influence chemistry of indigenous heavy metals in alkaline sodic and acidic soils.Geoderma, 1998, 84: 213-234
    Fytianos K., Katsianis G., et al.Accumulation of Heavy Metals in Vegetables Grown in an Industrial Arean in Relation to Soil.Bull.Environ.Contam.Toxicol., 2001.67:423-430
    Gupate. Concentration of ionic copper in soil solution. Intern. Envirort. Anal. Chem, 1988, 34: 45-50
    Gupta V.K., Singh C.P. and Relan P.S. Effect of Zn-enriched organic manures on Zn nutrition of wheat and residual effect on soyabean. Bioresource Technology, 1992, 42(2): 155-157
    Hakanson L. An ecological risk index for quality pollution control: asediment ecological approach. Water Res., 1980, 14: 975-1001
    Hakanson L. An ecological risk index for aquatic pollution control-A sediment ecological app roach.Water Research, 1980, 14: 975-1000
    Isabel C., Carlos V., and Fernando C. Accumulation of Zn, Pb, Cu, Cr and Ni in Sediments between Roots of the Tagus Estuary Salt Marshes, Protugal .Estuarine Coastal and Shelf Science, 1996, (42) : 393-403
    Jopony M., Young S.D. The solid-solution equilibria of lead and cadmium in polluted soils .European Journal of Soil Science, 1994, 45: 59-70
    Joshua W. D., Michalk, D.L. Curtis I.H. et al. The potential for contamination of soi1 and surface waters from sewage sludge (biosolids) in a sheep grazing study , Australia . Geoderma , 1998. 84 (l-3);135-156
    Kelly J. and Tate R. Effect of heavy metal contamination and remediation on soil microbial communities in the vicinity of a zinc smelter. Environmental quality, 1998, 27(3): 609-617
    Lacatusu R., Rauta C., Carstea S, et al. Soil-plant-man relationships in heavy metal polluted areas in Romania. Applied Geochemistry, 1996, 11: 105-107
    Lee S.Z., Allen H.E., Huang C.P., Sparks D.L., Sanders P.F. and Peijnenburg W.J.G.M.Predicting Soil-Water Partition Coefficients for Cadmium. Environ. Sci. Technol., 1996, 30: 3418-3424
    Long C., Wang Y.J., Zhou D.M., et al . Heavy metals pollution in poultry and livestock feeds and manures under intensive farming in Jiangsu Province. China Joumal of Environmental Sciences, 2004, 16(3) : 371-374
    Mcbride M.B., Nibarger E.A. Trace metal accumulate by red clover grown on sewage-amended soil and correlation to mehlich 3 and calcium chloride-extractable metals.Soil Science, 2003, 168(l): 29-38
    Marinussen M.P.J.C, Sjoerd E.A.T.M. and van der Zee.Conceptual approach to estimating the effect of home-range size on the exposure of organisms to spatially variable soil contamination.Ecological Modelling, 1996, 87: 83-89
    Maskell, J.E and Thornton I. Chemical partitioning of heavy metals in soil rock at historical lead smelter site. Water Air Soil Pollut., 1998, 108: 391-409
    McBride M., SauvéS. and Hendershot W. Solubility control of Cu, Zn, Cd and Pb in contaminated soils. Eur. J. Soil Sci., 1997, 48: 337-346
    McBirde M. Solubility control of Cu, Zn, Cd, Pb in contaminated soils. Eur. J. Soil Sic., 1997, 48: 337-346
    Michalik B. Intevnational symposium on quality of fruit and vegetables influence of post-harvest fact or sand technology, Chania, Greece. Acta-Horticulturae, 1995, 379: 213-219
    Oehme J.S. Toxicity of the heavy metals in environment. New York: Dekker Jne. 1978, 199-260
    Rapant S. and Kordik J. An environmental risk assessment map of the Slovak Republic: Application of data from geochemical atlases. Environmental Geology, 2003, 44(4): 400-407.
    Sauve. Linking plant tissue concentrations and soil copper pools in urban contaminated soils. Environ. Pollut, 1996, 94: 153-157
    SauvéS., McBride M.B., Norvell WA et al. Copper solubility and speciation of in situ contaminated soils: effects of copper level,pH and organic matter.Water Air Soil Pollu, 1997, 100: 133-149
    SauvèS. Chemical speciation, solubility and bioavailability of lead, copper and cadmium in contaminated soils. Ph.D. Dissertation. Cornell University, 1999
    Schirado, T. Evidence for movement of heavy metals in a soil irrigated with untreatedwastewater. J. Environ. Qual., 1986, 15: 9-12
    Shukurov No., Stanislav P. and Yosef S.. The impact of the Almalyk Industrial Complex on soil chemical and biological properties.Environmental Pollution , 2005, 136(2): 331-340
    Singh S. P., Tack M. C. and Verloo M. G. Extractability and bioavailability of heavy metals in surface soils derived from dredged sediments.Chemical Speciation and Bioavailability, 1996.8 (3/4): 105-110
    TarvainenT, Kallio E.Baselines of certain bioavailable and total heavy metal concentrations in Finland.Applied Geochemistry, 2002., 17: 975-980
    Tarvainen T. and Kallio E.Baselines of certain bioavailable and total heavy metal concentrations in Finland.Applied Geochemistry, 2002, 17: 975-980
    Tessier A., Campbell P.G.C. and Bisson M. Sequential extraction procedure for the speciation of particulate trace metals. Anal Chem,, 1979, 51(7): 844-851
    U.S. EPA. Framework for Ecological Risk Assessment. U.S. Environmental Protection Agency. EPA/630/R-92/001. Washington,DC. 1992
    Waller P.A. and Pickering W.P.. Effect of time and pH on the lability of copper and znic sorbed on humic acid particales.Chem.Speciation Bioavailability, 1992, 4: 29-41
    Webstor R. and O1iver M. Geostastics for environmental scientists ,New York: Wiley. 2001
    Williams, D. E., et al. Metal movement in sludge-amended soils,Soil Sci. 1987.143:124-131
    Yao T.T. Nonparametric cross–covariance modeling as examplified by soi1 heavy metal concentrations from the Swiss Jura. Geodernma, 1999, 88(l-2): 13-38
    Yusuf A.A., Arowolo T.A. and Bamgbose O. Cadmium, copper and nickel levels in vegetables from industrial and residential areas of Lagos city, Nigeria. Food and Chemical Toxicology, 2003, 41: 375-378
    Zhang C. S, Selinus O. Statistics and GIS in environmental geochemistry--some problems and solutions. Joumal of Geochemical Exploration,1998. 64(1): 339-354
    Zhu B. and Alva A.K. Differential adsorption of trace metals by soils as influenced by exchangeable cation and ionic strength .Soil Sci, 1993, 155: 61-67.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700