用户名: 密码: 验证码:
鱼类对热带浅水湖泊的影响及其在湖泊修复中的意义
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着我国人口的不断增加,人类对环境的干扰也日益加剧,富营养化已经成为影响湖泊水质和湖泊生态系统稳定的主要问题。无论是外源营养负荷的削减,还是各种除藻措施的实行,都不能在大型水域取得良好而持久的效果。而生物操纵理论以及相关生物修复理论的实践与运用为治理富营养化湖泊开辟了一个崭新的途径。就目前国内外的资料来看,较成功的实例主要集中在温带湖泊,而对于热带湖泊在这一理论的探索和研究尚处于起步阶段。鱼类是湖泊生态系统的重要生物因子之一,对湖泊生态系统的影响主要通过摄食行为、营养盐(物)的排泄、对沉积物的扰动等机制实现。鲤鱼是热带、亚热带水域中普遍养殖的一种鱼类,其作为生物操纵中的一个关键环节正日益受到研究者的关注。
     论文选择位于南亚热带的浅水城市湖泊—惠州南湖,进行鲤鱼围隔实验和去除鱼类的全湖实验,以鲤鱼对南湖底质扰动所造成的沉积物再悬浮为核心,首次较为系统地研究了鲤鱼对湖泊营养盐水平、浮游植物生产力、浮游动物种类组成和数量等方面的生态效应,探讨了底栖性鲤鱼在热带浅水富营养化湖泊生态系统的作用。主要研究结果如下:
     1)围隔实验
     鲤鱼围隔氮和磷营养盐浓度均呈下降趋势。在鲤鱼围隔实验初期,有鱼围隔和无鱼围隔总氮、颗粒氮的含量变化不明显,二者差异不大,且均浓度呈下降趋势。但随着时间的延续,鲤鱼围隔组总氮呈波动性下降趋势,与对照组相比,差异显著(p=0.035,a=0.05),颗粒氮,下降更明显,差异显著(p=0.032,a=0.05)。实验前期鲤鱼围隔组总磷、颗粒磷均有明显上升趋势,显著高于对照组,实验中后期鲤鱼围隔组总磷、颗粒磷均低于对照组,但差异不显著(p=0.121,p=0.077)。
     围隔中浮游植物生物量变化趋势与系统中的磷营养盐变化趋势具有较明显的吻合现象,在初期鲤鱼围隔组高于对照组,且差异显著(p=0.049;a=0.05),在后期鲤鱼围隔组的却低于对照组,但其差异不显著(p=0.162;a=0.05);悬浮物呈上升趋势,与对照组相比,差异显著(p=0.049,a=0.05),无鱼围隔悬浮物在实验期间浓度变化不大。鲤鱼围隔水体透明度呈显著下降趋势,无鱼围隔透明度在初期下降,后期透明度呈上升趋势,有鱼与无鱼比较,差异显著(p=0.012,a=0.05)。透明度与悬浮物呈显著负相关。鲤鱼围隔和无鱼围隔在实验期间有机物烧失量总体上呈上升趋势,与对照组相比,差异不显著(p=0.697,a=0.05)。鲤鱼围隔捕捉器沉积物平均沉积率为269.21DWg m~(-2)d~(-1),无鱼围隔捕捉器沉积物平均沉积率为9.41gDW m~(-2)d~(-1),前者是后者的28倍。比较捕捉器沉积物有机、无机组分,鲤鱼围隔无机质成分高,无鱼围隔有机质成分高。表明鲤鱼的扰动对水体底质扰动产生的再悬浮十分显著。
     2)鱼类清除实验
     南湖鱼类去除的全湖实验表明,去鱼后水体氮和磷营养盐呈上升趋势,总氮从去鱼前的0.65mg L~(-1)上升到实验结束时的2.06mg L~(-1),总磷从去鱼前的0.11mg L~(-1)上升到实验结束时的0.18mg L~(-1)。去鱼后水体悬浮物和悬浮物中有机质烧失量均呈波动增高趋势,悬浮物从除鱼前的21.5mg L~(-1)上升到到实验结束时的34.7mg L~(-1),有机质烧失量从除鱼前的11.17mg L~(-1)上升到到实验结束时的20.83mg L~(-1)。悬浮物变化曲线与有机物烧失量变化曲线同步变化。叶绿素-a呈明显增长趋势,从开始时的20.3μg L~(-1)到实验中后期的99.7μg L~(-1),但在实验末期时为64.7μg L~(-1)。南湖水体透明度从鱼类清除前的33cm下降到实验后期的23cm。轮虫数量呈波动下降趋势,南湖枝角类变化不明显,桡足类、无节幼体、桡足幼体数量均呈上升趋势。鱼类摄食压力消失后,桡足类数量在短时间内大量增加。
     南湖实验表明,鲤鱼造成围隔水体悬浮物浓度增加,特别是无机类悬浮物显著增高,透明度下降,水体呈混黄态,但鱼类去除又提高了透明度,促进浮游植物生长,又致使水体透明度降低,水体仍呈浅绿色。因此,在南亚热带浅水性南湖的水质管理中,在外源污染负荷得到控制之后,仅靠改变鱼类种类和数量的调控手段来改善水质是不可行的,还必须结合沉水植物恢复等手段方能建立和维持湖泊的长期清水态。
Human inputs of nutrients have accelerated the eutrophication of lakes.Eutrophication is a serious problem to many lake ecosystems.Though measures by reducing external nutrient loading and algae biomass removal etc.have been taken,the transparency of lakes is still low. Biomanipulation defined as re-structuring of the biological community to achieve a favourable response,usually leads to reduction in algae biomass,shifting to a clear water state and promotion of a diverse biological community.The term is typically applied to top-down manipulation of fish communities,i.e.enhancement of piscivores or reduction of zooplanktivores and/or benthivores.Until now,the successful cases have been reported in temperate lakes and no application has been done in tropical regions.
     Fish is an important component of aquatic ecosystems.Bethivorous fish have direct/indirect effect on lake ecolosystems via both predation,and nutrient excretion,and sediment resuspension.The aim of this study was to evaluate effects of fish on shallow lake ecosystems in tropical region.
     Enclosure experiments were carried out from August 29 to November 6,2007 in a shallow and eutrophic lake Huizhou West Lake in southern tropic region,Guangdong Province, China.Nanhu is one of the sub-lakes in West Lake,its mean depth is 1.8 m and 12 ha~(-1), stocking in high density(2471.1 kg ha~(-1)) of fish including Tilapias niloticus、Cyprinus carpio、Cirrihia molitorella、Carassius carassius、Hypphthalmichthys molitri and Aristichthys nobilis. Six enclosures,three enclosure stocking 15 Cyprinus carpio and three enclosure without fish as control,were set up.
     During the fish-enclosure experiment period,total nitrogen(TN) and particulate nitrogen (PN) declined,from 1.67mg L~(-1),0.91mg L~(-1)at beginning of the experiment August 8 to 0.92 mg L~(-1),0.20 mg L~(-1) at the ending of the experiment November 6,significantly different from fish-free enclosure(TN p=0.035,a=0.05,PN p=0.032,a=0.05).Total phosphorus(TP) and particulate phosphorus(PP) increased at the beginning of the experiment,then declined, from 0.10 mg L~(-1),0.091 mg L~(-1)at beginning of the experiment August to 0.05 mg L~(-1),0.04 mg L~(-1),significantly different from fish-free enclosure(TPp=0.001,a=0.05,PP p=0.007;a= 0.05).Suspended solids(SS) in fish-enclosure increased from 11.00 mg L~(-1) to 19.75 mg L~(-1), and SS in fish-free enclosure was significantly lower than fish-free enclosure(p = 0.049,a = 0.05).
     Sedimentation rate was measured using 6 traps made of plastic tubes(diameter 6 cm;total height 30cm) placed in each enclosure on 29 August,2007.The traps were recovered on 10 and 17 November,2007.Sedimentation rate in fish-enclosure(269.21DWg m~(-2) d~(-1)) is significantly higher than that in fish-free enclosure(9.41gDW m~(-2) d~(-1)).
     Secchi depth(SD) was found to exhibit an opposite trend,SD in the fish-enclosure declined from 55.3 cm at the begging of the experiment to 40.3 cm at the end of the experiment, in contrast SD in fish- free enclosure increased from 60 cm to 82 cm,the difference between fish- and fish-free enclosure is significant(p=0.012,a=0.05).
     We also evaluated the response of a whole lake to fish removal.Fish were removed from Nanhu on 9 May to 31 July.The concentrations of TN、PN、TN、PP、SS and Chl-a of Nanhu increased:Chl-a rapidly ranged from 20.34 um L~(-1) at the beginning of fish removal 9 May, 2007 to 93.11 um L~(-1) on 21 June,2007.Meanwhile metazoan zooplankton spieces and abundance dramatic changed.The abundance of rotifers declined from 1022.5 ind.L~(-1)(9 May, 2007) to 216.6 ind L~(-1)(14 July,2007).The abundance of copepods increased from 1.1 ind·L~(-1) to 60.5 ind L~(-1),nauplii increased from 42.5 ind·L~(-1) to 55.0 ind L~(-1),copepods increased from 8.2 ind·L~(-1) to 191.1 ind L~(-1).These changes are likely due to decrease in predation after fish removal.
     This study suggests that stocking bethivorous fish such as carp may stir up sediment and lead to turbid water.Fish removal can improve transparency in a short term as increased algal biomass reduces water transparency and becomes turbid again.In order to establish a clear water state,it needs to combine fish removal with aquatic macrophyte restoration..
引文
[1]Andersson G,Berggren H,Cronberg G.Effects of planktivorous and benthivorous fish on organisms and water chemistry in eutrophic lakes.Hydrobiologia,1978,59:9-15
    [2]Arcifa M S,Northeote TG,Froehlich O.Fish-zooplankton interactions and their effects on water quality of a tropical Brazilian reservoir.Hydrobiologia,1986,139:49-58
    [3]Attayde J L,Hansson L A.Nutrient recycling by zooplnakton and fish and its effects on algal communities in laboratory microcosms.Oecologia,1999,121:47-54
    [4]Attayde J L,Hansson L A.Fish-mediated nutrient recycling and the trophic cascade in lakes.Canadian Journal of Fisheries and Aquatic Sciences,2001,58:1-8.
    [5]Bachmann R W,Horsburgh C A,Hoyer M V,et al.Relations between trophic state indicators and plant biomass in Florida lakes.Hydrobiologia,2002,470:219-234
    [6]Banse K.Rates of growth,respiration and photosynthesis of unicellular algae as related to cell size - a review[J].J Phycol,1976,12:135-140
    [7]Bekliogiu M,Ince O,Tuzun I.Restoration of the eutrophic Lake Eymir,Turkey,by biomanipulation after a major external nutrient control.Hydrobiologia,2003,490:93-105
    [8]Benndorf J,Kneschke H,Kossatz K.Manipulation of the pelagic food web by stocking predacious fishes.Int Revue ges Hydrobiol,1984,69:407-428
    [9]Berg S,Jeppesen E,Sondergaard M.Environmental Effects of Introducing Whitefish,Coregonus lavaretus(L),in Lake Ring.Hydrobiologia,1994,276:71-79
    [10]Bergman E,Hamrin S F,Romare P.The effects of cyprinid reduction on the fish community.Hydrobioiogia,1999,404:65-75.
    [11]Bergman E.Foraging Abilities and Niche Breadths of Two Percids,Perca fluviatilis and Gynmocephalus cernua,Under Different Environmental Conditions.The Journal of Animal Ecology,1988,57(2):443-453
    [12]Boer P,Ballegooijen L V,Uunk J.Changes in phoshorus cycling in a shallow lake due to food web manipulations. Freshwater biology, 1991,25: 9-20
    [13] Boruckij E V. Feeding of Hypophthalmichthys molitrix. (Val.) and Aristichthys nobilis (Val.) in natural waters of Soviet Union. [Pitanie belogo (Hypophthalmichthys molitrix(val.)) I pestrogo (Aristichthys nobilis (Val.)) tolstolovbikov vestestbennych bodoemachi I prudach SSSR] In: G. V. Nikolskij& P. L. Pirozniikov (eds) Trofologia vodnych zivotnych. Itogi I zadaci. Izdattelstvo 'Nauka', Moskva, 1973:299-322
    [14] Bowen S H. Feeding, digestion and growth-qualitative considerations. In: PullinRSV, Lowe-McConnell R H. The Biology and Culture of Tilapias. 1983, 141-156
    [15] Branco C W C, Rocha M-I, Pinto G F S, et al. limnological features of Funil Reservoir(Brazil R J)and indicator properties of rotifers and cladocerans of the zooplankton community. Lakes & Reservoirs: Research and Management, 2002, 7: 87-92
    [16] Brooks J, Dodson S. Predation, body size and composition of plankton. Science, 1965, 150: 28-35
    [17] Carpenter S R, Kitchell J F, Hodgson J R, Cochran P A, Elser M M, Lodge D M, Kretchmer D, He X, von Ende C N. Regulation of lake primary productivity by food web structure. Ecology, 1987,68:1863-1876.
    [18] Carpenter S R, Kitchell J F, Hodgson J R. Cascading trophic interactions and lake productivity. Bioscience, 1985, 35: 634-639
    [19] Carpenter S R, Kitchell J F. Consumer control of lake productivity. Bioscience, 1988(38): 764-769
    [20] Carpenter S R, Lodge D M. Effects of submerged macrophytes on ecosystem processes. Aquat Bot, 1986, 26: 341-370
    [21] Carruthers A D. Effects of silver carp on blue-green algal blooms in Lake Orakai. New Zealand Ministry of Agriculture and Fisheries, fisheries environmental report, 1986, 68:63
    [22] Confer J L , Blades P I. Omnivorous zooplankton and planktiorous fish. Limnol. Oceanogr, 1975,20:571-579
    [23] Crisman T L, Reaver I R. Applicability of planktonic biomanipulation: for managing eutrophication in the subtrophics. Hydrobilogia, 1990, 200/201:177-185
    [24] Dawidowicz P, Pijanowska J. Population dynamics in cladoceran zooplankton in the presence and absence of fishes. J Plankton Res, 1984, 6: 55-60
    [25] De Bernardi R, Giussani G, Manca M. Cladocera: Predators and prey. Hydrobiologia, 1987, 145:225-243
    [26] Drenner R W, Lazzaro X, Kettle D. Particle grazing and plankton community impact of an omnivorous cichlid. Trans Am Fish Soc, 1984,113: 397-402
    
    [27] Dumont H J. On the diversity of the Cladocera in the tropics. Hydrobiologia, 1994, 272: 27-38
    [28] Duncan T K. Life History of Almyracuma proximoculi Jones and Burbanck, 1959 (Crustacea: Cumacea) from Intertidal Fresh-Water Springs on Cape Cod, Massachusetts.Journal of Crustacean Biology, 1984,4 (3): 356-374
    [29] Fancett M S, Kimmerrer W J. Vertical migration of the demersal copepod Pseudodiaptomus as a means of predator avoidance. J Exp Mar Biol Ecol, 1985, 88(1): 31-43
    [30] Fernando C H, Tudorancea C, Mengeston S. Invertebrate zooplankton predator composition and diversity in tropical lentic waters. Hydrobiologia, 1990, 198:13-31
    [31] Fernando C H. Zooplankton, fish and fisheries in tropical freshwaters. Hydrobiologia, 1994, 272: 105-140
    [32] Frank C J M R, Miquel L, Hanneke V, et al. Resuspension of algal cells by benthivorous fish boosts phytoplankton biomass and alters community structure in shallow lakes. Freshwater Biology, 2007, 52, 977-987
    [33] Garcia P R, Nandini S, Sarma S S S, et al. Seasonal variations of zooplankton abundance in the freshwater reservoir Vallo de Bravo(Mexico). Hydrobiologia, 2002,467:99-108
    [34] Giliwcz Z M, Pijanowska J. The role of predation in zooplankton succession. In Sommer U. (ed): Plankton Ecology. Springer-Verlag. 1989:253-296
    
    [35] Glasser J W. The effect of predation on prey resource utilization. Ecology, 1978, 59: 724-732
    [36] Glasser J W. The role of predation in shaping and maintain-. ing the structure ofcommunities. Am Nat, 1979,113:631-641
    
    [37] Gliwicz ZM.A Lunar Cycle in Zooplankton .Ecology, 1986, 67(4): 883-897
    [38] Gophen M. Summary of the Workshop on Perspectives of Biomanipulation in Inland Waters. Hydrobiologia, 1990,191(FEB): 315-318
    
    [39] Harper D . Eutrophication of Freshwater. London:Chapman & Hall. 1992,44-231
    [40] Havens K E. Fish-induced sediment resuspension effects on phytoplankton biomass and community structure in a shallow hypereutrophic lake. Journal of Plankton Research, 1991, 13: 1163-1176
    [41] Herzig A. Leptodora kindti: efficient predator and preferred prey item in Neusiedler See, Austria. Hydrobiologia, 1995, 307: 273-282
    [42] Hillbricht-Ilkowska A, Weglenska T. Experimentally increased fish stock in the pond type Lake Warniak. VII. Numbers, biomass and production of zooplankton. Ekol Pol, 1973, 21: 533-552
    [43] Hosper S H, Jagtman E. Biomanipulation additional to nutrient control for restoration of shallow lakes in the Netherlands. Hydrobiologia, 1990,200/201:523-524
    [44] Hrbacek J, Dvorakova M, V Korinek, et al. Demonstration of the effect of fish stock on the species composition and the density of metabolism of the whole plankton association. Verh Int Ver Limnol. 1961, 14: 192-195
    [45] Hurlbert S H. Ecosystem alteration by mosquito fish (Gambasia affinis) predation. Science, 1972,175:639-641
    [46] Hurlbert W H, Mulla M S. Impacts of mosquito fish (Gambusia affinis) predation on plankton communities. Hydrobiologia, 1981, 83: 125-151
    [47] Jacobsen L, Perrow M R, Landkildehus F, et al. Interactions between piscivores, zooplanktivores and zooplankton in submerged macrophytes: preliminary observations from enclosure and pond experiments .Hydrobiologia, 1997, 342/343:197-205.
    [48] Janusko M. The effect of three species of phytophagous fish on algal development. Fol. Arch. Hydrobiol, 1974,21:431-454
    [49] Jeppesen E M, S?ndergaard N, Mazzeo M, et al. Lake restoration and biomanipulation in temperate lakes: relevance for subtropical and tropical lakes. Chapter 11 in: (Ed. M.V. Reddy), Tropical eutrophic lakes: their restoration and management: 2005: 331-359.
    [50] Jeppesen E, Sondergaard M, Mortensen E, et al. Fish manipulation as a lake restoration tool in shallow,eutrophic temperate lakes 1 xross-analysis of three Danish case-studies, Hydrobiologia, 1990,00/201:205-218
    [51] Kairesalo T, Laine S, Luokkanen E, et al. Direct and indirect mechanisms behind successful biomanipulation. Hydrobiologia, 1999,395/396:99-106,
    [52] Kajak Z, Rybak J, Spodniewska I, et al. Influence of the planktivorous fish, Hypophthalmichthys molitrix, on the plankton and benthos of the eutrophic lake. Pol Arch Hydrobiol, 1975, 22: 301-310
    [53] Kajke Z, Spodniewska I, Wisniewski R J. Studies on food selectivity of silver carp, Hypophthalmichthys militrix (Vol.). Ekol pol, 1977,25:227-239
    [54] Kaufman L. Catastriphic change in species-rich freshwater ecosystems: the lessons of Lake Victoria. Bioscience, 1992,42: 846-858
    [55] Krylov P I. Density-dependent predation of Chaoborus flavicans on Daphnia Longispina in a small lake: the effect of prey size. Hydrobiologia, 1992, 239:131-140
    [56] Kurmayer R, Wanzenboeck J. Top- down effects of underyearling fish on a phytoplankton community. Fresh Wat Biol, 1996, 36(3): 599-609
    [57] Lair N. Effects of invertebrate predation on the seasonal succession of a zooplankton community: a two year study in lake Aydat, France. Hydrobiologia, 1990,198:1-12
    [58] Lamarra V. Digestive Activities of Carp as a Major Contributor to the Nutrient Loading of Lakes. Verh Internat Verein Limnol, 1975,19: 2461-2468
    [59] Langeland A, Koksvik J I, OLSEN Y, et al. Limnocorral experiments in a eutrophic lake-effects of fish on the planktonic and chemical conditions. Pol. Arch. Hydrobiologia, 1987, 34: 51-65.
    [60] Lazzaro X, Bouvy M, Ribeiro-Filho R A. et al. Do fish regulate phytoplankton in shallow eutrophic Northeast Brazilian reservoirs? . Freshwater Biology, 2003,48: 648-668.
    [61] Lazzaro X, Drenner R W, Stein R A, et al. Planktivores and plankton dynamics:Effects of fish biomass and planktivore type. Canadian Journal of Fisheries and Aquatic Sciences, 1992, 49: 145-154
    [62] Lazzaro X. A review of planktivorous fishes: their evolution, feeding behaviors, selectivities, and impacts. Hydrobiologia, 1987(146): 97-167
    [63] Lazzaro X. Do the trophic cascade hypothesis and classical biomanipulation approaches apply to tropical lakes and reservoirs? Verh Int Ver Limnol, 1997, 26: 719-730
    [64] Lewis W M Jr. Tropical limnology.Ann Rev Ecol Syst, 1987,18:159-84
    [65] Lewis W M Jr.Tropical lakes: how latitude makes a different. In: Schiemer F, Boland K T (eds)Perspectives in tropical limnology, pp. 43-64. SPB Academic Publishing bv, Amsterdam, The Netherlands, 1996
    [66] Lieschke J A, Closs G P. Regulation of zooplankton composition and distribution by a zooplanktivorous fish in a shallow, eutrophic floodplain lake in south east Australia. Archiv fur Hydrobiologie 1999,146: 397-412
    [67] Liu J K, Xie P. Enclosure experiments on and lacustrine practice for eliminating Microcystis bloom. Chin J Oceanogr Limnol, 2002,20:113-117.
    [68] Lu K H, Jin C H, Dong S L, et al. Feeding and control of blue-green algal blooms by tilapia (Oreochromis niloticus). Hydrobiologia, 2006, 568:111-120
    [69] Lynch M, Shapiro J. Predation, enrichment, and phytoplankton community structure Limnol. Oceanogr. 1981, 26(1): 86-102
    [70] Lynch M. Predation, competition, and zooplankton community structure. Limnol Oceanogr, 1979, 24:253-272
    [71] Lynch M. The evolution of cladoceran life histories. Quarterly Review of Biology, 1980, 55: 23-42
    [72] Matthews W J. Patterns in Freshwater Fish Ecology. New York; Kluwer Academic Publishers: 1998
    [73] Mavuti K M. Ecology and role of zooplankton in the fishery of Lake Naivasha. Hydrobiologia, 1990,208:131-140.
    [74] McQueen D J, Post J R, Mills E L. Trophic relationships in freshwater pelagic ecosystems. Canadian Journal of Fisheries and Aquatic Sciences, 1986, 35:1571- 1581
    [75] Meijer M L, Raat A J P, Doef R W. Restoration by biomanipulation of the dutch shallow, eutrophic lake Bleiswijkse zoom:first results. Hydrobiologic bulletin, 1989, 23: 49-57
    [76] Miracle M R. Niche structure in freshwater zooplankton: a principal component approach. Ecology, 1974,55:1306-1316
    [77] Miura T, The effects of planktivorous fishes on the plankton communityin a eutrophic lake. Hydrobiologia, 1990,200/201: 567-579
    [78] Nalewajko C, Prepas E E. Responses of phytoplankton photosynthesis and phosphorus kinetics to resuspended sediments in copper sulfate-treated ponds. Journal of Environmental Quality, 1996, 25: 80-86
    [79] Neill W E, Peacock A. Breaking the bottleneck: interactions of invertebrate predators and nutrients in oligotrophic lakes, In Kerfoot W C(ed.): Evolution and ecology of zooplankton communities, University Press of New England, Hanover, New Hampshire, 1980: 715-724
    [80] Neill W E. Impact of Chaoborus predation the structure and dynamics of a crustacean zooplankton community. Oecologia, 1981,48:164-177
    [81] Northcote T G. Fish in the structure and function of freshwater ecosystems: a "top-down" view. Canadian Journal of Fisheries and Aquatic Sciences, 1988,45(2):361-379
    [82] O'Brien W J. Long-term impact of an invertebrate predator, Heterocope septentrionalis, on an arctic pond zooplankton community. Freshwat Biol, 2001,46:39-45
    [83] Ohman M D. The demographic benefits of diel vertical migration by zooplankton. Ecological Monographs, 1990,60(3): 257-281
    [84] Zambrano L., Scheffer M. & Martinez-Ramos M., Catastrophic response of lakes to benthivorous fish introduction. Oikos,2001, 94:344-350
    [85] Opuszynski K. Silver carp, Hypophthalmichthys molitrix (Val.), in carp ponds. II .Rearing of. fry. Ekologia polska, 1979,27:93-116
    [86] Perrow M R, Jowitt A J D, Stansfield J H, et al. The practical importance of the interactions between fish, zooplankton and macrophytes in shallow lake restoration. Hydrobiologia, 1999, 395/396: 199-210
    [87] Persson A. Phosphorus Release by Fish in Relation to External and Internal Load in a Eutrophic Lake. Limnology and Oceanography, 1997,42(3): 577-583
    [88] Phillips G, Jackson R, Bennet C. The Importance of Sediment Phosphorus Release in the Restoration of Very Shallow Lakes (the Norfolk-Broads, England) and Implications for Biomanipulation. Hydrobiologia, 1994,276: 445-456
    [89] Pinto-coelho R, Pinel-alloul B, Methot G, et al. Crustacean zooplankton in lakes and reservoirs of temperate and tropical regions: variation with trophic status. Can Journal Fish Aquatic Science, 2005, 62:348-361
    [90] Pogozhev P I, Gerasimova T N. The Effect of Zooplankton on Microalgae Blooming and Water Eutrophication. Water Resources, 2001,07/08:420-427.
    [91] Post J R, McQueen D J. The impact of planktivorous fish on the structure of plankton community. Freshwat Biol, 1987,17: 79-89
    [92] Reddy K. R., Fisher M M, and Ivanoff D.. Resuspension and diffusive flux of nitrogen and phosphorus in a hypereutrophic lake. Journal of Environmental Quality, 1996,25:363-371
    [93] Reinertsen H, Jensen A, Koksvik J I, Langeland A, Olsen Y. Effects of fish removal on the limnetic ecosystem of a eutrophic lake. Can Journal Fish Aquatic Science, 1990,47:166-173
    [94] Romare P, Hansson Lars-Anders. A Behavioral Cascade: Top-Predator Induced Behavioral Shifts in Planktivorous Fish and Zooplankton. Limnology and Oceanography, 2003, 48(5): 1956-1964
    [95] Saha S D, Jana B B. Control of bloom in a tropical lake: grazing efficiency of some herbivorious fish. Journal Fish Biology, 1998, 53: 12-34
    [96] Sammalkorpi I, Keto J, Kairesalo T, et al. Lake Vesij?rvi project: mass removal of cyprinids and traditional water protection. Helsinki: National Board of Waters and the Environment Administration. 1995
    [97] Scasso F, Mazzeo N, Gorga J, et al. Limnological changes of a subtropical shallow hypertrophic lake during its restoration. Two years of whole-lake experiment. Aquat Conserv: Mar Freshwater Ecosys, 2001,11: 31 -44
    [98] Schaus M H, Vanni M J. Effects of omnivorous gizzard shad on phytoplankton and nutrient dynamics: Role of sediment feeding and fish size. Ecology, 2000, 81:1701-1719.
    [99] Scheffer M, Hosper S H, Meijer M L. Alternative Equilibria in Shallow Lakes Trends in Ecology&Evolution, 1993, 8(8): 275-279
    
    [100] Scheffer M. Ecology of shallow lakes. Chapman and Hall, 1998, Londaon, 357
    [101] Scheffer M. Ecology of shallow lakes. Netherlands.KIuwer Academic Publishers, 2004. 289-306
    [102] Schlesinger D A, Molot L A, Shuter B J. Specific growth rates of freshwater phytoplankton in relation to cell size and light intensity. Canadian Journal of Fisheries and Aquatic Sciences, 1981,28:1052-1058
    [103] Shapiro J B, Forsberg V, Lammara G. Experiments and experiences in biomanipulation, pp1-125. Interim report No. 19 of the Limnological Research Center, Univ of Minnesota, Minneaplis, 1982
    [104] Shapiro J, Lamarra V, Lynch M. Biomanipulation: an ecosystem approach to lake restoration. in: Brezonik D L, Fox J K eds. Water quality management through biological ways. Gainesville: University press of Florida, 1975: 85-96
    [105] Shapiro J, Wright D I. Lake restoration by biomanipulation round Lake Minnesota, the first two years. Fresh water Biol, 1984,14: 371-383
    [106] Shapiro J. Biomanipulation-The next phase making it stable. Hydrobologia, 1990, 200/201: 13-27
    
    [107] Smith R E, Kalff J. Size- dependent phosphorus uptake kinetics and cell quota in phytoplankton . J Phycol, 1982,18:275-284
    [108] Smyly W J P. Some effects of enclosure on the zooplankton in a small lake. Freshwater Biology, 1976,6:241-251
    [109] Stansfield J H, Perrow M R, Tench L D, et al.Submerged macrophytes as refuges for grazing Cladocera against fish predation: observations on seasonal changes in relation to macrophyte cover and predation pressure. Hydrobiologia, 1997,342/343:229-240
    [110] Starling F L R M. Control of eutrophication by silver carp (Hypophthalmichthys molitrix) in the tropical Paranoa Reservoir (Brasilia, Brazil): a mesocosm experiment. Hydrobiologia, 1993, 257:143-152
    [111] Starling F L R M. Control of eutrophication by silver carp(Hypophthal michthys molitrix)in the tropical paranoa reservoir(Brasilia,Brazil): a mesocosm experiment. Hydrobiologia, 1993, 257: 143-152
    [112] Stenson J A E, Bohlin T, Henrikson L, et al. Effects of fish removal from a small lake. Verh Internat Verein Limnol, 1978, 20: 794-801
    [113] Tailing J F. Environmental controls on the functioning of shallow tropical lakes. Hydrobiologia, 2001,458:1-8
    [114] Tatrai I, Toth G, Ponyi J E, et al. Bottom- up effect of bream (Abramrs brama L.) in lake Balaron. Hydrobiologia, 1990, 200/201: 167- 175
    [115] Threlkeld S T. Planktivory and planktivore biomass effects on zoolpankton, phytoplankton, and the trophic cascade. Limnol Oceanogr, 1988, 33(6, part 1):1362-1375.
    [116] Tuzun L, Mason C F. Eutrophication and its control by biomanipulation: An enclosure experiment. Hydrobiologia, 1996,331(1-3): 79-95
    [117] Van Donk E, Gulati R D, Iedema A, et al. Marophyte-related shifts in the nitrogen and phosphorus contents of the trophic levels in a biomanipulated shallow lake. Hydrobiologia, 1993,251: 19-26
    [118] Vanderploeg, H A, Eadie, B J, Liebig, J R, et al. Contribution of calcite to the particke-size spectrum ofLake Michigan seston and its interactions with the planktion. Canadian Journal of Fisheries and Aquatic Sciences, 1987,44:1898-1914
    [119] Vanni M J, Flecker A S, Hood J M, et al. Stoichiometry of nutrient recycling by vertebrates in a tropical streanrlinking biodiversity and ecosystem function. Ecol Lett, 2002, 5:285-293
    [120]Vanni M J.Nutrient cycling by animals in freshwater ecosystems.Ann Rev Ecol Systematics,2002,33:341-370
    [121]Venkatesh B.Shetty H P C.Studies on the growth rate of the grass carp Ctenopharyngodon idellus fed on two aquatic weeds and libitum.Mysore,J.Agric.Sci.,1978,12(4):622-628
    [122]Vinyard G L.Differential prey vulnerability and predator selectivity:the effects of evasive prey on sunfish(Lepomis) predation.Canadian Journal of Fisheries and Aquatic Sciences,1980,37:2294-2299
    [123]Werner E E,Gilliam J F.The ontogenetic niche and species interactions in size-structured populations.Ann Rev Ecol Sys,1984,15:393-425
    [124]Wright D I,Brien W J,Luecke C.A new estimate of zooplankton retention by gill-rakers and its ecological significance.Trans Amer Fish Soe,1983,112:638-646
    [125]Zaret T M,Paine R T.Species introduction in a tropical lake:a newly introduced piscivore can produce population changes in a wide range of trophic levels.Science,1973,182:449-455
    [126]Zaret T M,Sufern J S.Vertical migration in zooplankton as a predator avoidance mechanism.Limnol Oceanogr,1976,21(6):804-813
    [127]曹文宣,张国华,马骏,等.洪湖鱼类资源小型化现象的初步探讨∥洪湖水体生物生产力综合开发及湖泊生态环境优化研究.北京:海洋出版社,1991.148-152
    [128]陈光荣,刘正文,钟萍,等.热带城市湖泊生态恢复中水生植被、浮游动物和鱼类的关系研究.生态环境,2007,16(1):1-7
    [129]陈洪达.养鱼对武汉东湖生态系的影响.水生生物学报,1989,13(4):359-368
    [130]范成新,王春霞.长江中下游湖泊环境地球化学与富营养化.科学出版社,2007.北京:1-25
    [131]古滨河.2005.美国Apopka湖的富营养化及其生态恢复.湖泊科学,17(1):1-8
    [132]谷孝鸿,刘桂英.滤食性鲢鳙鱼对池塘浮游生物的影响.农村生态环境,1996,12(1):6-10,41
    [133]胡春英.围圈养鱼对浮游动物多样性的影响.水生生物学报,2000,24(5):430-433
    [134]吉滨河,周路,曾纪财.尼罗罗非鱼(Oreoehromis niloticus Linn)胃酸的PH值,周日变化及其在消化兰藻中的作用.湛江海洋大学学报,1989,z1:30-41
    [135]李荫玺,王开宏,刘俊.大头鲤鱼生态环境及食性分析研究.云南环境科学,1995,(14):134-40
    [136]李勇,王超.城市浅水型湖泊底泥磷释放特性实验研究.环境科学与技术,2006,26(1):26-28
    [137]梁银铨,胡小键,胡兴跃,等.东港湖的水生维管束植物及其利用建议.水利渔业,1998,97(3):13-15
    [138]林涛,崔福义,刘冬梅,等.水源治理中鱼类的摄食选择性对其生物操纵作用的影响.哈尔滨工业大学学报,2006,38(1):35-38
    [139]刘春光,邱金泉,王雯,等.富营养化湖泊治理中的生物操纵理论.农业环境科学学报,2004,23(1):198-201
    [140]刘焕亮,丁守河,杨云龙,等.尼罗罗非鱼摄食器官胚后发育生物学.水产学报,1994,18(1):8-17
    [141]刘建康,谢平.揭开武汉东湖蓝藻水华消失之迷.长江流域资源与环境,1999,8(3):312-31
    [142]刘建康,谢平.用鲢鳙直接控制微囊藻水华的围隔试验和湖泊实践.生态科学,2003,22(3):193-196
    [143]刘孝华.罗非鱼的生物学特性及养殖技术.湖北农业科学,2007,46(1):125-126
    [144]刘正文.淡水生态系统中的捕食与生物多样性.海洋湖沼通报,1997,2:19-23
    [145]刘正文.湖泊生态系统恢复与水质改善.中国水利,2006,17:30-33
    [146]陆开宏,晏维金,苏尚安.富营养化水体治理与修复的环境生态工程---利用明矾浆和鱼类控制桥墩水库蓝藻水华.环境科学学报,2002,22(6):732-737
    [147]陆开宏,金春华,王扬才.罗非鱼对蓝藻的摄食消化及对富营养化水体水华的控制.水产学报,2005,29(6):811-818
    [148]倪达书,谭玉钧,蒋一珪.池塘养鱼(第八章).刘建康,何碧梧.中国淡水鱼类养殖学(第3版).1992,北京:科学出版社,343-380
    [149]濮培民,王国祥,胡春华,等.底泥疏浚能控制湖泊富营养化吗?.湖泊科学,2000,12(3):269-279
    [150]邱东茹,吴振斌,刘保元,等.武汉东湖水生植被的恢复试验研究.湖泊科学,1997,9(2):168-174
    [151]饶钦止,章宗涉.武汉东湖浮游植物的演变(1956-1975年)和富营养化问题.水生生物学报,1980,7(1):1-17
    [152]阮景荣,戎克文,王少梅.微型生态形态中鲢、鳙下行影响的实验研究--1.浮游生物群落和初级生产力.湖泊科学,1995,(4):334-341
    [153]阮景荣,刘衢霞,王少梅,等.罗非鱼对微型生态系统营养物水平的影响.应用生态学报,1993,4(4):404-409
    [154]阮景荣,戎克文,王少梅,等.罗非鱼对微型生态系统浮游生物群落和初级生产力的影响.应用生态学报,1993,4(1):65-73
    [155]阮景荣.三种鱼的磷排泄及其在微型生态系统磷再循环中的作用.水生生物学报,2005,29(1):55-60
    [156]王扬才,陆开宏,周杰.罗非鱼对微囊藻消化率的初步研究.水利渔业,2003,23(4):15-16
    [157]王韫明,王文.几种淡水鱼的胃腺细胞显微与超微结构的研究.水生生物学报,1989,13(4):334-339
    [158]吴庆龙.淡水双壳类的下行环境效应及其在环境调控中的应用-以背角无齿蚌为例.博士学位论文,中国科学院南京地理与湖泊研究所,2003
    [158]谢平,陈宜瑜.加强淡水生态系统中生物多样性的研究与保护.中国科学院院刊,1996,4,276-281
    [160]谢松光,崔奕波,李钟杰.湖泊食鱼性鱼类渔业生态学的理论与方法.水生生物学报,2000,24(1):72-81
    [161]杨清心,李文朝.高密度网围养鱼对水生植被的影响及其对策探讨.应用生态学报,1996,7(1):83-88
    [162]张国华,曹文宣,陈宜瑜,等.湖泊放养渔业对我国湖泊生态系统的影响.1997,21(3):271-280
    [163]赵帅营,林秋奇,刘正文,等.南亚热带湖泊-星湖后生浮游动物群落特征研究.水生生物学报,2007,31(3):405-413
    [164]赵文,董双林,张美昭,等.盐碱池塘实验围隔生态系统颗粒物沉积作用研究.大连水产学院学报,2001,16(4):241-248
    [165]赵文,董双林,张兆琪,等.罗非鱼放养量对盐碱水微型生态系统浮游生物群落的影响.青岛海洋大学学报,2000,30(3):435-440
    [166]钟金香,林小涛,许忠能,等.放养鱼类对淡水生态环境的下行影响(综述).暨南大学学报(自然科学与医学版),2001,22(5):131-136
    [1]金相灿,屠清瑛编.湖泊富营养化调查规范.北京:中国环境科学出版社,1990.
    [2]陈伟民,黄祥飞,周卫平等.湖泊生态系统观测方法.北京:中国环境科学出版社,2005,1-259
    [3]蒋燮治,堵南山.中国动物志(淡水枝角类).北京:科学出版社,1979,1-297
    [4]沈韫芬,章宗涉,龚循矩等.微型生物监测新技术.北京:中国建筑工业出版社,1990,126-134
    [5]胡鸿钧,魏印心,李荛英,等.中国淡水藻类[M].上海:上海科学技术出版社,1980.
    [6]国家环保总局.水和废水监测分析方法(第四版)[M].中国环境科学出版社,2002.120-150
    [7]王家楫.中国淡水轮虫志.北京:科学出版社,1961:1-288
    [8]中科院动物所甲壳动物研究组编著.中国动物志(淡水桡足类).北京:科学出版社,1979,1-450
    [9]章宗涉,黄祥飞.淡水浮游生物研究方法.北京:科学出版社,1991
    [1]Attayde J L,Hansson L A.Nutrient recycling by zooplnakton and fish and its effects on algal communities in laboratory microcosms.Oecologia,1999,121:47-54
    [2]Meijer M L,Raat A J P,DoefR W.Is reduction of the benthivorous fish an important cause of high.Hydrobiologic bulletin transparency following biomanipulation in shallow lakes?,1990,201/201:303-315
    [3]Opuszynski K.Silver carp,Hypophthalmichthys molitrix(Val.),in carp ponds.Ⅱ.Rearing of.fry.Ekologia polska,1979,27:93-116
    [4]Persson A.Phosphorus Release by Fish in Relation to External and Internal Load in a Eutrophic Lake.Limnology and Oceanography,1997,42(3):577-583
    [5]Schaus M H,Vanni M J.Effects of omnivorous gizzard shad on phytoplankton and nutrient dynamics:Role of sediment feeding and fish size.Ecology,2000,81:1701-1719.
    [6]Vanni M J.Nutrient cycling by animals in freshwater ecosystems.Ann Rev Ecol Systematics,2002,33:341-370
    [7]林涛,崔福义,刘冬梅,等.水源治理中鱼类的摄食选择性对其生物操纵作用的影响.哈尔滨工业大学学报,2006,38(1):35-38
    [8]李荫玺,王开宏,刘俊.大头鲤鱼生态环境及食性分析研究.云南环境科学,1995,(14):134 40
    [9]阮景荣.三种鱼的磷排泄及其在微型生态系统磷再循环中的作用.水生生物学报,2005,29(1):55-60
    [10]阮景荣.罗非鱼对微型生态系统中营养物水平的影响.应用生态学报,1993,4(4):404-409
    [11]赵文,董双林,张美昭,等.盐碱池塘实验围隔生态系统颗粒物沉积作用研究.大连水产学院学报,2001,16(4):241-248
    [1]李传红,谭镇,朱文转,彭俊杰.惠州西湖富营养化与水生态修复研究,2007,广东科技出版社,第一版:89-91
    [2]张友仁,惠州西湖志,1989,广东教育出版社,第一版:5-6
    [1]Attayde J L,Hansson L A.Nutrient recycling by zooplnakton and fish and its effects on algal communities in laboratory microcosms.Oecologia,1999,121:47-54
    [2]Crisman T L,Reaver I R.Applicability of planktonic biomanipulation:for managing eutrophication in the subtrophics.Hydrobilogia,1990,200/201:177-185
    [3]Fernado C H.Zooplankton,fish and fisheries in tropical freshwater Hydrobiologia,1994,272:105-123
    [4]Frank C J M R,Miquel L,Hanneke V,et al.Resuspension of algal cells by benthivorous fish boosts phytoplankton biomass and alters community structure in shallow lakes.Freshwater Biology,2007,52,977-987
    [5]Horppila J,Kairesalo T.A fading recovery:the role of roach(Rutilus rutilus L.) in maintaining high phytoplankton productivity and biomass in Lake Vesijarvi,southern Finland.Hydrobilogia,1990,200/201:153-165
    [6]Kamp-Nielsen L.Mud-water exchang of phosphate and other ions following algicide in undisturbed sediment cores and factors affecting the exchange rates,Arch.Hydrobiol.1974,73:218-237
    [7]Macpherson L B,Sinclair N R and Hayes F R.Lake water and sediment.Ⅲ.The effect of pH on the partition of inorganic phosphate between water and oxidized mud or its ash.Limmol.Oceanogr.1958,3:318-326
    [8]Meijer M L,Raat A J P,Doef R W.Is reduction of the benthivorous fish an important cause of high.Hydrobiologic bulletin transparency following biomanipulation in shallow lakes?,Hydrobilogia,1990,201/201:303-315
    [9]Robel,R.J.,1961.The effects of carp populations on the production on waterfowl food plants on a western waterfowl marsh.Trans.36th.Am.Wildl.Nat.Res.Conf.:147-159.
    [10]Schaus M H,Vanni M J.Effects of omnivorous gizzard shad on phytoplankton and nutrient dynamics:Role of sediment feeding and fish size.Ecology,2000,81:1701-1719.
    [11]Scheffer M,Alternative attractors of shallow lakes.Sci.World,2001,1:254-263.
    [12]Jukka H,Timo K.Effects of omnivorous gizzard shad on phytoplankton and nutrient dynamics:Role of sediment feeding and fish size.Ecology,2000,81:1701-1719.
    [13]赵帅营,林秋奇,刘正文,等.南亚热带湖泊-星湖后生浮游动物群落特征研究.水生生物学报,2007,31(3):405-413

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700