用户名: 密码: 验证码:
油田钻具、管道系统腐蚀规律及缓蚀剂缓蚀性能和机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
油田钻具和管道系统腐蚀是油田工程中普遍存在的问题。钻具的腐蚀主要源自于钻井液中的氧气、各种离子及温度等。管道的腐蚀最主要是因为输送的流体中含有CO_2,尤其是在高温和高压下,CO_2腐蚀更严重。
     根据钻井液的组成成分,选择十种盐水钻井液常用的单一盐(NaCl、KCl、CaCl_2、MgCl_2、ZnCl_2、NaBr、CaBr_2、ZnBr_2、CHOONa和CHOOK)和复合盐作为研究对象,分析单一盐和复合盐对钻具钢(G105)的腐蚀机理。结果表明:腐蚀速率随着盐浓度的增加而降低,G105钢在无机盐中的腐蚀速率大于有机盐的腐蚀速率。在无机盐中, ZnBr_2溶液中腐蚀速率最大;CaBr_2溶液和NaCl溶液中的腐蚀速率都较小。ZnBr_2和ZnCl_2溶液中主要发生的阴极反应为氧和H~+的去极化反应。溶解氧含量基本随盐浓度增加呈线性降低。瞬时腐蚀速率表明G105钢在各种单一盐中的腐蚀产物膜对腐蚀速率基本没有影响。
     复合盐中各种离子及温度是影响腐蚀速率最重要的因素,所以采用拉丁正交实验研究离子和温度对腐蚀速率的影响。拉丁正交实验表明:Cl~-对腐蚀速率影响最大,温度次之,而Br-对腐蚀速率的影响最小,Ca~(2+)对腐蚀速率的影响较Mg~(2+)稍大。G105钢在复合盐水中腐蚀速率最低的配方为:温度40°C、5mol/LCl~-、0.04mol/LCa~(2+)、0.008mol/LMg~(2+)、0.016mol/LBr-,此时腐蚀速率为0.0197g/m~2·h(0.022mm/a)。拉丁实验中1、2、10号实验腐蚀产物主要为β-FeOOH。
     根据地层特性和钻井深度的要求,复合盐钻井液中常采用加入ZnBr_2增加复合盐的密度。采用失重实验研究了G105钢在复合盐中加入不同量ZnBr_2的腐蚀规律。结果表明G105钢在不同密度复合盐中的腐蚀速率随着密度的增加先降低再增加;随着温度的增加而增加。
     添加缓蚀剂是抑制腐蚀的一种有效、经济的防护措施。60℃时缓蚀剂QA在复合盐水钻井基液中缓蚀剂浓度为200mg/L时对G105钢缓蚀率为94%。QA对阴、阳极反应都有抑制,腐蚀电位负移,对阳极极化Tafel斜率影响较大,而阴极极化曲线Tafel斜率没有发生明显变化。
     80℃四元和五元复配缓蚀剂对G105钢在23.7%NaCl溶液中缓蚀率都达到80%以上。四元缓蚀剂对阴、阳极极化Tafel斜率的改变都较大,尤其是阳极极化Tafel斜率,复配缓蚀剂是以控制阳极反应为主的混合型缓蚀剂。四元缓蚀剂在不同浓度时的作用类型发生改变。五元复配缓蚀剂主要是控制阳极反应为主的混合型缓蚀剂,缓蚀率随着缓蚀剂浓度的增加而增加。
     在中性溶液中QA、四元和五元缓蚀剂有较好的缓蚀性能,而抑制CO_2腐蚀应用最广且效果较好的是咪唑啉类缓蚀剂。失重法和电化学方法表明自制两种咪唑啉缓蚀剂(HSJ-1和HSJ-2)对管道钢(Q235)在饱和CO_2盐水中都有优异的缓蚀性能,缓蚀率都随着温度和缓蚀剂浓度增大而增大。在相同的缓蚀效果下,缓蚀剂HSJ-2的用量(摩尔浓度)更低。两种缓蚀剂都使腐蚀电位变化不大,都对阴、阳极极化Tafel斜率的影响比较大。缓蚀剂HSJ-2的缓蚀率稍好于HSJ-1,HSJ-2出现缓蚀剂脱附现象,298K和328K时两种缓蚀剂作用方式是几何覆盖效应。
     缓蚀剂HSJ-1和HSJ-2在Q235钢上的吸附符合Frumkin吸附等温式。对于HSJ-1,Frumkin吸附等温式(kc=(θ/(1-θ))EXP(-fθ))中吸附平衡常数k值在20000左右,f值在2.4~2.8之间;而对于HSJ-2,采用matlab拟合得到k在46000和63000之间, f在2左右,采用最小二乘法计算结果相差较大,k值在35000左右,f值在2.4~2.9。HSJ-2的吸附平衡常数(k)大于HSJ-1的吸附平衡常数,HSJ-2吸附反应(Fe+HSJ(缓蚀剂)(?) Fe(HSJ)ads)比HSJ-1更倾向于向右移动,故HSJ-2的缓蚀效果稍好。缓蚀剂之间是相互吸引的。两种缓蚀剂的吉布斯自由能(ΔGoads)均为负值。
     分子动力学模拟表明两种咪唑啉类缓蚀剂分子以咪唑啉环和杂原子与Fe表面发生相互作用,HSJ-1的烃基链与金属面平行,而HSJ-2的烃基链大致与金属面垂直。
     表面技术分析表明298K下Q235钢在饱和CO_2盐水中腐蚀产物主要成分为γ-FeOOH、FeCO_3、Fe_3O_4;而在328K时腐蚀产物主要成份为FeCO_3、Fe_3O_4和Fe_2O_3。
In well-drilling project, corrosion of drill steel and pipeline is ubiquitous phenomena. Corrosion of drill pipe results from O_2 and ions of drilling fluids as well as temperature, and carbon dioxide in the natural gas dissolves in saltwater and results in the formation of a weak carbonic acid often causing severe corrosion in carbon steel pipelines, especially at high temperature and pressure.
     Ten kinds of salt and mixed salt solutions were selected according to the composition of drilling fluid, to analyze how to effect the corrosion of G105 steel. The results showed that corrosion rate decreased with increase of salt concentration, corrosion rate of G105 steel in inorganic salt were higher than that in organic salt. Corrosion rate of G105 steel in ZnBr_2 solution was highest; corrosion rates in CaBr_2 and NaCl solution were lower. Cathodic reductions were O_2 and H~+ depolarization reduction in ZnBr_2 and ZnCl_2 solution. Contents of DO decreased linearly with increase in concentration. Instantaneous corrosion rate showed that corrosion products of G105 steel in single salt solution had almost no effect on corrosion rate.
     Orthogonal experiment of compound salt showed that Cl~- indicated a remarkable effect on corrosion rate, and then the temperature, and Br- had the least impact. Ca~(2+) influenced corrosion rate more obviously than Mg~(2+) did. Corrosion rate was the lowest in mixed saltwater including 5mol/LCl~-、0.04mol/LCa~(2+)、0.008mol/LMg~(2+)、0.016mol/LBr- at 40°C, and the lowest corrosion rate was 0.0197g/m~2 ? h(0.022mm/a).Corrosion product of No1、No2、No10 mainly wasβ-FeOOH.
     Corrosion mechanism of G105 steel in different density mixed saltwater was that corrosion rate decreased, then increased with increase in density, and increased with increase in temperature.
     Injecting inhibitor is effective and economical anti-corrosion method. Inhibition efficiency of QA in mixed saltwater was 94% at concentration of 200mg/L at 60℃. QA inhibits both the anodic and cathodic reaction, especially anodic reaction, and corrosion potential shifts negatively. QA has obvious effect on anodic slope, but cathodic polarization line changes slightly.
     Inhibition efficiencies of four-compound and five-compound inhibitors in 23.7%NaCl solution were up to 80%.Four-compound inhibitor had obvious effect on cathodic and anodic slope, and the inhibitor was mix-type inhibitor, which mainly inhibited anodic process. Inhibition mechanism changed at the different concentrations of inhibitor. Five-compound inhibitor also was mix-type inhibitor, which mainly inhibited anodic process, and inhibition efficiency increases with increase in concentration of inhibitor.
     Two imidazoline inhibitors both inhibited Q235 steel in saltwater saturated with carbon dioxide well, and inhibition efficiency increased with increase in concentration of inhibitor. Inhibitory capability of HSJ-2 was better than HSJ-1. Corrosion potentials had a little change, and two inhibitors influenced anodic and cathodic slope obviously. HSJ-2 was adsorbed on the steel for a longer time than HSJ-1, but HSJ-2 was disrobed from the steel. The inhibition effect of two imidazoline inhibitors was caused by "blocking effect" at 298K and 328K.
     The adsorption of two imidazoline inhibitors on Q235 steel can be fitted to Frumkin isotherm. k in Frumkin isotherm was about 20000 for HSJ-1, f was between 2.4 and 2.8; And k was between 46000 and 63000, f was about 2 for HSJ-2 by using matlab programming fitting, but results were very different by least squares method fitting: k about 35000, f 2.4~2.9. HSJ-2 seemed more favorable to adsorb at the surface than HSJ-1, so inhibition efficiency of HSJ-2 was higher than HSJ-1. Inhibitors were attracted each other.ΔGoads of two imidazoline inhibitors were negative.
     Molecular dynamics simulation showed that both the two imidazoline inhibitors can adsorb on the Fe surface through the imidazoline ring and heteroatoms, and the alkyl chain of HSJ-1 approximately perpendicular to the surface, HSJ-2 approximately parallel to the surface.
     Corrosion product of Q235 in saltwater saturated with carbon dioxide mainly wasγ-FeOOH、FeCO_3、Fe_3O_4 at 298K, and FeCO_3、Fe_3O_4 and Fe_2O_3 at 328K
引文
[1]鄢捷年主编.钻井液工艺学[M].东营:石油大学出版社,2001. 1
    [2] Schmitt G, Fundamental Aspects of CO2 Corrosion[C]. Houston: NACE, 1984. 10-17
    [3] Crolet J.L, Predicting CO2 corrosion in oil and gas industry [A]. The Institute of Materials[C]. London, UK, 1994: 1
    [4]张静.油管钢CO2腐蚀行为与机理研究[D].北京科技大学博士学位论文,2000:5
    [5]张学元,邸超,雷良才.二氧化碳腐蚀与控制[M].北京:化学工业出版社,2000.12李静.
    [6] Townshend P. E, Colegate G. T, Vann Waart T. L. Carbon dioxide corrosion at low partial pressure in major submarine pipelines[A], SPE European Spring Meeting[C].Paper No.741,Amstterdam, SPF,Houston TX, 1972.
    [7]张克勤,王欣,王奎才等.国内外钻井液标准化工作综述[J].石油钻探技术,2001,29(3):4~8
    [8]姜仁.钻井工程[M].北京:石油工业出版社,1978. 18-19
    [9]韩秋玲,冀成楼,路金宽等.钻井液用除氧剂与缓蚀剂[C].第八届全国缓蚀剂会议论文集,武汉:1993.73-77
    [10]沈长寿,熊楚才,黄红兵.钻具抗氧缓蚀剂的研究[C].第八届全国缓蚀剂会议论文集,武汉:1993. 11. 45-48
    [11]陈乐亮,张克勤.钻井技术手册(二)钻井液[M].北京:石油工业出版社,1988. 172-173
    [12]华明琪,贺承祖.聚合物盐水泥浆腐蚀机理研究[J].油田化学,1988,5(1):79-83
    [13] Carlborg et al. Method employing combination well completion-packer fluids[P]. US. 3126950, Mar. 31.1964
    [14]Plonka, James H. New bromide packer fluid cuts corrosion problems[J]. World Oil, 1972, 174(5): 88-89
    [15]Sanders DC. High-density fluid compositions[P].U S Patent: 4292183. 1981-11-29
    [16] Dadgar A. Shin Charles C. Calcium-free clear high density fluids[P]. PCT Int. Appl. WO 88/01010, 1988-02-11
    [17] Dadgar A. Corrosion inhibitors for clear calcium-free high density fluids[P]. PCT Int. Appl. WO 88/02433, 1988-04-07
    [18]Shin C. C. Corrosion inhibiting composition for zinc halide-based clear high density fluids[P]. PCT Int. Appl. WO 88/2432, 1988-04-07
    [19]万里平,孟英峰,梁发书.甲酸盐钻井液对N80钢的腐蚀研究[J].钻采工艺,2003,26(6):83-88
    [20] Bradle B.W. Oxygen.A Major Element in Drill pipe Corrosion[J]. Materials protection, 1967, 16(12):40-46
    [21]卢润才,纪春茂,丁锐等.埕岛油田海水钻井液对钻具的腐蚀及其防护[J].油田化学,1998,15(1):10-12,27
    [22]傅朝阳,郑家燊,姚安林.聚合物盐水泥浆腐蚀[J].材料保护,1999 (7):
    [23]韩秋玲,龚成楼,路金宽.钻井液用除氧剂与缓蚀剂.第八届全国缓蚀剂会议论文集.武汉,1993.11. 73-77
    [24] Marhohn AL, M A. Rahman S S. Treatment of Drilling Fluid to Common Drill Pipe Corrosion[J]. Corrosion, 1992, 16(9):721-726
    [25] Bradley B.W. Oxygen Cause of Drill pipe Corrosion [J]. Petroleum Engineer,1970, 5(7):50-57
    [26] Lorenz W.J., Heusler K.E., Anodic dissolution of iron group metals, in: F. Mansfield (Ed.), Corrosion Mechanism, Marcel Dekker, NewYork, 1987, 1.
    [27] Drazic D.M., The electrochemistry of iron in an active state,in: J.O’M. Bockris, B.E. Conway (Eds.), Modern Aspects of Electrochemistry, vol. 19, Plenum Press, New York, 1989, 69.
    [28] Bockris J.O’M., S.U. Khan, Surface Electrochemistry: A Molecular Level Approach, Plenum Press, New York, 1993, 756.
    [29] Keddam M., Anodic dissolution, in: P. Marcus, J. Oudar (Eds.), Corrosion Mechanisms in Theory and Practice, Marcel Dekker, New York, 1995, 55.
    [30]Heusler K.E., in: A.J. Bard (Ed.), Encyclopedia of the Electrochemistry of the Elements, vol. 9A, Marcel Dekker, NewYork, 1982, 230.
    [31]郑家燊,吕战鹏,唐焱等.碳钢在饱和盐水钻井液中的腐蚀与防护研究[J].腐蚀与防护,1997,18(5):199-201
    [32]唐善法,付绍斌,冯定等.复合盐钻井液对钻具的腐蚀机理研究[J].武汉工业大学学报,1997,19(3):79-82
    [33]郑家燊,吕战鹏,唐焱.碳钢在饱和盐水钻井液中的腐蚀与防护研究[J].油田化学,1996,13(4):192-196
    [34]候彬.饱和盐水钻井液缓蚀剂研究[D].南京:南京工业大学,2003:22-30
    [35]王永清,李海涛,蒋建勋.油田注入水水质调控决策方法研究[J].石油学报, 2003,24(3): 68-73
    [36]Schmitt G, Fundamental aspects of CO2 corrosion. In: Hausler R H, Giddard HP(Eds). Advances in CO2 Corrosion [A].Corrosion/1984, Paper No.10[C]. Houston: National Association of Corrosion Engineers,Texas,1984.
    [37]Schmitt G. CO2 Corrosion of steels-An attempt to range parameter and their effects.In: Hausler R H, Giddard H P(Eds), Advances in CO2 Corrosion [A].Corrosion/1984,Paper No.l [C]. Houston: National Association of CorrosionEngineers,Texas,1984.
    [38]Burke P A, Synopsis, Recent progress in the understanding of CO2 corrosion.1n: Hausler. R H, Giddard H P(Eds), Advances in C02 Corrosion[A].Corrosion/1984, Paper No.3[C]. Houston: National Association of Corrosion Engineers,Texas,1984.
    [39]Ikeda A, Ueda M, Mukai S. C02 behavior of carbon and Cr steels. In:Hausler R H,G iddard H P(Eds), Advances in CO2 Corrosion [A]. Corrosion/1984,Paper No.l [C].Houston: National Association of Corrosion Engineers,Texas,1984.
    [40]Dunlop A K, Hassell H L, Rhode P R. Fundamental consideration in sweet gas wellcorrosion. In:Hausler R H, Giddard H P(Eds), Advances in CO2 Corrosion. [A].Corrosion/1984,Paper No.l [C]. Houston: National Association of Corrosion Engineers,Texas,1984.
    [41]Schmitt G A, Mueller M, Critical wall shear stresses in CO2 corrosion of carbon steel [A]. Corrosion/1999,Paper No.44[C].Houston: National Association of Corrosion Engineers,Texas, l 999.
    [42]Schmitt G A, Mueller M, Understanding localized CO2 corrosion of carbon steel from physical properities of iron carbonate scales [A]. Corrosion/1999, Paper No.38[C].Houston: National Association of Corrosion Engineers,Texas,l999.
    [43]Hunnik E W J V, Hendriksen E L, Pots B F A. The formation of protective FeC03 corrosion product layers in CO2 corrosion [A]. Corrosion/1996, Paper No.6[C].Houston: National Association of Corrosion Engineers,Texas,1996.
    [44]Nesic S, Lee J, Ruzic V, A mechanistic model of iron carbonate film growth and the effect on CO2, corrosion of mild steel [A]. Corrosion/2002, Paper No.237[C].Houston: NationalAssociation of Corrosion Engineers,Texas,2002.
    [45]Palacios C A, Shadley J R. Characteristics of corrosion scales on Steels in CO2-saterated NaCI brine[J]. Corrosion. 1991,47(2):122
    [46]Al-Hashem A H, Carew J A, The effect of water-Cut on the corrosion behavior of L80 carbon steel under downhole conditions [A]. Corrosion/2000, Paper No.61 [C].Houston: National Association of Corrosion Engineers,Texas,2000.
    [47]Schmitt G A, Polytechnic I, Gudde T. Fracture mechanical properities of CO2 corrosion product scales and their relation to localized corrosion [A].Corrosion/1996,Paper No.9[C]. Houston: National Association of Corrosion Engineers,Texas, l 996.
    [48]Davies D H, Burstein G T, The effects of bicarbonate on the corrosion and passivation of iron [A]. Corrosion/1980, Paper No.7[C]. Houston:National Association of Corrosion Engineers,Texas,1980.
    [49]Crolet J L, Thevenot N, Nesic S, Role of conductive corrosion products on the protectiveness of corrosion layers [A]. Corrosion/1996,Paper No.4[C]. Houston: National Association of Corrosion Engineers,Texas, l 996.
    [50]Gopal M, Rajappa S, Zhang R. Modeling the diffusion effects through the iron carbonnatc layer in the carbon dioxide corrosion of Carbon steel [A].Corrosion/1998,Paper No.26[C]. Houston: National Association of Corrosion Engineers,Texas, l 998.
    [51]Gopal M, Jiang L. Calculation of mass transfer in multiphase flows [A].Corrosion/1998,Paper No.50[C]. Houston: National Association of Corrosion Engineers,Texas,1998 .
    [52]Wang H W, Jepson W P, Gopal M, et al, Effect of bubble on mass transfer in multiphase flow [A].Corrosion/2000, Paper No.50[C]. Houston: National Association of Corrosion Engineers,Texas,2000.
    [53]Postlethwaite John, Wang David, Modeling .aqueous CO2 corrosion of iron inturbulent pipe flow, Transfer in Multiphase Flows [A]. Corrosion/2001,Paper No.41 [C]. Houston: National Association of Corrosion Engineers,Texas,2001
    [54]Dayalan E, Moraes F D, Shadley J R, Rybicki E F, et al. CO2 corrosion prediction in pipe flow under FeC03 scale-Forming conditions, Transfer in Multiphase Flows [A].Corrosion/1998,Paper No.51 [C]. Houston: National Association of CorrosionEngineers,Texas,1998.
    [55]Onsrum G, Sontvedt T. Recording of local flow disturbances behind obstacles where mesa attack have occurred, Transfer in Multiphase Flows[A].Corrosion/1998,Paper No.40[C]. Houston: National Association of Corrosion Engineers,Texas,1998.
    [56]Nyborg R, Initiation and growth of mesa corrosion attack during CO2 corrosion of carbon steel, Transfer in Multiphase Flows [A]. Corrosionl1998,Paper No.48[C].Houston: National Association of Corrosion Engineers,Texas,1998.
    [57]Gopal M, Rajappa S. Effect of multiphase slug flow on the stability of corrosion product layer, Transfer in Multiphase Flows [A]. Corrosion/1999,Paper No.46[C].Houston: National Association of Corrosion Engineers,Texas,1999.
    [58]Seal S, Sapre K, Desai从et al. Surface chemical and morphological changes in corrosion product layers and inhibitors in CO2 corrosion in multiphase flowlines, Transfer in Multiphase Flows [A]. Corrosion/2000,Paper No.46[C]. Houston: National Association of Corrosion Engineers,Texas,2000.
    [59]Schmitt G, Bosch C, Mueller M. A probabilistic model for flow induced localized corrosion, Transfer in Multiphase Flows [A].Corrosion/2000,Paper No.49[C].Houston: National Association of Corrosion Engineers,Texas,2000.
    [60]AI-Hashem A H, Carew J A, Al-Sayegh A. The effect of water-Cut on the corrosion behavior of L80 carbon steel under dowhole conditions, Transfer in Multiphase Flows [A]. Corrosion/2000,Paper No.61 [C].Houston:National Association of Corrosion Engineers,Texas,2000.
    [61]Mora-Mendoza J L, Turgoose S. Influence of turbulent flow on the localized corrosion processes of mild steel with inhibited aqueous CO2 systems, Transfer in Multiphase Flows [A]. Corrosion/2001,Paper No.63[C]. Houston: National Association of Corrosion Engineers,Texas,2001.
    [62]Nyborg R. Overview of CO2 corrosion models for wells and pipelines, Transfer in Multiphase Flows [A]. Corrosionl2001, Paper No.62[C]. Houston: National Association of Corrosion Engineers,Texas,2001.
    [63]Hong T., Jepson W. P, Gopal M, Wang H. B., Shi H. EIS study of corrosion product film in pipelines [A]. Corrosion/2000,Paper No.44. Houston: NACE,Texas,2000.
    [64]Shadley J. R. et al: Prediction of erosion-corrosion penetration rate in a carbon dioxide environment with sand[J]. Corrosion. 1978, 54(12): 972-978
    [65]Shadley J. R. et al. Erosion-Corrosion of a carbon steel elbow in a carbon dioxide environment[J].Corrosion, 1998, 52(9): 714-723
    [66]Garber J. D. Modeling corrosion rates in non-Annular gas condensate wells containing CO2 [A]. Corrosion/1998,Paper No.53[A]. Houston: National Association of Corrosion Engineers,Texas,1998.
    [67]Nesic S., Lunde L. Carbon dioxide corrosion of carbon steel in two-phase [J].Corrosion. 1994,50(9):717-727.
    [68]Heuer J. K, Stubbins J F. Microstrucure analysis of coupons exposed to carbon dioxide corrosion in multiphase flow [J]. Corrosion. 1998, 54(7): 566-575
    [69]De Waard C., Milliams D. E. Carbonic axid corrosion of steel [J]. Corrosion.1975.31(5): 177-181
    [70]Davies D. H., Burstein G. T. The effects of bicarbonate on the corrosion and passivation of iron[J]. Corrosion. 1980,36(8):416-422
    [71]Ogundele G. I., White W. E. Some observation on corrosion of carbon steel in aqueous environment containing carbon dioxide[J]. Corrosion. 1986,42(2):398-408
    [72] Hausler R.H., Stegmann D. W. Trithiones and phenanthridine as inhibitors of carbon dioxide corrosion in petroleum service[A].Corrosion/88, paper No.363, NACE, Houston, Tx (1988)
    [73]Nesic S., Postlethwaite J., Olsen S. An electrochemical model for prediction of corrosion of mild steel in aqueous carbon dioxide solutions[J]. Corrosion. 1996, 52(4): 280-294
    [74]张学元,王风平,陈卓元.油气开发中二氧化碳腐蚀的研究现状和趋势[J].油田化学,1997,14(2):190-196
    [75]Linda G.S. Gray. Effect of pH and temperature on the mechanism of carbon steel corrosion by aqueous carbon dioxide[A].Corrosion/90, paper No.40, NACE, Houston, TX(1990)
    [76]Schmitt G., Fundamental aspects of CO2 corrosion[A].Corrosion/83, paper No.43, NACE, Houston, TX(1983)
    [77] Xia Z., Chou K.C., Szklarska-Smialowska Z. Pitting corrosion of carbon steel in carbon dioxide-containing sodium chloride brine[J]. Corrosion, 1989, 145(8) : 636-642
    [78]Ogundele G..I., White W.E. Some observations on corrosion of carbon steel in aqueousenvironments containing carbon dioxideCorrosion[J]. 1986, 42(2):71-78
    [79]李国敏,刘烈伟,郑家燊.碳钢在含硫化氢及高压二氧化碳饱和的NaC1溶液中的腐蚀行为[J].中国腐蚀与防护学报, 2000, 20(4): 205
    [80] De Waard C., Lotz U., Milliams D.E. Predictive model for carbon dioxide corrosion engineering in wet natural gas pipelines[J]. Corrosion, 1991, 47(12):976-985
    [81] Schmitt G., Rothmann B. Study of the corrosion mechanism of unalloyed steel in oxygen-free carbon dioxide solutions. Part II. Kinetics of iron dissolution[J].Werkstoffe und Korrosion, 1978, 29(2): 98-100.
    [82]Bockris J.O.M., Drazic D., Despic A.R. Electrode kinetics of the deposition and dissolution of iron[J]. Electrochemistry Acta, 1961, 4(4): 325-361
    [83]Davies D.H., Burstein G.T. The effects of bicarbonate on the corrosion and passivation of iron Corrosion, 1980, 36(8): 416-422
    [84]沈长寿,熊楚才,黄红兵.钻具抗氧缓蚀剂的研究[J].钻井液与完井液,1994,2:359-364
    [85] Scremp F.W., Use of oxygen scavengers to control external corrosion of oil string casing[J]. Corrosion, 1961,17(8):581-589
    [86] Michael, Sundberg,N. Advanced in the art of aqueous oxygen scavenging[J].Corrosion, 1982, 38(1):24-33
    [87] Zimmermann M. Hydrazine and water treatment[J]. Materials protection, 1969, 8:33-38
    [88] Cuisia Dionisio G, Hwa Chih M. Composition and method for inhibiting corrosion[P]. US 4350606, 1980-10-03
    [89]罗知翊.国外钻井液处理剂调查[J].油田化学,1993,10:86-91
    [90] James E.Donham. Chemical control of drilling corrosion [J]. Materials Performance, 1976, 15(10):34-38
    [91] M.A.Al-Marhoun. Treatment of drilling fluid to combat drill pipe corrosion [J].Corrosion, 1990, 46(9):778-782
    [92] G.T.Hefter. Organic corrosion inhibitors in neutral solutions; Part 1-Inhibition ofsteel, copper, and aluminum by straight chain carboxylates[J]. Corrosion, 1997,53(3):657-666
    [93] Y.Tomoe. Unusual corrosion of a drill pipe in newly developed drilling mud during deep drilling[J]. Corrosion, 1999, 55(7):706-713
    [94] Bellos,Thomas J. Corrosion inhibitor for highly oxygenated systems[P]. US4311662, 1982-01-19
    [95] Quinlan,Patrick M. Silicon-containing quaternary ammonium thiazines[P].US4418195, 1983-12-19
    [96] Wu,Yulin. Method for inhibiting corrosion [P]. US4556111, 1985-12-3
    [97] Wu,Yulin. Composition and method for corrosion inhibition[P]. US4609181,1986-08-26
    [98] Valone, Frederick W. Corrosion inhibiting system containing alkoxylated amines[P]. US4636256, 1987-01-13
    [99] Doty, Peter A., Larson, William A. Corrosion inhibitor for brines[P]. US4728446, 1988-03-1
    [100] Dadgar Ahmad. Corrosion inhibitors for clear calcium-free high density fluids[p]. US4784779, 1988-11-15
    [101] Minevski, Ljiljana V; Bockowski, Edmund J. Water soluble cyclic amine-dicarboxylic acid-alkanol amine salt corrosion inhibitor[P].US5531937, 1996-07-2
    [102] Walker Michael L., Poelker David J., Martin Rich Lloyd. High performance phosphorus-containing corrosion inhibitors for inhibiting corrosion drilling system fluids[P]. US6558619, 2003-05-06
    [103]曹殿珍,杨怀玉,祝英剑等.IMC-80缓蚀剂的研究和应用[J].高等学校化学学报,1997,18(4):595-599
    [104]沈长寿,雄楚才,黄红兵.钻井液中抗氧缓蚀剂的研究[J].钻井液与完井液,1994,11(6):35-40
    [105]侯彬.饱和盐水钻井液缓蚀剂研究[D].南京:南京工业大学,2003:33-41
    [106]唐善法,傅绍斌,程满福.复合盐水钻井液缓蚀剂DFP的研制及应用[J].油田化学,1997,14(2):110-114
    [107]方慧.缓蚀剂PF-1在加重盐水钻井液中的应用[J].钻井液与完井液,1997,14(3):36-67
    [108]赵福祥,范荣增,范旭波等. DPI-03型钻井液缓蚀剂的研制[J].油田化学,1996,13(1):37-39
    [109]傅绍斌,袁中直,李国强. PCA在复合盐水介质中的缓蚀性能.第八届全国缓蚀剂会议论文集.武汉,1993.11. 94-98
    [110]吴修斌,李铭瑞,罗福先.复合缓蚀剂ZH-1在中原油田聚合物盐水泥浆中的应用[J].油田化学,1996,13(2):100-105
    [111]彭芳明,吕战鹏,刘小武等.聚合物盐水泥浆缓蚀剂研究[J].油田化学,1996,13(2):106-110
    [112] Betz Laboratories, Inc , Betz Handbook of Industrial water Conditioning (Seventh edition)[M]. Trevose. Pennsylvania: 1986.72
    [113]张学元,马利民,杜元龙,曹殿珍.咪唑啉酰胺在含CO溶液中的缓蚀机理[J] .应用化学,1996,15(6):21-24
    [114]李雪,冀成楼,路金宽,韩秋玲.咪唑啉类缓蚀剂在弱酸性体系内抑制H2S对N80钢材腐蚀的研究[J].1992,14(6): 45-50
    [115]黄红兵,杨仲熙.CT2-4水溶性油气井缓蚀剂的合成与应用研究[J],石油与天然气化工,1996,25(4):231-236
    [116]张玉芳.含H2S/CO2环境中缓蚀剂对不同油管钢的缓蚀作用[J].腐蚀与防护,2006,27(11):561-564
    [117]任呈强,刘道新,白真权,李铁虎.咪唑啉衍生物在含H2S/CO2油气井环境中的缓蚀行为研究[J].天然气工业,2004,24(8):53-57
    [118]梅平,艾俊哲,陈武,袁谷.抑制二氧化碳腐蚀的缓蚀剂及其缓蚀机理研究[J].石油学报,2004,25(5):104-108
    [119]邵彤,徐家业,张群正,田燕.妮咪唑啉类化合物在盐酸中对A3钢的缓蚀性能[J].油田化学,1997,14(4): 317-319
    [120]王大喜,刘丽霞. IMC-1新型缓蚀剂的复配测试结果及评价[J].材料保护,2001,34(6):37-39
    [121]蒋秀,骆素珍,郑玉贵等.炔氧甲基季胺盐和咪唑啉对N80在饱和CO2的3%NaCl溶液中的缓蚀性能研究[J].中国腐蚀与防护学报.2004,24(1):10-15.
    [122] Lu Yuan, Liu He-xia, Zhao Jing-mao. Inhibition Mechanism of Imidazoline Derivatein Simulated Water rom Deep Ga swell Containing CO2[J]. 2007,13(3):243-249
    [123]黄金营,魏慧芳,张利,郑家燊.咪唑啉油酰胺的合成及在油气井产出液中的缓蚀性能[J].油田化学,2004,21(3):231-235
    [124]艾俊哲,姬鄂豫,祖荣等.咪唑啉硫脲衍生物对电偶腐蚀的抑制作用[J].石油与天然气化工, 2004, 33(5):357-361
    [125]尹成先,冯耀荣,兰新哲等.一种新型固体缓蚀剂的合成及性能[J].精细化工, 2006, 23(9): 930-932
    [126]陈普信,郑家燊,王海等.SIM-1气举井固体缓蚀剂的研究与应用[J].油田化学.2001, 18(3):232-234.
    [127]李静,孙冬柏,李桂芝等.CO2腐蚀缓蚀剂研究现状及进展[J].石油化工腐蚀与防护.1998,15(4):39-41.
    [128] Hong T., Sun Y. H., Jepson W. P. Study On Corrosion Inhibitor In Large Pipelines Under Multiphase Flow Using EIS[J].Corrosion Science.2002,44:101-112.
    [129] Lopez D.A. , S. Simison N. Inhibitors Performance In CO2 Corrosion:EIS Studies On The Interaction Between Their Molecular Structure and Steel Microstructure[J].Corrosion Science.2005,47:735-755.
    [130]苏俊华,张学元,王风平等.饱和CO:的高矿化度溶液中咪唑啉缓蚀机理的研究[J].材料保护,1999, 32 (5):32-33
    [131]杨怀玉,陈家坚,曹楚南等. H2S水溶液中的腐蚀与缓蚀作用机理的研究一Ⅶ: H2S溶液中咪唑啉衍生物对碳钢腐蚀电极过程的影响[J].中国腐蚀与防护学报,2002, 22 (6):321-325
    [132] Suzuki K. The study of inhibitor for sour gas service[J]. Corrosion, 1982, 7: 386-389
    [133] Jovancicevic V., Ramachandran S., Prince P. Inhibition of C02 corrosion of mild steel by imidazoline and their precursors[J]. Corrosion Science Section, NACE, 1999, 55(5):449-455
    [134] Edwards A., Osborne C., Webster S.. Mechanisitic studies of the corrosion inhibitor oleic imidazoline[J]. Corrosion science 1994,36 (2): 315-325
    [135]杨怀玉,陈家坚,曹楚南等.H2S水溶液中的腐蚀与缓蚀作用机理的研究一Ⅵ:H2S溶液中咪唑啉衍生物对碳钢腐蚀电极过程的影响.中国腐蚀与防护,2002,22(3): 148-152
    [136]颜红侠,张秋禹,张军平等.咪唑啉型缓蚀剂的合成及其抑制C02腐蚀性能的研究.石油与天然气化工,2002, 31 (6) :319-328
    [137]宁世光.咪唑啉衍生物对钢在酸中的缓蚀作用与电子密度和前线轨道能量的关系[J].中国腐蚀与防护学报, 1990,10(4):383-389
    [138] Blair C M. The existence of imidazoline corrosion inhibitors discussion[J]. Corrosion,1985,5(41): 616-623
    [139] Michael, Sundberg N., Advanced in the art of aqueous oxygen scavenging[J].Corrosion,1982, 38(1):24-33
    [140]查全性.电极过程动力学[M].第2版.北京:科学出版社,1987. 7
    [141]张祖训,汪尔康.电化学原理和方法[M].第1版,北京:科学出版社,2000, 520
    [142] Alberty R. Silbey R. Physical Chemistry[M]. New York, NY: Wiley and Sons 1997.845
    [143] Joshi K. M., Mahajan S. I., Bapat M. R., Adsorption of ortho-meta- and para-toluidines from KI solution[J].Journal of Electroanalytical Chemistry, 1974, 54(2): 371-378
    [144] Moussa A. A., Ghaly H. A., Abou-Romia M. M., El-Taib Heakal F. Adsorption and orientation of coumarin molecules on mercury—II : Differential capacitance of mercury in pure and coumarinated aqueous electrolytes: characterization of the adsorption isotherms [J]. Electrochimica Acta, 1975, 20,(6-7), 489-497
    [145] Vosta J., Eliasek J., Study on Corrosion Inhibition from Aspect of Quantum Chemistry[J], Corrosion Science, 1971, 11(4):223-229
    [146] Growcock F. B., Freinier W. W., Inhibition of steel Corrosion in HC1 by Derivatives of Cinnamaldehyde, PartII,Structure一Activity Correlation[J].Corrosion.1989,45 (12):1007-1015
    [147] Abdul-Ahad P. G., Al-Madfai S. H. F. Elucidation of Corrosion Inhibition Mechanism by Means of Calculated Electrinic Indexs[J]. Corrosion, 1989, 45 (12):978-980
    [148] Wang D H, Gan F X, Zou J Y. A new Electrochemical Oscillation Induced by Organic Corrosion Inhibitors in Fe/HzS04 System[J]. Electrochimica, 1998, 43:14-15
    [149]朱苓.缓蚀剂缓蚀作用的研究方法[J].腐蚀与防护.1999, 20 (7) : 300-302
    [150]王佳,曹楚南,陈家坚.缓蚀剂理论与方法的进展[J].腐蚀科学与防护技术.1992, 4 (2) : 79-86
    [151] MasahikoYamahuchi et al. The Inhibition of Passive Film Break down on Iron in a Borate Buffe Solution Containing Chloride Ions Organic Anion Inhibitors[J]. Corrosion Science,1994,36(2):241-258
    [152] M.Y amaguchi et al.The Inhibitor of Pit Growth on an Iron Surface in a Borate Buffer Solution Containing ChlorideIon by Inhibitors Classified as Sofe Bases in the HSABPrinciple [J].Corrosion Science,1995,37(4):571-585
    [153]王大喜,肖鹤鸣.取代基咪唑啉与铁原子化学吸附作用能的量子化学计算[J].分子科学学报,2000,
    [154]吕祥鸿.高温高压下Cl-浓度、CO2分压对13Cr不锈钢点蚀的影响[J].材料保护,2004.6(37):34~36.
    [155]单江涛.G105钢在盐水钻井液中的腐蚀行为[J].材料保护,2004, 6(37):44~45.
    [156]韩有松,孟广兰,王少青等著.中国北方沿海第四纪地下复合盐水[M].北京:科学出版社, 1996, 55~87
    [157] Kwon S.K., Suzuki S., Saito M., Kamimura T., Atomic-scale structure of -FeOOH containing chromium by anomalous X-ray scattering coupled with reverse Monte Carlo simulation[J]. Corrosion. Science, 2006, 48: 1571–1584
    [158] Kendig M, Mansfeld F, Tsai S. Determination of the long term corrosion behavior of coated steel with a.c. impedance measurements[J]. Corrosion. Science,1983, 23(4): 317.
    [159]徐海波.吸附型缓蚀剂作用机制的电化学和表面增强拉曼光谱研究[D].中国科学院金属腐蚀与防护研究所,1997: 47- 56
    [160]穆振军.天然海水中“绿色”复合缓蚀剂的研发及其缓蚀性能和缓蚀机理的研究[D].中国海洋大学,2004:1
    [161] Rajendran S, S. Reenkala M, Anthony N. Palaniswamy, Synergistic corrosion inhibition by the sodium dodecylsulphate–Zn2+ system [J]. Corrosion Science. 2002, 44: 2243-2252.
    [162]郑逸云,周柏青,李芹.水处理缓蚀剂应用现状与发展[J].腐蚀科学与防护技术, 2004, 16(2): 101-104
    [163]王佳,曹楚南,林海朝.孔蚀发展期的电极阻抗频谱特征来[J].中国腐蚀与防护学报, 1989, 9(4):271
    [164]顾惕人.表面化学[M].北京:科学出版社, 2003, 40
    [165]赵维,夏明珠,雷武,王风云.有机磷缓蚀剂分子结构与缓蚀性能的量子化学研究[J].中国腐蚀与防护学报, 2002, 22(4): 217-220
    [166]徐寿昌.工业冷却水处理技术[M].北京:化学工业出版社, 1984, 272
    [167] Rajendran S., Apparao B. V. , Palaniswamy N. Corrosion inhibition by strainless complexes[J]. Corrosion Science. 2001, 43: 1345-1354
    [168]赵永韬,吴建华,王佳.缓蚀剂对船用钢在潮湿大气中的防蚀研究[J].电化学, 2001, 7(4): 472-479
    [169]许淳淳,何海平.钨酸钠与十二烷基苯磺酸钠协同缓蚀作用研究表面技术[J]. 2005,34(3): 33-35
    [170] Zlatanovic M, Popovic N, Bogdanovb Z, Zlatanovic S. Pulsed plasma-oxidation of nitrided steel samples[J]. Surface and Coatings Technology. 2003, 174–175: 1220-1224.
    [171] Ziemniak S E, Hanson M. Corrosion behavior of 304 stainless steel in high temperature, hydrogenated water[J]. Corrosion Science. 2002, 44: 2209-2230.
    [172] Sarina P, Snoeyinkb V L, Bebee J. Iron release from corroded iron pipes in drinking water distribution systems: effect of dissolved oxygen[J]. Water Reseach. 2004, 38: 1259-1269.
    [173] Rokuro N, Daisuke S, Yasuaki M. Hydrogen permeation and corrosion behavior of high strength steel MCM 430 in cyclic wet–dry SO2 environment[J]. Corrosion Science. 2004, 46: 225-243.
    [174]张天胜.缓蚀剂[M].北京:化学工业出版社,2002,35
    [175]曹楚南.腐蚀电化学原理[M].北京:化学工业出版社,2004,243-244
    [176] Bastidas J.M., Pinilla P., Polo J.L. Adsorption of Benzotriazole on copper electrode surface in citric acide midia[J]. Corrosion, 2002, 58(11): 922-931
    [177]张士国,李红,张向东.苯胺类缓蚀剂的量子化学研究[J].中国腐蚀与防护学报,1997,17(4):299-302
    [178]赵维,夏明珠,雷武等.有机磷缓蚀剂分子结构与缓蚀性能的量子化学研究[J].中国腐蚀与防护学报,2002,22(4):217-220
    [179]颜肖慈,赵红,罗明道.金属缓蚀剂的量子化学研究现状与展望[J].自然杂志,1999,20(3):134-138
    [180] Bereket G., Hur E.,Ogretir C. Quantumchemical studies on some imidazole derivatives as corrosion inhibitors for iron in acidic medium[J].Journal of Molecular Structure(Theochem),2002,578:79-88.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700