用户名: 密码: 验证码:
壳聚糖季铵盐/高分子复合纳滤膜的制备及其特征研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
通过季铵化与接枝共聚两种不同的方式对壳聚糖进行改性,获得了两种不同的壳聚糖季铵盐,分别为2-羟基-3-三甲铵基-丙基壳聚糖(HAPC)和壳聚糖-三甲基烯丙基氯化铵接枝共聚物(GCTACC)。以HAPC和GCTACC为活性层的成膜材料,以亲水性不一的聚砜(PSF)超滤膜、聚丙烯腈(PAN)超滤膜为支撑层,以环氧类、二异氰酸酯类等不同类型的有机试剂为交联剂,采用涂敷和交联的方法,制备了11种新型荷正电复合纳滤膜。利用扫描电境(SEM)、原子力显微镜(AFM)对其结构形貌进行观察;利用红外光谱对膜表面交联情况进行分析;此外,还调查了复合膜的渗透特征和一些其它特征。
     以高氯酸为催化剂和反应介质,使壳聚糖在均相条件下与缩水甘油醚三甲基氯化铵发生季铵化反应,制备2-羟基-3-三甲铵基-丙基壳聚糖(HAPC)。以HAPC为活性层材料,以PAN为支撑层,以具有不同链长结构的环氧氯丙烷(ECH)和丙三醇三缩水甘油醚(GCGCE)环氧类为交联剂制备了两种HAPC/PAN复合纳滤膜。ECH交联的复合膜在室温下纯水渗透系数为9.25 L·.h~(-1)·m-2·MPa~(-1);在室温和操作压力为1.0MPa下,其截留分子量为560,膜孔径约为0.74nm,均方粗糙度(RMS)为8.50±1.5(103nm);电压渗系数为12.0 mv·MPa~(-1);在操作压力为1.0MPa下,对1000 mg·L~(-1) MgCl_2、CaCl_2、KCl、NaCl和Na2SO4溶液的截留率分别为96.6、96.6、56.1、57.5和26.6%,通量分别为7.00、7.30、16.3、15.9、9.86 L·m-2·h~(-1)。GCGCE交联HAPC/PAN复合纳滤膜。该复合膜在室温下纯水渗透系数为16.6 L·h~(-1)·m-2.·MPa~(-1);在室温和操作压力为1.0MPa下,其截留分子量为800,膜孔径约为0.84nm;均方粗糙度(RMS)为22.3±0.30(103nm);电压渗系数为4.43mv·MPa~(-1);在操作压力为1.0MPa,对1000 mg·L~(-1) MgCl_2、CaCl_2、MgSO4、KCl和K2SO4溶液的截留率分别为87.9、72.4、25.4、19.1和11.3%,通量分别为12.2、22.9、28.9、29.6和31.8 L·m-2·h~(-1)。
     发现具有长链结构GCGCE交联HAPC/PAN的复合纳滤膜的截留分子量、纯水渗透系数均要大于具有短链结构ECH交联HAPC/PAN的复合纳滤膜。以HAPC为活性层材料,以PAN为支撑层,以具有不同刚软结构的二异氰酸酯如六亚甲基二异氰酸酯(HDI)、甲苯二异氰酸酯(TDI)为交联剂,分别制备了两种HAPC/ PAN复合纳滤膜。HDI交联的复合膜在室温下纯水渗透系数为17.2 L·. h~(-1)·m-2·MPa~(-1);在室温和操作压力为1.0MPa下,截留分子量为520,膜孔径约为0.72nm,电压渗系数为6.31 mv·MPa~(-1);均方粗糙度(RMS)为15.6±0.24(103nm);在操作压力为1.0MPa下,对1000 mg·L~(-1) MgCl_2、CaCl_2、KCl、NaCl和Na2SO4溶液的截留率分别为92.9、93.4、50.3、67.3和19.6%,通量分别为12.3、32.8、31.3、10.4和32.3 L·m-2·h~(-1);HDI和TDI交联的复合膜在室温下纯水渗透系数为10.6 L·h~(-1)·.m-2.·MPa~(-1);在室温和操作压力为1.0 MPa下,截留分子量为560,膜孔径约为0.74nm;电压渗系数为7.73 mv·MPa~(-1);均方粗糙度(RMS)为12.3±0.52 (103nm);在操作压力为1.0MPa下,对1000mg·L~(-1) MgCl_2、CaCl_2、MgSO4、KCl、NaCl和Na2SO4溶液的截留率分别为96.6、95.6、50.4、61.5、61.5和24.7%,通量分别为12.9、14.7、15.3、14.1、13.2和12.6 L·m-2·h~(-1)。
     发现以单一具有软性结构的HDI为交联剂制备的纳滤膜具有较强的截留能力和透水能力。以单一具有刚性结构的TDI为交联剂所制备的复合膜较脆、易裂;且制备条件苛刻。以TDI与HDI混合为交联剂所制备的复合膜,有较强的截留能力和适中的透水能力。
     以HAPC为活性层材料,以PAN超滤膜为支撑层,以己二酸和乙酸酐的混合酸酐为交联剂,制备了另一种HAPC/PAN复合纳滤膜。该膜在室温下纯水渗透系数为6.99 L·.h~(-1)·m-2·MPa~(-1);在室温和操作压力为1.0 MPa下,截留分子量为560,膜孔径约为0.74nm;电压渗系数为7.73 mv·MPa~(-1);均方粗糙度(RMS)为7.50±0.31 (103nm);在操作压力为1.0MPa下,对1000 mg·L~(-1) MgCl_2、NaCl、KCl、MgSO4、K2SO4、Na2SO4和CaCl_2溶液的截留率分别为95.8、69.7、65.7、38.1、21.9、27.5和97.2%,通量分别为4.81、7.96、8.88、7.96、8.19、8.27和7.65 L·m-2·h~(-1)。由于交联时引进酯基,复合膜的疏水性增强,该复合膜截留能力较强,但透水性降低。
     以HAPC为表面活性层,以PSF为支撑层,分别以HDI和ECH为交联剂,制备了两种HAPC/PSF复合纳滤膜。HDI交联HAPC/PSF的复合膜在室温下纯水渗透系数为13.6 L·. h~(-1)·m-2·MPa~(-1);在室温和操作压力为1.0MPa下,该膜截留分子量为500,膜孔径约为0.71nm;电压渗系数为10.8 mv·MPa~(-1);均方粗糙度(RMS)为9.63±0.18 (103nm);在操作压力为1.0MPa下,对1000 mg·L~(-1) MgCl_2、MgSO4、Na2SO4、K2SO4、KCl和NaCl溶液的截留率分别为96.9、58.5、36.5、33.1、76.0和80.9%,通量分别为12.9、11.9、11.6、11.6、13.8和13.9 L·m-2·h~(-1);ECH交联的复合膜在室温下纯水渗透系数为12.6 L·.h~(-1)·m-2·MPa~(-1);在室温和操作压力为1.0MPa下,该膜截留分子量为720,膜孔径约为0.82nm;电压渗系数为34.2 mv·MPa~(-1);均方粗糙度(RMS)为8.45±0.38 (103nm),在操作压力为1.0MPa下,对1000 mg·L~(-1) MgCl_2、MgSO4、Na2SO4、K2SO4、KCl和NaCl溶液的截留率分别为96.5、45.0、31.8、22.5、67.1和70.8%,通量分别为15.6、14.1、14.4、13.9、15.5和14.1L·m-2·h~(-1)。
     以PSF为支撑层, HDI为交联剂所制备的HAPC/PSF复合纳滤膜相对以PAN为支撑层所制备的HAPC/PAN复合纳滤膜,膜的截留性能提高,但透水能力下降;以PSF为支撑层,ECH为交联剂所制备的HAPC/PSF复合纳滤膜相对以PAN为支撑层所制备的HAPC/PAN复合纳滤膜,膜的透水能力增强,但截留性能几乎保持不变。
     将壳聚糖与三甲基烯丙基氯化铵进行接枝共聚,制备壳聚糖-三甲基烯丙基氯化铵接枝共聚物(GCTACC)。
     以GCTACC为表面活性层材料,以PAN为支撑层,以ECH为交联剂所制备的GCTACC/PAN复合纳滤膜。该膜在室温下纯水渗透系数为6.30 L·.h~(-1)·m-2·MPa~(-1);在室温和操作压力为1.0MPa下,其截留分子量仅为490左右,膜孔径约为0.70nm;电压渗系数为11.7mv·MPa~(-1);均方粗糙度(RMS)为10.2±0.13(103nm);在操作压力为1.2MPa时,对质量浓度为1000 mg·L~(-1)的MgCl_2、CaCl_2、MgSO4、、NaCl、Na2SO4溶液的截留率分别为97.6、97.2、89.7、65.0和40.7%;通量分别为6.80、6.12、6.12、5.57和5.51 L·h~(-1)·m-2。由于以具有短链结构的ECH为交联剂,形成交联网络孔径较小,该膜的透水能力较弱,截留分子量小。
     以GCTACC为表面活性层材料,以PAN为支撑层,以具有刚软结构不同的二异氰酸酯类(HDI和TDI)为交联剂,制备了二异氰酸酯类交联的GCTACC /PAN复合纳滤膜。HDI交联的复合膜在室温下纯水渗透系数为6.42 L·.h~(-1)·m-2·MPa~(-1);截留分子量为900左右,膜孔径约为0.87nm;电压渗系数为6.80 mv·MPa~(-1);均方粗糙度为8.76±0.23(103nm);在操作压力为1.2MPa下,对2000 mg·L~(-1) MgCl_2、CaCl_2、MgSO4、KCl、NaCl和Na2SO4溶液的截留率分别为95.6、95.4、80.8、53.7、66.4和30.7%,通量分别为6.73、6.73、6.12、6.43、7.35和6.73 L·m-2·h~(-1)。TDI交联的复合膜在室温下纯水渗透系数为14.1 L·.h~(-1)·m-2·MPa~(-1);截留分子量为930左右,膜孔径约为0.89nm;电压渗系数为6.80 mv·MPa~(-1);均方粗糙度为7.28±0.07(103nm);在操作压力为1.2MPa下,对2000mg·L~(-1) MgCl_2、CaCl_2、MgSO4、KCl、NaCl和Na2SO4溶液的截留率分别为94.0、91.7、61.9、41.9、57.0和20.1%,通量分别为9.48、10.1、11.3、8.57、8.57和8.57 L·m-2·h~(-1)。
     具有刚性结构的GCTACC与具有软性分子链结构的HDI交联时相容性较好,交联网络相对致密,膜的孔径较小。复合纳虑膜透水能力较差,截留分子量较小。以GCTACC为表面活性层材料,以PAN为支撑层,己二酸和乙酸酐混合酸酐为交联剂,制备了另一种GCTACC/PAN复合纳滤膜。该膜在室温下纯水渗透系数为7.13 L·.h~(-1)·m-2·MPa~(-1);截留分子量为900左右,膜孔径约为0.87nm;均方粗糙度为7.70±0.76 (103nm);在操作压力为1.0MPa下,对1000mg·L~(-1)的MgCl_2、MgSO4、Na2SO4、K2SO4、KCl和NaCl溶液截留率分别为90.0、56.0、26.4、14.0、41.3和37.4%,通量分别为6.12、5.90、5.42、5.72、6.12和5.67 L·h~(-1)·m-2。由于交联引进酯基,复合膜的疏水性增强,该复合膜表现出较弱的透水能力。
     SEM观察显示出该复合膜截面呈层状叠加结构或呈指状分布支撑层上复合了一层较薄的活性层,表面呈现出少量凝胶颗粒或叠加的片状凝胶层。与其它纳滤膜类同,随着料液浓度的增大,膜的截留率下降。随着操作压力的增大,通量呈线性增加;截留率先增大,当操作压力超过某一值时,便趋于稳定或呈现下降的趋势。料液流速对膜性能影响较小。对不同盐溶液的截留顺序为:MgCl_2> MgSO_4> NaCl >Na_2SO_4或MgCl_2 > NaCl > MgSO_4> Na_2SO_4,复合膜的电压渗系数β为正值,均呈现荷正电纳滤膜的特征。
     首次提出荷正电纳滤膜去除卤水中钙、镁离子后,加入水氯镁石制备光卤石的新方法,具有节能、操作简单、高效等优点。借助XRD对光卤石样品进行了表征。
     以废水回用为目的,采用自制的荷正电复合纳滤膜处理褐藻酸钠废水。.结果表明,废水经纳滤处理后,出水的CODcr为21.4mg/L,去除率为93.0%;对Ca2+的去除率为89.0% ,对硬度的去除率为88.3%,能很好实现废水的软化和有机物的去除,出水水质完全可回用于生产工艺。
Two different quaternized chitosans are prepared by two different methods, 2-hydroxy-3-trimethyl ammonium propyl chitosan (HAPC) and graft copolymer of trimethylallyl ammonium chloride onto chitosan (GCTACC), respectively. Eleven kinds of positively charged NF membranes are prepared by method of coating and cross-linking using HAPC and GCTACC as surface active layer; PSF UF membrane and PAN UF membrane with different hydrophilicity as support layer and different organic reagents such as epoxide, diisocyanate, etc as cross-linking reagents. Their structure images are characterized by scanning electron microscope (SEM) and atomatic force microscopy (AFM), and their cross-linking on the surface is analyzed by infrared spectrum (IR). Besides, the permeation characteristic is investigated as well as other ones.
     HAPC is prepared using HClO4 as catalyst and reaction medium,which makes chitosan and diglycidyl ether trimethyl ammonium react under mild conditions
     Two kinds of HAPC/PAN composite NF membranes are prepared using HAPC as surface active layer; PAN as support layer and epoxide such as epichlorohydrin (ECH) with short chain; glycerol tridiglycidyl ether (GCGCE) with long chain as cross-linking reagents. At room temperature, the water permeability through the membrane from ECH cross-linking is 9.25 L·.h~(-1)·m-2·MPa~(-1), and its molecular weight cut-off is 560, with a pore diameter of 0.74nm or so, and the root-mean square roughness is 8.50±1.5(103nm), and its pressure osmotic coefficient of 12.0 mv·MPa~(-1). Addtionally, at a pressure of 1.0MPa, the rejection for 1000 mg·L~(-1)MgCl_2, CaCl_2, KCl, NaCl and Na2SO4 is 96.6, 96.6, 56.1, 57.5 and 26.6%, respectively, with a flux of 7.00, 7.30, 16.3, 15.9 and 9.86 L·m-2·h~(-1), respectively. At room temperature, the water permeability through the membrane from GCGCE cross-linking is 16.6 L·.h~(-1)·m-2·MPa~(-1), and its molecular weight cut-off is 800, with a pore diameter of 0.84nm or so, and the root-mean square roughness is 22.3±0.30 (103nm), and its pressure osmotic coefficient of 4.43 mv·MPa~(-1). Addtionally, at a pressure of 1.0MPa, the rejection for 1000 mg·L~(-1) MgCl_2, CaCl_2, MgSO4, KCl and K2SO4 is 87.9, 72.4, 25.4, 19.1 and 11.3%, respectively, with a flux of 12.2, 22.9, 28.9, 29.6 and 31.8 L·m-2·h~(-1), respectively.
     It is found that NF membrane from GCGCE cross-linking shows stronger permeability and bigger cut-off molecular weight (MWCO) than the one from ECH cross-linking, which results from the relatively longer chain in GCGCE.
     Two kinds of HAPC/PAN composite NF membrane are prepared using HAPC as surface active layer; PAN membrane as support layer and diisocyanate such as hexamethylene diisocyanate (HDI) with clinical structure; toluene diisocynate (TDI) with rigid structure as cross-linking reagents. The performance and characterization about them are listed as follows. At room temperature, the water permeability through the membrane from HDI cross-linking is 17.2L·.h~(-1)·m-2·MPa~(-1), and its molecular weight cut-off is 520, with a pore diameter of 0.72nm or so, and its pressure osmotic coefficient of 6.31 mv·MPa~(-1), and the root-mean square roughness is 15.6±0.24(103nm). Addtionally, at a pressure of 1.0MPa, the rejection for 1000 mg·L~(-1) MgCl_2, CaCl_2, MgSO4, NaCl and Na2SO4 is 92.9, 93.4, 50.3, 67.3 and 19.6%, respectively, with a flux of 12.3, 32.8, 31.3, 10.4 and 32.3 L·m-2·h~(-1), respectively. At room temperature, the water permeability through the membrane from mixed diisocyanate cross-linking is 10.6 L·.h~(-1)·m-2
     ·MPa~(-1), and its molecular weight cut-off is 560, with a pore diameter of 0.74nm or so, and its pressure osmotic coefficient of 7.73 mv·MPa~(-1), and the root-mean square roughness is 15.6±0.24(103nm). Addtionally, at a pressure of 1.0MPa, the rejection for 1000 mg·L~(-1) MgCl_2, CaCl_2, MgSO4, KCl, NaCl and Na2SO4 is 96.6, 95.6, 50.4, 61.5, 61.5 and 24.7%, respectively, with a flux of 12.9, 14.7, 15.3, 14.1, 13.2 and 12.6 L·m-2·h~(-1), respectively.
     The composite NF membrane from HDI cross-linking has stronger permeability and allows higher rejection. And the one from HDI cross-ling shows some disadvantages, i.e. this membrane is fragile and easily crackle, and its conditions of preparation are comparatively severe. However, the composite NF membrane from mixed diisocynate containing TDI and HDI has higher rejection, and it allows moderate permeability.
     Another HAPC/PAN composite NF membrane is prepared using HAPC as surface active layer; PAN as support layer and mixed anhydride of acetic anhydride \and hexane diacid as cross-linking reagent. At room temperature, the water permeability through this membrane is 6.99L·.h~(-1)·m-2·MPa~(-1), and its molecular weight cut-off is 565, with a pore diameter of 0.74nm or so, and the root-mean square roughness is 7.50±0.31(103nm). Addtionally, at a pressure of 1.0MPa, the rejection for 1000 mg·L~(-1) MgCl_2,NaCl,KCl,MgSO_4,K_2SO_4,Na_2SO_4 andCaCl_2 is 95.8,69.7, 65.7, 38.1, 21.9, 27.5and 97.2%, respectively, with a flux of 4.81, 7.96, 8.88, 7.96,8.19,8.27and 7.65 L·m-2·h~(-1), respectively. The resultant membrane has higher rejection, but it shows weaker permeability, which results from the stronger hydrophobicity due to cross-linking.
     Two kinds of HAPC/PAN composite NF membranes are prepared using HAPC as surface active layer; PSF membrane as support layer; both HDI and ECH as cross-linking reagent. At room temperature, the water permeability through the membrane from HDI cross-linking is 13.6 L·.h~(-1)·m-2·MPa~(-1), and its molecular weight cut-off is 500, with a pore diameter of 0.71nm or so, and its pressure osmotic coefficient of 10.8 mv·MPa~(-1), and the root-mean square roughness is 9.63±0.18(103nm). Addtionally, at a pressure of 1.0MPa, the rejection for 1000 mg·L~(-1) MgCl_2, MgSO4, Na2SO4, K2SO4, KCl and NaCl is 96.9, 58.5, 36.5, 33.1, 76.0 and 80.9%, respectively, with a flux of 12.9, 11.9, 11.6, 11.6, 13.8 and 13.9 L·m-2·h~(-1), respectively. At room temperature, the water permeability through the membrane from ECH cross-linking is12.6 L·.h~(-1)·m-2·MPa~(-1), and its molecular weight cut-off is 720, with a pore diameter of 0.82 nm or so, and its pressure osmotic coefficient of 34.2 mv·MPa~(-1), and the root-mean square roughness is 15.6±0.24(103nm). Addtionally, at a pressure of 1.0MPa, the rejection for 1000 mg·L~(-1) MgCl_2, MgSO4, Na2SO4, K2SO4, KCl and NaCl is 96.5, 45.0, 31.8, 22.5, 67.1 and 70.8%, respectively, with a flux of 15.6, 14.1, 14.4, 13.9, 15.5 and 14.1L·m-2·h~(-1), respectively.
     Compared with the HAPC/PAN composite NF membrane from HDI cross-linking, the HAPC/PSF composite one from HDI cross-linking has higher rejection, but shows weaker permeability. Compared with the HAPC/PAN composite NF membrane from ECH cross-linking, the HAPC/PSF composite one from ECH cross-linking has better performance with stronger permeability and almost unchanging rejection.
     Graft copolymer of trimethylallyl ammonium chloride onto chitosan (GCTACC) is obtained by grafting trimethylallyl ammonium chloride on chitosan.
     GCTACC/PAN composite NF membrane is prepared using GCTACC as surface active layer; PAN membrane as support layer and ECH as cross-linking reagent. At room temperature, the water permeability through this membrane is 6.30 L·.h~(-1)·m-2·MPa~(-1), and its molecular weight cut-off is 490, with a pore diameter of 0.70nm or so, and the root-mean square roughness is 10.2±0.13(103nm). Addtionally, at a pressure of 1.2MPa, the rejection for 1000 mg·L~(-1) MgCl_2, CaCl_2, MgSO4, NaCl and Na2SO4 is 97.6, 97.2, 89.7, 65.0 and 40.7%, respectively, with a flux of 6.80, 6.12, 6.12, 5.57 and 5.51 L·h~(-1)·m-2, respectively. This membrane has weaker permeability due to the introduction of hydrophilicity groups from cross–linking, in good agreement with small MWCO.
     GCTACC/PAN composite NF membranes are prepared using GCTACC as surface active layer; PAN membrane as support layer; both HDI and TDI as cross-linking reagents. At room temperature, the water permeability through the membrane from HDI cross-linking is 6.42 L·.h~(-1)·m-2·MPa~(-1), and its molecular weight cut-off is 900, with a pore diameter of 0.87nm or so, and its pressure osmotic coefficient of 6.80 mv·MPa~(-1), and the root-mean square roughness is 8.76±0.23(103nm). Addtionally, at a pressure of 1.2MPa, the rejection for 2000 mg·L~(-1) MgCl_2, CaCl_2, MgSO4, KCl, NaCl and Na2SO4 is 95.6, 95.4, 80.8, 53.7, 66.4 and 30.7%, respectively, with a flux of 6.73, 6.73, 6.12, 6.43, 7.35 and 6.73 L·m-2·h~(-1) L·h~(-1)·m-2, respectively. At room temperature, the water permeability through the membrane from HDI cross-linking is 14.1L·.h~(-1)·m-2·MPa~(-1), and its molecular weight cut-off is 930, with a pore diameter of 0.89 nm or so, and its pressure osmotic coefficient of 6.80 mv·MPa~(-1), and the root-mean square roughness is 7.28±0.07(103nm). Addtionally, at a pressure of 1.2MPa, the rejection for 2000 mg·L~(-1) MgCl_2, CaCl_2, MgSO4, KCl, NaCl and Na2SO4 is 94.0, 91.7, 61.9, 41.9, 57.0 and 20.1%, respectively, with a flux of 9.48, 10.1, 11.3, 8.57, 8.57 and 8.57 L·h~(-1)·m-2, respectively.
     GCTACC/PAN composite NF membrane from HDI cross-linking shows weaker permeability and has low molecular weight cut-off, which can results from the reason that GCTACC is polymer with rigid structure, while HDI has clinical structure, thus the compatibility between GCTACC and HDI is better and the cross-linking reaction is carried on easily, resulting in the compact cross-linked network and smaller pore diameter of membrane.
     Another GCTACC/PAN composite NF membrane is prepared using GCTACC as surface active layer; PAN membrane as support layer and mixed anhydride of acetic anhydride and hexane diacid as cross-linking reagent. At room temperature, the water permeability through this membrane fis 7.13 L·.h~(-1)·m-2·MPa~(-1), and its molecular weight cut-off is 900, with a pore diameter of 0.87 nm or so, and the root-mean square roughness is 7.70±0.76 (103nm). Addtionally, at a pressure of 1.0MPa, the rejection for 1000 mg·L~(-1) MgCl2, MgSO4, Na2SO4, K2SO4, KCl and NaCl is 90.0, 56.0, 26.4, 14.0, 41.3 and 37.4%, respectively, with a flux of 6.12、5.90、5.42、5.72、6.12 and 5.67 L·h~(-1)·m-2, respectively. It is found that the resultant membrane shows weaker permeability,as a result of stronger hydrophobicity due to cross-linking.
     Thus it is not difficult to find that the characteristic and performance of composite membranes are related to the physicochemical characteristic of film-forming material; the type of cross-linking reagent and the compatibility between surface active layer and support layer and roughness, etc.
     The structure images of composite NF membrane are observed by SEM. The results suggest the cross-section of membrane is consist of adding-layer or a thin active layer on finger-like support layer, and the surface of membrane has a contribution of some gel particle or adding gel-layer. Similar to other nanofiltration membrane, the rejection decreases with an increasing in feed concentration; with an increase of operating pressure, the flux almost increases linearly; and the rejection increases slowly, then approaches a constant value or shows the trend to decrease when operating pressure exceeds a certain value. And the feed cross-flow rate has little influence on membrane performance. Besides, the rejection of composite NF membranes is related to the existent form of ions. The rejection order for different salts is MgCl2 > MgSO4 > NaCl > Na2SO4 or MgCl2 > NaCl > MgSO4 > Na2SO4, and the pressure osmotic coefficients are positive, suggesting the characteristic of positively charged NF membrane.
     It is reported first that a positively charged NF membrane is adopted to carry on the preparation of carnallite by rejection of Ca2+ and Mg2+brackish water through NF and addition of MgCl2·6H2O. The method has some advantages including high efficiency, conveninent operation, etc. And carnallite is characterized by XRD.
     Additionally, the positively charged composite membrane prepared is applied to treat wastewater that drained from the production of sodium alginate.The results suggest that after the treatment of nanoflitration , the desalted solution might be reused as technological water , with a rejection of 93.0% for CODcr (21.4mg/L), a rejection of 89.0 % for Ca2+ and a rejection of 88.3% for rigidity.
引文
[1]高从堦,陈国华.海水淡化技术与工程手册[M].北京:化学工业出版社, 2004 : 131-133
    [2]刘茉娥.膜分离技术应用手册[M].北京:化学工业出版社, 2001,1-24: 484- 494
    [3]蒋挺大.甲壳素[M].北京:中国环境科学出版社, 1996, 117-215 : 301-307
    [4]蒋挺大,壳聚糖[M].北京:化学工业出版社, 2001, 33-67; 170-178
    [5] J.E.Cadotte. Reverse osmosis membrane. USP4039440, 1997
    [6] J. M.M. Peeter. Characterication of nanofiltration membranes.Twente: University of Twente, 1997
    [7] M..Cheryan, Ultrafiltration Handbook,USA,1986
    [8] C.J.Gao, X.R.Lu, Z.G.Bao, et al. The exploration of Formation Membrane, In proceedings of the 1st National Seminar on Membrane and Membrane process, Dalian, China, 1991, (collection of the paper)
    [9] H.Herbet, P.Fang. Optimization of NS-100 membrane for reverse osmosis [J]. J. Applied Polymer Science, 1976, 20: 303-314
    [10] S.P.Nune, M.L.Sforca, K.Peinemann. Dense hydrophilic composition membrane for ultrafiltration [J]. J. Membr. Sci, 1995, 106: 49-56
    [11] I.Voigt, G. Fischer, P. PuhlfurB, et al.TiO2-NF-membranes on capillary supports [J]. Separation and Purification.Technology, 2003, 2: 87-/91
    [12] T.V. Gestel, H. Kruidhof, D. H.A.Blank, et al. ZrO2 and TiO2 membranes for nanofiltration and pervaporation Part 1. Preparation and characterization of a corrosion- resistant ZrO2 nanofiltration membrane with a MWCO< 300[J]. Journal of Membrane Science, 2006, 284: 128- 136
    [13]毕可英,刘玉荣,等.纳滤技术浓缩分离1,6-二磷酸果糖氯化钠水溶液的研究[J].水处理技术, 1995, 21(5): 271- 273
    [14] M. Kurihara and Y. Fusaoka, Maku (Membrane), 1999, 24: 247
    [15] S.R.Nunes and K.V. Peinemann. In Membrane Technology in the Chemical Industry, S.R Nunes and K.V. Peinemann, Eds., Wiley, Germany, 2001, pp. 1-53.
    [16] K. Ko?utic, L.K.Kunst, B.Kunst. Porosity of some commercial reverseosmosis and nanofiltration polyamide thin-filmcomposite membranes [J]. J.Membr.Sci, 2000, 168:101-113
    [17] Whu. J. Nanofiltration studies of large organic microsolutes in methanol solutions [J]. J. Membr.Sci, 2000, 170:158-160
    [18] W. R.Bowen, A.W. Mohammad and N.Hilal.Characterisation of nanofiltration membranes for predictive purposes - use of salts, uncharged solutes and atomic force microscopy[J]. Journal of Membrane Science, 1997, 126: 91-105
    [19] W.R.Bowen, A.W.Mohammad. A theoretical basis for specifying nanofiltration membranes Dye/salt/water streams [J]. Desalination, 1998, 117: 257-264
    [20] J.Schaep, C.Vandercasteele, A.W.Mohammad, et al. Modelling of the retention of ionic component for different nanofiltration membranes [J]. Sep.Purif.Tech, 22-23, 2001: 169-179
    [21] X.L.Wang, T.Tsuru, S.Nakao, et al. Electrolyte transport through nanofiltration membrane by the space–charge model and the comparison with Teorell-Meyer-Sievers model [J]. J. Membr. Sci. 1995, 103:117-133
    [22] A.E.Yaroshchuk. Non-steric mechanism of nanofiltration: Superposition of Donnan and dielectric exclusion [J]. Separation and purification technology, 2001, 22-23:143-158
    [23] W.R.Botwen, J.S.Welfoot. Modeling the performance of membrane nanofiltration critical assessment and model development [J]. J.Chemical Engineering, 2002, 57:1121-1137
    [24] D.X.Wang, M.Su , Y.Y.Zhao, et al. Separation performance of a nanofiltration membrane influcenced by species and concentration of ions[J].Desalination, 2005, 175: 219-225.
    [25] C.V. Chung, N.Q. Buu, N.Hoai. Influence of surface charge and solution pH on the performance chacteristics of a nanoflitration membrane [J]. Science and Technology of Advanced Materials, 2005, 6: 246-250
    [26] R.R.Sharma and C.Shankaraman. Temperature and concentration effects on electrolyte transport across porous thin-film composite nanofiltration membranes: pore transport mechanisms and energetics of permeation [J]. J. Colloid and interface science, 2006, 298: 327-340.
    [27] R.Rautenbach, A.Groschl. Separation potential of nanofiltration membrane [J]. Desalination, 1990, 77: 73-84
    [28] K.Yoshiaki, S.Yosuke, K.Takane, et al. Effects of hydrophobicity and molecular size on rejection of aromatic pesticides with nanofiltration membranes [J]. Journal of Membrane Science, 2001, 192: 1-10
    [29] L.Boris, G.R.Gnirss andA.Christian. Process configurations adapted to membrane bioreactors for enhanced biological phosphorous and nitrogen removal [J]. Desalination, 2002, 149: 217-221
    [30] T.Toshinori, H.Daisuke, Y.T.Yoshioka, et al. Effect of divalent cations on permeate volume flux through porous titania membranes [J]. Desalination, 2002, 147: 213-216
    [31]钟常明,郎万中,许振良,等.纳滤膜脱除纺丝洗涤废水中非挥发组分的研究[J].工业水处理, 2006,26(10):30-33
    [32] Y.Q.Yang, X.G.Jian, D.L.Yang, et al. Poly (phthalazinone ether sulfone ketone) (PPESK) hollow fiber asymmetric nanofiltration membranes: Preparation, morphologies and properties [J]. Journal of Membrane Science, 2006, 270: 1-12
    [33] I.C. Kim, K.H.Lee and T.M.Tak. Preparation and characterization of integrally skinned uncharged polyetherimide asymmetric nanofiltration membrane [J]. Journal of Membrane Science, 2001, 183: 235-247
    [34]高田更一.高分子论文集.1988,45(1):47
    [35] S.Béquet, J.C.Remigy, J.C.Rouch, et al. From ultrafiltration to nanofiltration hollow fibermembranes: a continuous UV-photografting process [J]. Desalination, 2002, 144: 9-14
    [36] J.W.Wang, Z.R.Yue, J.S.Ince, et al. Preparation of nanofiltration membranes from polyacrylonitrile ultrafiltration membranes [J]. Journal of Membrane Science, 2006, 286: 333–341
    [37] Z.P.Zhao, J.D.Li, J.Chen, et al.Nanofiltration membrane prepared from polyacrylonitrile ultrafiltration membrane by low-temperature plasma 2. Grafting of styrene in vapor phase [J]. Journal of Membrane Science, 2005, 251: 239- 245
    [38]于品早. CTA/PVDF共混中空纤维纳滤膜的研制[J].水处理技术, 2005, 31(12): 8-10
    [39] R.Bowen, W.Doneva, A.Teodora, et al. Polysulfone -sulfonated poly(ether ether) ketone blend membranes: systematic synthesis and characterization[J]. J. Membr. Sci, 2001, 81(2): 253-263.
    [40]夏长荣,孟广辉,杨萍华等.γ-Al2O3纳滤膜的结构和透过性能.材料研究学报[J]. 1998, 12(2): 133-138
    [41]梁雪梅,陆晓峰,刘光全,等.界面缩聚法制备聚芳酯复合纳滤膜的研究Ⅰ.基膜的制备[J].东华理工大学学报, 1999, 25(3): 297-303
    [42]夏永清,高从堦.磺化聚醚砜复合半透膜的初步研究[J].水处理技术, 1993, 19 (4) : 197-200
    [43] Y.Dai, X.G.Jian, S.H.Zhang, et al.Thin film composite (TFC) membranes with improved thermal sTableility from sulfonated poly (phthalazinone ether sulfone ketone) (SPPESK) [J]. Journal of Membrane Science, 2002, 207(2): 189-197
    [44] S.H.Zhang, X.G.Jian and Y.Dai. Preparation of sulfonated poly (phthalazinone ether sulfone ketone) composite nanofiltration membrane [J]. Journal of Membrane Science, 246 , 2005: 121-126
    [45] S.Veríssimo, K.V. Peinemann and J. Bordado. New composite hollow fiber membrane for nanofiltration [J]. Desalination, 2005, 184: 1-11
    [46]刘海霞,申艳.刘金盾.荷电纳滤膜的制备研究[J].河南化工, 2005, 22(12):18-19
    [47] L.C.Li, B.G.Wang, H.M.Tan, et al. A novel nanofiltration membrane prepared with PAMAM and TMC by in situ interfacial polymerization on PEK-C ultrafiltration membrane [J]. Journal of Membrane Science, 2006, 269: 84- 93
    [48] Y.Dai, X.G. Jian, S.H.Zhang, et al. ThermosTablele ultrafiltration and nanofiltration membranes from sulfonated poly (phthalazinone ether sulfone ketone) [J] . Journal of Membrane Science, 2001, 188: 195-203
    [49]陈国华,王娟,黄瑞华,等.一种新型羧甲基甲壳素/聚丙烯腈复合纳滤膜的研究[J].中国海洋大学学报, 2006, 36(3): 477- 483
    [50] J. Miao, G.H.Chen, C.J.Gao, et al. Preparation and characterization of N,O- carboxymethyl chitosan(NOCC)/polysulfone (PS) composite nanofiltration membranes[J]. Journal of Membrane Science, 2006, 280: 478- 484
    [51]鲁学仁,高从堦. PVDF荷电膜的制备与性能研究[J].水处理技术, 1994, 14(2): 22- 25
    [52]鲁学仁,高从堦.复合型RUF膜的初步研究[J ].水处理技术, 1992,18(6): 355-359
    [53] R.H.Du, J.S.Zhao. Properties of poly(N, N-dimethylaminoethyl methacry ) /polysulfone positively charged composite nanofiltration membrane[J] . Journal of Membrane Science, 2004, 239:183-185
    [54]王薇,杜启云,李国东.聚甲基丙烯酸-N,N-二甲氨基乙酯中空纤维复合纳滤膜的制备与性能表征[J].材料导报, 2006, 20(5): 129-132
    [55] T.W.Xu, W.H.Yang. A novel positively charged composive membrane for nanofiltration prepared from (2, 6-dimethyl -1, 4- phenyleneoxide ) by in situ amines crosslinking[J] . Journal of Membrane Science, 2003, 215:25-32
    [56] Y.Su, X.G. Jian , S.H.Zhang, et al. Preparation and characterization of quaternized poly(phthalazinone ether sulfone ketone) NF membranes , J.Membr.Sci, 2004, 241: 225-233.
    [57] J. Schaep, B.V.Bruggen, S.Uytterhoeven, et al. Removal of hardness from groundwater by nanofiltration[J]. Desalination, 1998, 119: 295-302.
    [58] H.D.M.Sombekke, D.K.Voorhoeve and P.Hiemstra. Environmental impact assessment of groundwater treatment with nanofiltration [J]. Desalination, 1997, 113: 293-296.
    [59] R.A.Bergrnan. Membrane softening versus lime softening in Flodda--a cost comparison update [J]. Desalination, 1995, 102: 11-24.
    [60] R.A.Bergrnan, Cost of membrane softening in Florida [J]. J.AWWA, 1996, 88: 32-43.
    [61] B.M.Watson and C.D.Homburg. Low-energy membrane nanofiltration for removal of color, organics and hardness from drinking-water supplies [J]. Desalination, 1989, 72: 11-22.
    [62] P.Fu, H.Ruiz, K.Thompson et al. Selecting membranes for removing NOM and DBP precursors[J]. J. AWWA, 1994, 86: 55-72.
    [63] P.Fu, H. Ruiz, J. Lozier, K. Thompson and C. Spangenberg.A pilot study on groundwater natural organics removal by low-pressure membranes [J]. Desalination, 1995, 102: 47-56.
    [64] J.G.Jacangelo, R.R.Trussell and M.Watson. Role of membrane technology in drinking water treatment in the United States [J]. Desalination, 1997, 113: 119-127.
    [65] I.C.Escobar, S.Hung and A.Randall. Removal of assimilable and biodegradable dissolved organic carbon by reverse osmosis and nanofiltration membranes [J]. J. Membr. Sci, 2000, 175: 1-17.
    [66] W.R.Everest and S.A.Malloy. Design/build approach to deep aquifer membrane treatment in Southern Califomia [J]. Desalination, 2000, 132: 41-45.
    [67] A.Khalik and V.S.Praptowidodo. Nanofiltration for drinking water production from deep well water [J]. Desalination, 2000, 132: 287-292.
    [68] M.Alborzfar, K.Escande and S.J.Allen. Removal of natural organic matter from two types of humic ground waters by nanofiltration [J]. Water Res, 1998, 32: 2970-2983.
    [69] A.Gorenflo, D.V.Padrh and F.H.Frimmel. Nanofiltration of a German ground- water of high hardness and NOM content: performance and costs [J]. Desalination, 2002, 151: 253-265.
    [70] B.V.Bruggen, J.Schaep, W.Maes, et al. Nanofiltration as a treatment method for the removal of pesticides from ground waters [J]. Desalination, 1998, 117: 139-147.
    [71] J.Schaep, B.V.Bruggen, et al. Removal of hardness from groundwater by nanofiltration [J]. Desalination, 1998, 119: 295-302.
    [72] B.V.Bruggen, K.Everaert, D.Wilms, et al. The use of nanofiltration for the removal of pesticides from ground water: an evaluation [J].Water Sci. Technol: Water Supply, 2001, 1: 99-106.
    [73] B.V.Bruggen, K.Everaert, D.Wilms, et al. Application of nanofiltration for the removal of pesticides, nitrate and hardness from ground water: retention properties and economic evaluation[J]. J. Membr. Sci., 2001, 193: 239-248.
    [74] E.Wittmarm, P.Cote, C.Medici, et al. Treatment of a hard borehole water conmining low levels of pesticide by nanofiltration [J]. Desalination, 1998, 119: 347- 352.
    [75] Y.Kiso, Y.Nishimura, T.Kitao, et al. Rejection properties ofnon-phenylic pesticides with nanofiltration membranes [J]. J. Membr. Sei, 2000, 171: 229-237.
    [76] Y.Kiso, A.Mizuno, R.B.Othman, et al. Rejection properties of pesticides with a hollow fiber NF membrane (HNF-1) [J]. Desalination, 2002, 143: 147-157.
    [77] P.Berg, G.Hagrneyer and R.Gimbel. Removal of pesticides and other micropollutants by nanofiltration [J].Desalination, 1997, 113: 205-208.
    [78] T.Montovay, M.Assenmacher and F.H.Frimmel. Elimination of pesticides from aqueous solution by nanofiltration [J]. Magyar Kemiai Folyoirat, I 996, 102: 241-247.
    [79] G.Dueom and C.Cabassud. Interests and limitations of nanofiltration for the removal of volatile organic compounds in drinking water production [J]. Desalination, 1999, 124: 115 -123.
    [80] R.Kettunen and P.Keskitalo. Combination of membrane technology and limestone filtration to control drinking water quality [J]. Desalination, 2000, 131: 271-283.
    [81] T.Urase, J.Oh and K.Yamamoto. Effect of pH on rejection of different species of arsenic by nanofiltration [J]. Desalination, 1998, 117: 11-18.
    [82] A.G.Pervov, E.V.Dudkin, O.A.Sidorenko, et al. RO and NF membrane systems for drinking water production and their maintenance techniques [J]. Desalination, 2000, 132: 315-321.
    [83] O. Raff and R.D.Wilken. Removal of dissolved uranium by nanofiltration [J]. Desalination, 1999, 122:147-150.
    [84] B.V.Bruggen and C.Vandecasteele. Removal of pollutants from surface water and groundwater by nanofiltration: overview of possible applications in the drinking water industry [J]. Environ. Poll, 2003, 122: 435-445.
    [85] B.Levine, K.Madireddi, V.Lazarova, et al. Treatment of trace organic compounds by membrane processes: at the Lake Arrowhead water reuse pilot plant [J]. Water Sci. Teehnol, 1999, 40(4-5): 293-301.
    [86] C.Visvanathan, B.Marsono and B.Basu. Removal of THMP by nanofiltration: effects of interference parameters [J]. Water Res., 1998, 32(12): 3527-3538.
    [87] K.M.Agbekodo, B.Legube and P.Cote. Organics in NF permeate [J]. J. AWWA, 1996, 88(5): 67-74.
    [88] J.W.Cho, G.Amy and J.Pellegfino. Membrane filtration of natural organic matter: initial comparison of rejection and flux decline characteristics with ultrafiltration and nanofiltration membranes [J]. Water Res, 1999, 33(11): 2517-2526.
    [89] B.Ericsson, M.Hallberg and J.Wachenfeldt. Nanofiltration of highly colored raw water for drinking water production [J]. Desalination, 1996, 108: 129-141.
    [90] I.Mijatovi?, M.Mato?i?, B.H.?erneha, et al. Removal of natural organic matter by ultrafiltration and nanofiltration for drinking water production [J]. Desalination, 2004, 169 : 223- 230
    [91] H.Yeh, I.Tseng, S.Kao, et al. Comparison of the finished water quality among an integrated membrane process, conventional and other advanced treatment processes [J]. Desalination, 2000, 131: 237-244.
    [92] M.Thanuttamavong, K.Yamamotob, J.Oh, et al. Rejection characteristics of organic and inorganic pollutants by ultra low pressure nanofiltration of surface water for drinking water treatment[J]. Desalination, 2002, 145: 257-264.
    [93] M.Mohsen, J.Jaber and M.Afonso. Desalination of brackish water by nanofiltration and reverse osmosis [J]. Desalination, 2003, 157: 167.
    [94] I.Koyuncu and M.Yazgan. Application of nanofiltration and reverse osmosis membranes to the saltyand polluted surface water [J]. J. Environ. Sci. Health, 2001, A36 (7):1321-1333.
    [95] P. Laurent, P.Servais, D.Gatel, et al. Microbiological quality before and after nanofiltration[J]. J. AWWA, 1999, 91(10): 62-72.
    [96] M.T.Yahya, C.B.Blu and C.P.Gerha. Virus removal by slow sand filtration and nanofiltration [J]. Water Sci. Technol, 1993, 27(3-4): 445- 448.
    [97] M.Taki, K.Yano and S.Ohgaki. Virus removal in a membrane separation process [J]. Water Sci. Technol. 1998, 37(10): 100-116.
    [98] T.Urase, K.Yamamoto and S.Ohgaki. Effect of pore structure of membranes and module configuration on virus retention [J]. J. Membr. Sci., 1996, 115(1): 21-29.
    [99] J.Waypa, M.Elimelech and J.Hering. Arsenic removal by RO and NF membranes [J]. J. AWWA, 1997, 89(10):102-114.
    [100] A.Seidel, J.Waypa and M.Elimech. Role of charge (Dorman) exclusion in removal of arsenic from water by a negatively charged porous nanofiltration membrane[J]. Environ. Eng. Sci. 2001, 8(2): 105-113.
    [101] E.Vroenhoek and J.Waypa. Arsenic removal from drinking water by a"loose" nanofiltration membrane [J]. Desalination, 2000, 130: 265-277.
    [102] P.Brandhuber and G.Amy. Alternative methods for membrane filtration of arsenic fromdrinking water[J].Desalination, 1998, 117: 1-10.
    [103] H.Saitúa, M.Campderrós, S.Cerutti, et al. Effect of operating conditions in removal of arsenic from water by nanofiltration membrane [J]. Desalination, 2005, 172: 173-180.
    [104] M.V.G.Aleixandre, A.I.Clar, A.B.Pifi, et al. Nanofiltration for sulfate removal and water reuse of the pickling and tanning processes in a tannery[J]. Desalination, 2005, 179: 307-313
    [105] A.Hafiarle, D.Lemordant and M.Dhahbi. Removal of hexavalent chromium by nanofiltration [J]. Desalination, 2000, 13: 305-312.
    [106] M.Afonso and R.Yafiez. Nanofiltration of wastewater from the fishmeal industry [J]. Desalination, 2001, 139: 429.
    [107] S.K.Nataraj, K.M.Hosamani and T.M.Aminabhavi. Distillery wastewater treatment by the membrane-based nanofiltration and reverse osmosis processes [J]. Water Research, 2006, 40: 2349-2356
    [108] A.Tang and V.Chen. Nanofiltration of textile wastewater for water reuse [J]. Desalination, 2002, 143: 11-20.
    [109] A.B.Pia, J. M.Roca, L.R.Alcover, et al. Comparsion between nanofiltration and ozonation of biologically treated textile waste water for it reuse in the industry [J]. Desalination, 2003, 157: 81-86.
    [110] I.Voigt, M.Stahn, S.Wohner, et al. Integrated cleaning of coloured waste water by ceramic NF membranes[J]. Sep. Purifi. Teehnol, 2001, 25: 509-512
    [111] R.Webar, H.Chmiel and V.Mavrov. Characteristics and application of new ceramic nanofiltration membrane [J]. Desalination, 2003, 157: 113-125
    [112] C.Fersi, L.Gzara and M.Dhahbi. Treatment of textile effluents by membrane technologies[J]. Desalination, 2005, 185:399- 409.
    [113] C.Suksaroj, M.Héran, C.Allègre, et al. Treatment of textile plant effluent by nanofiltration and/or reverse osmosis for water reuse [J] . Desalination, 2005, 178 : 333-341
    [114] A.B.Piá, M.I.I.Clar, A.I.Clar, et al. Nanofiltration of textile industry wastewater using a physicochemical process as a pre-treatment [J]. Desalination, 2005,178 : 343-349
    [115] C.N.Lopes, J.Carlos , C.Petrus, et al. Color and COD retention by nanofiltration membranes [J]. Desalination, 2005, 172:77-83
    [116] Y.Ku, P.L.Lee and W.Y.Wang. Removal of acidic dyestuffs in aqueous solution by nanofiltration[J]. Journal of Membrane Science, 2005, 250: 159-165
    [117] T.H.Kim, C.Park, S. Kim. Water recycling from desalination and purification process of reactive dye manufacturing industry by combined membrane filtration [J]. Journal of Cleaner Production, 2005, 13: 779-786
    [118] R.Rautenbach and T.Linn. High pressure reverse osmosis and nanofiltration, a "zero discharge" process combination for the treatment of waste water with severe fouling/sealing potential [J]. Desalination, 1996, 105: 63-70.
    [119] R Rautenbach, T.Linn and L.Eilers. Treatment of severely contaminated waste water by a combination of RO, high-pressure RO and NF --potential and limits of the process [J]. J. Membr. Sci., 2000, 174: 231-241.
    [120] V.Geraldes and M.Pinho. Process water recovery from pulp bleaching effluents by an NF/ED hybrid process [J]. J. Membr. Sci., 1995, 102: 209-221.
    [121] B.Schlichter, V.Mavrov and H.Chmiel. Study of a hybrid process combination ozonation and membrane filtration -- filtration of model solution [J]. Desalination, 2003, 156: 257-265.
    [122] D.Ricu, C.Roussakis, J.F.Biard, et al. Comparative study of the antitumour activity of bistramides A, D and against a non-small cell broncho-pulmonary carcinoma [J]. Anticancer Res, 1993, 13:2331-2334
    [123] K.B.Jirage and C.R.Martin. New developments in membrane-based separation [J].Trends Biotech, 1999, 17: 197-200
    [124]吴麟华.分离膜中的新成员—纳滤膜及在制药工业中应用[J].膜科学与技术, 1997, 17:11-15
    [125]孙玫,甘仕喜等.纳滤膜技术在泰乐星提炼过程中的应用[J].中国抗生素杂质, 2000, 25: 172-174
    [126] K.T.Goatley and J.Gilron, The application of nanofiltration membranes to the treatment of industrial effluent and process stream [J]. Filtration and separation, 1993, 1-2: 63-66
    [127]王亚卿,李杰妹,赵仁兴.多种超滤膜和纳滤膜在土霉素提取中的性能比较[J].中国抗生素杂志, 2005,30(1):45-48
    [128]肖文军,刘仲华,邓欣.膜过程集成提纯茶黄素的研究[J].膜科学与技术, 1995, 25 (4):79-86
    [129]王亚卿,王路光,王靖飞等.超滤2纳滤联合膜技术在土霉素提取中的应用研究[J].精细与专用化学, 2005, 13(17):18-20
    [130]朱国民,李菊芳.纳滤膜技术在庆大霉素B浓缩中的应用[J].过滤与分离, 2002,16 (2):36-38
    [131] V. Nwuha, Novel studies on membrane extraction of bicactive components of green tea in organic solvents part [J]. J. Food Eng, 2000, 44:233-238
    [132] H.Nabetani, Effects of fouling layer and osmotic pressure on the performance of membrane separation system [J]. J. Membr. Sci., 1997, 22(5):249-256
    [133]王晓琳,张澄洪,赵杰.纳滤膜的分离机理及其在食品和医药工业中的应用[J].膜科学与技术,2000, 1(20):29-35
    [134] J.Kelly and P.Kelly, Desalination of acid casein whey by nanofiltration[J]. Int.Dairy J., 1995, 5:291-303
    [135] H.S.Alkhatim and M.L.Alcaina, E.Soriano, et.al..Treament of whey effluents from dairy industries by nanofiltration membranes [J]. Desalination, 1998, 119:177-184
    [136]李耕,吴大宇,戴智河.膜技术在浓缩天然大豆低聚糖中的应用[J] .膜科学与技术, 2002, 22 (1): 29-31
    [137] J.Sikora, C.Hansson and B.Ericsson. Pre-treatment and desalination of mine drainage water in a pilotplant [J]. Desalination, 1989, 75:363-373
    [138] M.A.Ahmad and F.A.Aleem. Scale formation and fouling problems effect on the performance of MSF and RO desalination,plants in Saudi Arabia.Desalination, 1993,93: 287-310.
    [139] S. Hoop, J.G.Minnery and B.Mack. Dead-end ultrafiltration as alternative pre-treatment to reverse osmosis in seawater desalination: a case study [J].Desalination, 2001, 139: 161-168.
    [140] B.V.Bruggen and C.Vandecasteele. Distillation vs. membrane filtration: overview of process evolutions in seawater desalination [J]. Desalination, 2002, 143: 207-218.
    [141] J. Redondo. Brackish-sea and wastewater desalination [J].Desalination, 2001, 138: 29-40.
    [142] A.Brehant, V.Bonnelyeb and M.Perez. Comparison of MF/UF prelreatment with conventiotial filtration prior to RO membranes for surface seawater desalination [J]. Desalination, 2002, 144: 353-360.
    [143] S.Hoop, A.Hashim and A.Kordes. The effect of ultraiiltration as pretreatment to reverse osmosis in wastewater reuse and seawater desalination applications[J].Desalination, 1999,124: 231-242.
    [144] S. B.Hamad, M.A.Jawad, S.Ebrahim, et al. Performance evaluation of three different pretreatment systems for seawater reverse osmosis technique [J]. Desalination, 1997, 110: 85-92.
    [145] A.Hassan, M.A.So, A.A.Amoudi, et al. A new approach to thermal seawater desalination processes using nanofiltration membranes (Part 1) [J]. Desalination, 1998, 118: 35-51.
    [146] A. Cfiscuoli and E. Drioli. Energetic and exergetic analysis of an integrated membrane desalination system [J]. Desalination, 1999, 124: 243-249.
    [147] M.Potie, C.Diawara, M.Rumeau, et al. Seawater nanofiltration (NF): fiction or reality [J]. Desalination, 2003, 158: 277-280.
    [148] E.Drioli, A.Criscuoli and E.Curcioa. Integrated membrane operations for seawater desalination[J]. Desalination, 2002, 147: 77-81.
    [149] M.Turek and P.Dydo. Hybrid membrane—thermal versus simple membrane system[J]. Desalination, 2003, 157: 51-56
    [150] C.V.Chung, N.Q.Buu, N.H.Chau. Influence of surface charge and solution pH on the performance characteristics of a nanofiltration membrane [J]. Science and Technology of Advanced Materials, 2005, 6: 246-250
    [151] M.P.G.Mu?oz, R.Navarro, I.Saucedo, et al. Hydrofluoric acid treatment for improved performance of a nanofiltration membrane [J]. Desalination, 2006, 191: 273-278
    [152] I.C.Kim, K.H.Lee, T.M.Tak. Preparation and characterization of integrally skinned uncharged polyetherimide asymmetric nanofiltration membrane [J]. Journal of MembraneScience, 2001, 183: 235-247
    [153] Y.Zhou, S.C.Yu, M.H.Liu, et al. Polyamide thin film composite membrane prepared from m-phenylenediamine and m-phenylenediamine-5-sulfonic acid [J]. Journal of Membrane Science, 2006, 270: 162-168
    [154]Y.Q.Yang, X.G.Jian, D.L.Yang, et al .Poly (phthalaznione ether sulfone ketone) hollow fiber asymmertric nanofiltration membrane: Preparation, morphologies and properties, Journal of Membrane Science, 2006, 270 : 1-12
    [155]罗敏,候立安.纳滤膜污染的分析与机理研究[J].水处理技术, 1998,24(6): 318-323
    [156]罗敏,王浪,王占生.纳滤膜的场发射扫描电镜、能量色散X射线、原子力显微镜珊傅里叶转换红外光谱分析[J].膜科学与技术,2001, 21(5): 20-24
    [157] J.A.Stoton. The application of atomic force microscopy in the characterisation of membrane surfaces. PhD thesis, University of Wales Swansea, 2001.
    [158] G.Binnig, C.F.Quate and C.Gerber. Atomic force microscope [J]. Phys. Rev. Lett., 1986,56: 930.
    [159] D.F.Stamatialis, C. R.Dias, M.N.Pinho. Atomic force microscopy of dense and asymmetric cellulose-based membranes [J]. Journal of Membrane Science, 1999, 160: 235-242
    [160] K.Boussu, B.V.Bruggen, A.Volodin, et al. Roughness and hydrophobicity studies of nanofiltration membranes using different modes of AFM [J]. Journal of Colloid and Interface Science, 2005, 286: 632–638
    [161] S.Verissimo, K.V.Peinemann, J.Bordado. New composite hollow fiber membrane for nanofiltration[J], Desalination, 2005, 184: 1-11
    [162] W.R.Bowen, N.Hilal, R.W.Lovitt, et al. In Surface Chemistry and Electrochemistry of Membrane Surfaces. Surfactant Science Series, T.S. Sorensen, Ed., Dekker, New York, 1999, chap. 1, pp. 1-37.
    [163] W.R.Bowen, N.Hilal, R.W.Lovitt, et al. Direct measurement of interactions between adsorbed protein layers using an atomic force microscope[J]. J. Colloid Interf. Sci., 1998, 197: 348-352.
    [164] W.R.Bowen, N.Filal, R.W.Lovitt, et al. Atomic force microscopy study of the adhesion of a silica sphere to a silica surface- effect of surface cleaning [J]. Colloids and Surfaces A: Physico. Engin.Aspects, 1999, 157: 117-125.
    [165] M.H.Beckmannn, A.Kolp and F.Lang. Atomic force microscopy of biological cell membranes: from cell to molecules [J]. Microscopy and Analysis, 1995, 45: 7-9.
    [166] M.Elimelech, X.Zhu, A.E.Childress, et al. Role of membrane surface morphology in colloidal fouling of cellulose acetate and composite aromatic polyamide reverse osmosis membranes [J]. J. Membr.Sci., 1997, 127: 101-109.
    [167] X. Zhu and M. Elimelech, Colloidal fouling of reverse osmosis membranes: measurements and fouling mechanisms [J]. Environ. Sci. Technol. 1997, 31: 3654-3662.
    [168] K.Riedl, B.Girard and R.W.Lencki. Influence of membrane structure on fouling layermorphology during apple juice clarification. Journal of Membrane Science, 1998, 139:155-166
    [169] D.A.Maria, H.R.Georg, G.Rolf. Streaming potential measurements to assess the variation of nanofiltration membranes surface charge with the concentration of salt solutions[J]. Separation and Purification Technology, 2001, 22-23: 529–541
    [170] J.M.M.Peeters, M.H.V.Mulder and H.Strathmann. Streaming potential measurements as a characterization method for nanofiltration membranes [J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 1999, 150: 247-259
    [171] J.Geens, B.V.Bruggen, C.Vandecasteele. Characterisation of the solvent sTableility of polymeric nanofiltration membranes by measurement of contact angles and swelling [J]. Chemical Engineering Science, 2004, 59: 1161-1164
    [172]张廷军.甲壳素/壳聚糖及其衍生物的应用情况[J].水产科技情报, 1999, 26: 243-247
    [173] R.Kumar. A review of chitin and chitosan application [J].Reactive &Functional Polymers, 2000, 46(1):1-27
    [174]林友文,林青,蒋智清,等.羟丙基三甲基氯化铵壳聚糖的制备及其吸湿、保湿性能[J].应用化学, 2002, 19(4):351-354
    [175] S.Mifl and C.Shyuss. Porous chitosan microphere for controlling the antigen releaseof New castle disease vaccine: preparation of antigen adsorbed microsphere and invitro release [J].Biomaterials, 1999, 20(17):1603-1612
    [176] Y.H.Kim, H.M.Choi, J.H.Yoon. Synthesis of aquaternary ammonium derivative of chitosan and its application to a cotton antimicrobial finish [J]. Textile Reseach. Journal, 1998, 68 (6):428-434.
    [177] O.Suzukik and R.Shinobut. New selectively substituted quaternary ammonium chitosan and derivatives [J]. Polymer. Journal, 2000, 32(4):334-338.
    [178]许晨,林学友.壳聚糖季铵化衍生物的吸湿性与保湿性[J].应用化学, 1996,13(5):94-96
    [179]夏文水,陈洁.甲壳质和壳聚糖的化学改性及其应用[J].无锡轻工业学院学报, 1994,13 (2):162-171
    [180]李铭,葛英勇.新型两性壳聚糖衍生物的制取及应用研究[J].研究专论, 2004, 11(4) : 14-17
    [181]褚春莹.季铵化壳低聚糖的合成及性能研究[D]:硕士论文.中国海洋大学: 2003,15-18
    [182]杜予民,黎厚斌. N-(2-羟基-3-三甲基)丙基氯化铵壳聚糖的用途. 200410012896.1
    [183]杜予民,黎厚斌. N-(2-羟基-3-三甲基)丙基氯化铵壳聚糖和纳米二氧化硅的用途. 200410061200.4
    [184]杜予民,施晓文,汤玉峰.一种聚电解质多糖纳米粒子及其制备方法. 200510020091.6
    [185]张亚静,朱瑞芬,童兴龙.壳聚糖季铵盐对味精废水絮凝作用[J].水处理技术, 2001,27(5): 281-284
    [186]冯玉杰,金水新,孙晓君,等.壳聚糖季铵盐处理玉米酒精清糖液的研究[J].环境污染与防治, 2002, 24(3):129-131
    [187]张亚静,朱瑞芬,李颖.壳聚糖季铵盐对造纸废水絮凝效果研究[J].宁波高等专科学校学报, 2001,13(5) : 43-47
    [188]叶筠,蔡伟民,沈雄飞.壳聚糖季铵盐的合成及其对炼油废水的絮凝和灭菌性能[J].福州大学学报(自然科学版), 2000,28(4): 108-112
    [189] A.Riccardo, A.Muzzarelli and F.Tanfan. The N-permethylation of chitosan and the preparation of N-trimethyl chitosan iodide [J]. Carbohydrate Polymers, 1985, 5: 297-307
    [190] A.Domard. New method for the quaternization of chitosan. Int. J. Boil.Macromol, 1986.8
    [191] L.Gunther, W.Harald and K.Eugen.Cosmetic agent on the basis of quenternary chitiosan derivatives, novel quenternary chitiosan derivatives as well as processes for making same. USP4822598, 1989
    [192] L.Gunther, W.Harald and K.Eugen. Process for making quenternary chitiosan derivatives for cosmetic agents. USP4921949, 1990
    [193] L.Gunther, W.Harald and K.Eugen..Quaternary hydroxyl-propyl-substituted chitosan derivatives, cosmetic compositions based and processes for the production thereof .USP4772891, 1988
    [194] B.Federico. New process for preparing chitosan and its derivatives containing quaternary ammonium groups. EP0400364, 1990
    [195] C.Edward. Synthesis of the quaternary ammonium salts of chitosan derivatives. WO 9206136, 1992
    [196] M.Christoph and D.Reinhard. Process for the preparation of activated chitosan and their use in the preparation of chitosan derivatives. USP5442048, 1995
    [197] S.K.Roy, J.G.Todd and G.W.Jason. Crosslinked hydrogel beads from chitosan.USP5770712, 1998
    [198] Glasser, Wolfgang G. Jain, Rajesh K. et al. Method of making ester-crosslinked chitosan support materials and products thereof. USP5874551, 1999
    [199] Z.S.Jia, D.F.shen, W.L.Xu, Synthesis and antibacterial activities of quaternary ammonium salt of chitosan [J], Carbohydrate Research, 2001, 333: 1-6
    [200] S.H.Lim and S.M.Hudson. Synthesis and antimicrobial activity of a water-soluble chitosan derivative with a fiber-reactive group [J]. Carbohydrate Research, 2004, 339: 313-319
    [201] K.S.Daisuke, T.S.H.Saimoto and Y.Shigermasa. New selectively N-Substituted quaternary ammonium chitosan derivatives [J]. Polyer Journal, 2000, 32(4):334-338
    [202] D.William, H.Guerrrini, M.Melissa. Anti-microbial properties of quaternary ammonium cellulose and chitosan derivatives [J]. Polym.Mater.Sci.Eng, 1998, 79:220-221
    [203] J.Wu, Z.G.Su and G.H.Ma. A thermo- and pH-sensitive hydrogel composed of quaternized chitosan/glycerophosphate [J].International Journal of Pharmaceutics, 2006, 315: 1-11
    [204]郎雪梅,赵建青. N-乙酰化壳聚糖超滤膜的分离性能(英文) [J].合成橡胶工业,2003,26(4): 247
    [205]孙建民,于丽青,陈晓.壳聚糖超滤膜的研究[J].膜科学与技术,2004, 24(6) :73-75
    [206] D.A.Musale, A.Kumar, G.Plerizier. Formaton and characterization of polylacryonitrile /chitosan composite ultrafiltration membranes [J]. J.membrane science, 1999, 154:163-173
    [207] A.S.Ariyaskul, R.Y.M.Huang, P.L.Douglas, et al. Blended chitosan and polyvinyl alcohol membranes for the pervaporation dehydration of isopropanol [J]. Journal of Membrane Science, 2006, 280: 815-823
    [208] D.A.Devi, B.Smitha, S.Sridhar, et al. Novel crosslinked chitosan /poly(vinylpyrrolidone) blend membranes for dehydrating tetrahydrofuran by the pervaporation technique[J]. Journal of Membrane Science, 2006, 280:45-53
    [209]尹燕,崔永芳,葛继均,等.基膜改性的壳聚糖/聚丙烯腈渗透汽化中空纤维复合膜[J].膜科学与技术, 2001, 21(2) : 22-25
    [210]陈兴凡,张庆元.壳聚糖反渗透膜的研制[J].上海师范大学学报(自然科学版), 2002, 31(2) : 61-64
    [211] C.K.Yeom, S.H.Lee and J.M.Lee. Effect of the ionic characteristics of charged membranes on the permeation of anionic solutes in reverse osmosis [J]. Journal of Membrane Science, 2000, 169: 237-247
    [212] T.Yang and R.R.Zall, Chitosan membrane for reverse osmosis application [J]. J.Food Science, 1984, 49: 91-93
    [213] V.V. Binsu, R.K.Nagarale, V.K.Shahi, et al. Studies on N-methylene phosphonic chitosan/poly (vinyl alcohol) composite proton-exchange membrane[J].Reactive and Functional Polymers, 2006, 66 :1619-1629
    [214]董婷婷,陈国华,陈蓉,等.甲壳素黄源酸酯/聚丙烯腈复合纳滤膜的制备及其性能研究[J].功能材料, 2006, 1808-1812
    [215] J.Miao, G.H.Chen, C.J.Gao. A novel kind of amphoteric composite nanofiltration membrane prepared from sulfated chitosan (SCS ) [J].Desalination , 2005,181: 173-183
    [216] D.A.Musale, A.Kumar. Effects of surface crosslinking on sieving characterization of chitosan /poly(acrylonitrile)composite nanofiltration membrane[J].Sep and Pur.Tech , 2000, 21:27-38
    [217]谭绍早,陈中豪,陈震华.聚丙烯腈纳滤膜的制备及对造纸废水的截留性能[J].中国造纸学报,2002,17(2):63-66
    [218]李友明,陈中豪,贾凤莲,等.荷电纳滤膜对化浆混合废水的纳滤效果[J].膜科学与技术,2002,22(1):9-12
    [219]周宏伟.壳聚糖季铵盐的制备及膜透气性研究[D]:硕士论文.广西大学, 2004 ,33-44
    [220]肖玲,涂依,李洁,等.壳聚糖/壳聚糖季铵盐复合膜的性能研究[J].武汉大学学报(理学版), 2005,51(2):190-194
    [221] A.Saxena, A.Kumar and V.K.Shahi. Preparation and characterization of N-methylenephosphonic and quaternized chitosan composite membranes for electrolyte separations [J]. Journal of Colloid and Interface Science, 2006, 303:484-493
    [222] R.H. Huang, G.H.Chen, M.K.Sun, et al. A novel composite nanofiltration (NF) membrane prepared from graft copolymer of trimethylallyl ammonium chloride onto chitosan (GCTACC)/poly (acrylonitrile) (PAN) by epichlorohydrin cross-linking [J]. Carbohydrate Research, 2006,31(17): 2777-2784
    [223] R.H. Huang, G.H.Chen, M.K.Sun, et al. Studies on nanofiltration membrane formed by diisocyanate cross-linking of quaternized chitosan on poly(acrylonitrile)(PAN)support[J]. J.membr.Sci, 2006, 286(1-2): 237-244
    [224]苏仪,蹇锡高,张守海.季铵化聚醚砜酮的制备及其膜性能[J].功能材料,2004,35(4): 385-389
    [225]许晨,卢灿辉,丁马太.壳聚糖季铵盐的合成与结构表征[J].功能高分子学报,1997, 10(1): 51-55.
    [226] L.MiF, S.Shyu, C.T.Chen, et al. Porous chitosan microsphere for controlling the antigen releaseof New castle disease vaccine: preparation of antigen adsorbed microsphere and invitro release [J]. Biomaterials, 1999, 20(17) : 1603-1612.
    [227] Y.H.Kim, H.M.Choi, J.H.Yoon. Synthesis of aquaternary ammonium derivative of chitosan and its application to a cotton antimicrobial finish [J]. Textile Research Journal, 1998, 68 (6) : 428-434.
    [228] K.Suzuki, D.Oda, T.Shinobu, et al. New selectively N-substituted quaternary ammonium chitosan derivatives [J].Polymer Journal, 2000, 32(4):334-338.
    [229]关多芬,田在龙,曹亚峰,等.阳离子沥青乳化剂)木质素季铵盐的研制[J].大连轻工业学院学报,1995,14(1): 29-34.
    [230]樊木,肖玲,杜予民.壳聚糖季铵盐分子结构与吸湿保湿性研究[J ] .武汉大学学报(理学版) , 2003 , 49 (2) : 2052208. [231 ]蔡伟民,叶筠.壳聚糖季铵盐的合成及其絮凝性能[J ] .环境污染与防治,1999 , 21 (4) : 124.
    [232] H.T.Roberts, in: R.L.Wistler, E.F.Poschall (Eds.), Starch Chemistry and Technology, Vol. 1, Academic Press, New York, 1965.
    [233]郑化,杜予民,余家会,等.交联壳聚糖膜的制备及其性能的研究[J].高等学校化学学报, 2000, 21(5): 809-812.
    [234]曹佐英、张启修赖声礼.微波辐射下模板法乙二醇双缩水甘油醚交联壳聚糖树脂的制备及其吸附性能的研究[J].湿法冶金, 2001, 20(4): 200-204
    [235] W.R.Bowen, T.Doneva. Atomatic force microscopy of nanofiltration membranes: surface morphology, pore size distribution and adhesion [J]. Desalination, 2000, 129: 163-172
    [236] R.Bowen, W.Welfoot, S.Julian, Predictive modelling of nanofiltration: membrane specification and process optimization[J]. Desalination, 2002, 147(1-3): 197-203.
    [237]松本丰,高以垣,芩运华.日本NF膜、低压超低压RO膜及应用技术的发展[J].膜科学与技术, 1998,18(5):11 -18.
    [238]陆晓峰,施柳青,卞晓揩. NF系列复合膜的制备及结构性能的研究[J].膜科学与技术, 2001,21(3) :11-15
    [239] Y.Z.Xu and R.Lebrun. Comparison of nanofiltration properties of two membranes using electrolyte and non- electrolyte solutes [J]. Desalination, 1999, 122: 95-106
    [240] D.A.Maria, M.N.Pinho. Transport of MgSO4,MgCl2 and Na2SO4 across an amphoteric nanofiltration membrane [J].Journal of membrane science, 2000,179:137-154
    [241]宋玉军,孙本惠.纳滤膜的应用[J].化工新型材料, 1996, 3:13-15.
    [242] P.Y.Pontalier, A.Ismail, M.Ghoul. Mechanisms for the selective rejection of solutions in nanofiltration membranes[J].Separation purification technology, 1997, 12: 175-181
    [243] B.Krajewska, A.Olech. Pore structure of gel chitosan membranes, I.Solute diffusion measurements [J]. Polymer Gels and Networks, 1996, 4:33-43
    [244]莫剑雄,刘淑敏.膜的流动电势的有关理论及测量方法[J].水处理技术, 1991,17(3):153-161
    [245]汪勇,范云双,杜启云.荷正电膜的研究[J].天津工业大学学报, 2000, 20(1):79-83
    [246] J.He, K.Horiea, R.Y.Table. Characterization of polyimide gels crosslinked with hexamethylene diisocyanate[J]. Polymer, 2000, 41: 4793- 4802.
    [247] M.Nawawi, M.Ghazali, Y.M.Robert. Pervaporation dehydration of isopropanol with chitosan membranes[J]. J. Membr. Sci., 1997, 124: 53-62.
    [248]马成浩,于丽娟,彭奇均.混合酸酐交联海藻酸钠的制备及性能[J].食品添加剂,2004,25(4) :123-125
    [249] K.Ebert, Nanofiltration for non-aqueous applications. Presented at NMG Symposium, 11th June 2002, Ede, The Netherlands.
    [250]高爱环,刘金盾,张浩勤,等.聚哌嗪酰胺复合纳滤膜制备及其性能表征[J].高校化学工程学报,2004, 18(1) : 28-32
    [251]张浩勤,刘金盾.界面聚合制备新型荷正电纳滤膜[J].化学通报,2005, 4 :301-303
    [252]郑静,王俊卿,苏致兴.壳聚糖与N-异丙基丙稀酰胺进行接枝共聚[J].应用化学, 2003,20(12) 1204-1207
    [253]舒红英,唐星华,付若鸿.壳聚糖与二甲基二烯丙基氯化铵接枝共聚物[J].应用化学,2005, 21(7):734-736。
    [254] C.L.Petzhold, J.Stefens, L.L.Monteavaro, et al. Cationic quaternary polyelectrolytes based on dialkylaminoisoprenes [J]. Polymer Bulletin, 2000,44: 477-484 [255 ]毛源辉.盐业化学工程[M].天津:社会科学院出版社, 1994 , 1
    [253]保积庆,夏树屏.氯化钾对钾光卤石溶解过程的影响[J].盐湖研究,1995, 3(2):50-57
    [257] V.Bruggen, Nanofiltration as a treament method for the removal of pesticides from group water [J]. Water Supply, 1999, 17(1):55-63
    [258] K.Yoshiaki. Rejection properties of non-phenylic pesticides with nanofiltration membranes [J]. Journal of Membrane Science, 2000, 171(2) : 229-237
    [259] J.I.Oh. Application of low-pressure coupled with a bicycle pump for the treatment of arsenic contaminated groundwater [J]. Desalination, 2000, 132(1-3): 307-314
    [260]薛德明,于品早,张国防,等.膜技术处理褐藻酸钠废水[J].膜科学与技术, 2003, 23 (4) : 47-50

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700