用户名: 密码: 验证码:
不同光、温对冷敏感植物黄瓜与耐冷植物Rumex K-1 PSⅠ和PSⅡ光化学活性的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
光合系统II(PSII)与光合系统I (PSI)共同组成了光合线性电子传递链,但两系统对温度/光胁迫存在着不同的敏感性。我们以冷敏感植物黄瓜(津春-4号)和起源于北纬45度的耐低温植物杂交酸膜(Rumex K-1(Patientia×R. tianschaious))为实验材料,通过测定光合气体交换、放氧活性、叶绿素a调制式脉冲荧光、820nm光透射与叶绿素a快相荧光同步信号、活性氧(ROS)与活性氧清除酶活性、叶绿体的超微结构等,研究了低温和高温在不同光强条件下对植物叶片光合机构的影响。主要结果如下:
     1.在4℃与300μmolm~(-2)s~(-1)PFD胁迫下,黄瓜叶片饱和光下的CO_2同化速率和最大放氧速率出现急剧的下降,PSI的最大光化学效率(△I/Io)显著下降,同时PSII最大光化学效率(Fv/Fm)降低,表明发生了低温光抑制。在黄瓜与Rumex K-1叶片中,我们均发现:PSI光化学活性(△I/Io)的下降明显快于PSII捕获光量子驱动电子到QA-后电子传递链的效率(ΨO)。以上结果表明,对冷敏感植物黄瓜和耐冷植物Rumex K-1来说,PSI均为低温光抑制主要位点。
     2.低温光胁迫下,黄瓜叶片PSII开放反应中心的捕光效率(Fv’/Fm’)和光下PSII实际光化学效率(ФPSII)均出现明显的降低,同时,电子传递链还原程度(1-qP)显著增强。我们在黄瓜和Rumex K-1叶片上均看到PSII活化压的增加与PSI光抑制间存在密切的关系。这可能是PSI光抑制限制了PSII的电子向PSI传递,增加了电子受体QA的还原状态。同时,Q_A~-的积累可减少流向PSI的电子,这可以减缓对PSI的进一步的光抑制。
     3.低温光下,虽然黄瓜叶片超氧化物歧化酶(SOD)活性升高,但过氧化物酶(CAT),抗坏血酸-谷胱甘肽循环中的关键酶:抗坏血酸过氧化物酶(APX),谷胱甘肽还原酶(GR)和脱氢抗坏血酸还原酶(DHAR)的活性在逐步失活,单脱氢抗坏血酸还原酶(MDHAR)则几乎不变化,同时,叶片H_2O_2,O_2~(·|-)和丙二醛(MDA)含量逐渐积累。以上事实说明虽然黄瓜叶片SOD活性升高,但其他抗氧化酶系统活性的下降,不能有效地清除积累的活性氧,从而导致细胞的氧化破坏。
     4.与耐冷植物Rumex K-1相比,在低温光胁迫下,黄瓜叶绿体膜脂组分的变化更为剧烈,其中磷脂酰胆碱(PC)、磷脂酰甘油(PG)以及硫代异鼠李糖基甘油二酯(SQDG)的不饱和度下降幅度更大。这可能是导致黄瓜PSII和PSI光化学活性以及放氧复合体活性对低温比较敏感原因之一。
     5.黄瓜叶绿体对低温-光胁迫更加敏感。低温下,黄瓜类囊体逐渐扭曲和膨胀,叶绿体内膜形成小泡,最终,叶绿体被膜瓦解,使得基质与胞质组分出现混合。而Rumex K-1叶绿体能够进行有效的避光运动,其叶绿体的机构几乎未受低温-光胁迫的影响。我们认为,在过剩光能条件下,叶绿体避光运动在减少光能吸收,降低叶绿体的氧化胁迫方面具有重要的生理意义。
     6.高温(40℃)黑暗条件下,冷敏感植物黄瓜叶片放氧活性及PSI, PSII光化学活性不受影响,而耐冷植物Rumex K-1的放氧活性显著降低,PSII最大光化学效率下降,同时PSI反应中心色素P700还原明显地变缓。
     7. 40℃,照光条件下,黄瓜光合系统活性维持稳定。100μmolm~(-2)s~(-1)光下Rumex K-1的OEC活性和PSII光化学活性几乎不受影响,同时P700+还原速率保持稳定。而300μmolm~(-2)s~(-1)光下,Rumex K-1的PSII,OEC活性受到轻微地抑制,导致P700~+还原速率出现轻微的下降。以上结果表明高温下,冷敏感植物黄瓜具有较高的热稳定性,而耐冷植物RumexK-1的OEC和PSII表现为热敏感性,在高温胁迫下PSII电子供应能力显著下降,限制了P700~+的还原。
The effects of different temperatures coupled with different light intensity on activity of photosynthetic apparatus in leaves of a chilling sensitive plant cucumber (Cucumis sativus L. cvs. Jinchun No4) and a chilling-tolerant plant Rumex K-1(Rumex Patientia×R. tianschaious) were studied by measurements of photosynthetic gas exchange, oxygen- evolution, modulated chlorophyll a fluorescence, 820nm transmission signal paralleling the chlorophyll a fluorescence transient, changes in reactive oxygen species (ROS) and activity of ROS scavenging enzymic system, ultrastructure of chloroplasts and so on. The main results obtained are followed:
     1. With treatment of chilling temperature (4℃)coupled wth 300μmolm~(-2)s~(-1) light, the sharp decreases were observed in the light-saturated net CO_2 fixation and maximal oxygen evolution rate of cucumber. The maximal efficiency of PSI (△I/Io) reduced significantly, coupled with the decline of maximal photochemistry (Fv/Fm) in cucumber leaves. However, the redox states of PSI activity (△I/Io) was decreased more severely than the efficiency that a trapped exciton can move an electron into the electron transport chain beyond Q_A~- (ΨO) in both cucmuber and Rumex K-1 intact leaves. These results suggested that PSI should be the primary target of chilling-photoinhibition in the both chilling-sensitve and chilling-tolerant plants.
     2. The efficiency of excitation capture by open PSII centers (Fv’/Fm’), and actual photochemical efficiency of PSII (ФPSII) decreased considerably, at the same time, the reduction of electron transfer chain (1-qP) increased greatly in cucumber leaves. The close correlation of excitation pressure on PSII and PSI photoinhibition were observed in both the cucumber and Rumex K-1 leaves, indicating that the reduction state of QA is dependent of the extent of PSI photoinhibition. The accumulation of QA- could lessen electron flow to PSI,this might be important for protection against the photoinhibition of PSI.
     3. The content of H2O_2, O 2 and MDA in leaves increased largely. The activity of catelase (CAT), ascorbate peroxidase (APX), glutathione reducase (GR) and dehydroascorbate reductase (DHAR) were decreased in the leaves of cucumber treated with chilling temperature under moderate light, while activity of monodyhydroascorbate reductase (MDHAR) remained unchanged, and the activity of superoxide dismulate (SOD) increased. These data suggested that although the activity of SOD was increased, the activitity of antioxidant system was generally decreased in chilling-sensitive plant cucumber treated with chilling temperatures under moderate light, so that they were not able to scavenge the accumulated reactive oxygen species (ROS), resulting in cellular oxidative damage in cucumber leaves.
     4. Compared with the chilling–tolerant plant Rumex K-1, the membrane lipid composition of cucumber changed more noticeably and the polyunsaturated fatty acids index of PC, PG and SQDG decreased more remarkable in cucumber treated with chilling temperature combined with moderate light, which might be one of the important reseaons resulting in chilling-sensitivity of photochemical activity of PSI, PSII and OEC in cucumber leaves.
     5.Compared with the chilling–tolerant plant Rumex K-1, chloroplasts of cucumber were more vulnerable to chilling-light stress. After chilling treatment under moderate light, the thylakoid progressivly became distorted, swelled, and small vesicles were formed from inner membrane of chloroplasts. The chloroplast envelopes were eventually disintegrated, as a result, stromal contents mixed with the cytoplasm. While a striking chloroplasts reoriention was observed in Rumex K-1 leaves. The chloroplasts of Rumex K-1 were not affected obviously under chilling-light treatment. This observations supported the view that chloroplast avoidance movement play an important role in decreasing the light absorbation by photosystems, reducing oxidantive pressure on chloroplasts under excess light .
     6. Photosynthetic oxygen evolution, PSI and PSII photochemistry was maintained steady in cucumber leaves exposed to high temperature (40℃) in the dark , while OEC activity and PSII photochemistry as well as the rate of P700~+ reduction were markedly reduced in Rumex K-1 leave exposed to high temperature (40℃) in the dark.
     7. The PSI and PSII photochemistry were hardly affected in cucumber leaves treated with 40℃under low and moderate light intensities. The OEC activity, PSII photochemistry and the rate of P700+ reduction were not obviously chaged in Rumex K-1 leaves eoxposed to 40℃under low light. Whereas, under 300μmol m~(-2) s~(-1) PFD combined with 40℃, photochemistry of PSII, activity of OEC and P700+ reduction were slightly inhibited in Rumex K-1. These results indicated that the photosynthetic apparatus of chilling-sensitive cucumber was thermotolerant, however, the OEC complex and PSII photochemisty of Rumex K-1 were heat-sensitive, the severely impaired electron donation from PSII limited the P700+ reduction in Rumex K-1.
引文
陈国祥,何兵,魏锦城张荣铣(2000)低温下强光胁迫对小麦叶片光系统I结构与功能的影响。植物生理学报26(4): 337-342
    董高峰,陈贻竹. (1999).植物叶黄素与非辐射能量耗散。植物生理学通讯35(2): 141-144
    郭连旺,沈允钢. (1996)高等植物光合机构避免强光破坏的保护机制。植物生理学通讯. 32: 1-8
    李鹏民,高辉远,Strasser RJ(2005)。快速叶绿素荧光诱导动力学分析在光合作用研究中的应用。植物生理与分子生物学学报31(6):559-566。
    李晓萍陈贻竹郭俊彦(1996)叶绿体PSII光能耗散机制的研究进展。生物化学与生物物理进展23:145-149
    李新国,毕玉平,赵世杰,孟庆伟,何启伟,邹琦(2005)短时低温胁迫对甜椒叶绿体超微结构和光系统的影响。中国农业科学38(6):1226-1231。
    苏维埃,王文英,李锦树(1980)植物类脂及脂肪酸的分析技术。植物生理学通讯3: 54-60
    温晓刚,林世青,匡廷云(1996)高温胁迫对PSII异质性的影响。生物物理学报12: 714-718
    吴长艾,孟庆伟,邹琦(2001)叶黄素循环及其调控。植物生理学通讯37(1): 1-5.
    辛越勇,冯丽洁,许亦农,焦德茂,李良壁,匡廷云(2000)高光胁迫对水稻籼粳亚种两个品种色素蛋白复合体的影响。植物学报. 42: 1278-1284
    许大全. (1999)光系统II反应中心的可逆失活及其生理意义。植物生理学通讯。35(4): 273-276.
    曾乃燕,何军贤,赵文,梁厚果(2000).低温胁迫期间水稻光合膜色素与蛋白水平的变化。西北植物学报. 20(1): 8-14
    周功克,李红玉,文江祁,孔英珍,梁厚果(2000)低温胁迫下甘肃黄花烟草愈伤组织的抗氰呼吸。植物学报. 42(7)679-683
    Aebi. H (1984). Catalases in vitro. Methods in Enzymology 105: 121–126.
    Allakhverdiev SI, Murata N (2004) Environmental stress inhibits the synthesis de novo of proteins involved in the photodamage-repair cycle of photosystem II in Synechocystis sp. PCC 6803. Biochim Biophys Acta. 1657: 23–32.
    Allakhverdiev SI, Nishida Y, Suzuki Y, Tasaka Y, Murata N (1999). Genetic engineering of the unsaturation of fatty acids in membrane lipids alters the tolerance of Synechocystis to salt stress. Proc. Natl. Acad. Sci. USA. 96: 5862–5867.
    Allen JF. (1995).Thylakoid protein phosphorylation, state 1-state 2 transitions,and photosystem stoichiomery adjustment:redox control at multiple levels of gene expression. Plant Physiology. 93: 196-205.
    Allen. DJ and Ort DR.(2001). Impacts of chilling temperatures on photosynthesis in warm-climate plants. Trends in Plant Science. 6: 36-42.
    Alonso G, Kenneth L.S, Jonathan P. L. (1998) Light and excess manganese1 Implications for oxidative stress in common bean. Plant physiology. 118:493-504.
    Anderson JM (1986). Photoregulation of the composition,function and structure of thylakoid membranes. Ann Rev Plant Physiol. 37: 93-136.
    Anisworth EA, Davey PA, Hymus GJ, Drake BG, Long SP. (2002) Long-time responds of photosynthsis to elevated carbon dioxide in a Floria scrub-oak ecosystem. EcologicalApplications. 12: 1267-1275.
    Appenroth KJ, St?ckel J, Srivastava A and Strasser RJ. (2001) Multiple effect of chromate on the photosynthetic apparatus of Spirodela polyrhiza as probed by OJIP chlorophyll a fluorescence measurements. Environmental Pollution. 115: 49-64.
    Ariizumi T, Kishitani S, Inatsugi R, Nishida I., Murata N, Toriyama K. (2002). An increase in unsaturation of fatty acids in phosphatidylglycerol from leaves improves the rates of photosynthesis and growth at low temperatures in transgenic rice seedlings. Plant Cell Physiology. 43, 751-758.
    Armond PA, Schreiber U, Bj?rkman O. (1978) Photosynthetic acclimation to temperature in the desert shrub, larrea divaricata: II. light-harvesting efficiency and electron transport. Plant Physiology. 61: 411-415
    Arnon A I. (1949) Copper enzymes in isolated chloroplasts polyphenoloxidase in Beta vulgaris. Plant Physiology 24:1-15.
    Aro E-M, Hundal T, Carlberg I, Andersson B.(1990). In vitro studies on light induced inhibition of photosystem II and D1-protein degradation at low temperatures. Biochim Biophys Acta. 1019:269–275.
    Aro EM, Kettunen R, Tyystjrvi E. (1992) ATP and light regulated D1 protein modification and degradation. Role of D1 in photoinhibition. FEBS Letters. 297: 29-33.
    Arvidsson PO, Carlsson M, Stefánsson H, Albertsson PA, Akerlund HE. (1997) Violaxanthin accessibility and temperature dependency for de-epoxidation in spinach thylakoid membranes. Photosynthesis Research. 52(1): 39-48.
    Asada K. (1999) The water–water cycle in chloroplast: scavenging of active oxygens and dissipation of excess photons . Ann Rev Plant Physiol Plant Mol Biol. 50:601–639
    Asada K,Takahashi M. (1987) Production and scavenging of active oxygen in photosynthesis. In Photoinhibition (Kyle, D.J. et al., eds), pp. 227–287,Elsevier.
    Asada K. (1994) Production and action of active oxygen species in photosynthetic tissues. In Causes of Photooxidative Stress and Amelioration of Defence Systems in Plants (ed. P.M. Mullineaux), pp. 77–104. CRC Press, Boca Raton, FL, USA.
    Asada K.(2006) Production and scavenging of reactive oxygen species in chloroplasts ans their functions. Plant Physiology.141:391-396.
    Atkin OK, Tjoelker MG (2003)Thermal acclimation and the dynamic response of plant respiration to temperature. Trends in Plant Science. 8:343-351.
    Auh C-K, Scandalios JG (1997) Spatial and temporal responses of the maize catalases to low temperature. Physiologia Plantarum 101: 149–156.
    Baker NR. (1991) Possible role of photosystem II in environmental perturbations of photosynthesis. Plant Physiology. 81: 563-570
    Barber J, Andersson B. (1992) Too much of a good thing: light can be bad for photosynthesis. Trends Biochem Sci. 17: 61-66.
    Barber J, Norris J, Morris EP, Zheleva D, Hankamer B. (1997) The structure, function and dynamics of photosystem two. Physiologia Plantarum. 100: 817-828.
    Barber J. (1995) Molecular basis of the vulnerability of photosystem II to damage by light. Aust J Plant Physiol.22: 201-208
    Berry J , Bj?rkman O. (1980) Photosynthetic response and adaptation to temperature in higher plants. Annual Review of Plant Physiology. 31:491-543
    Bertamini M, Muthuchelian K, Rubinigg M, Zorer R,Velasco R, Nedunchezhian N. (2006) Low-night temperature increased the photoinhibition of photosynthesis in grapevine (Vitis vinifera L. cv. Riesling) leaves. Environmental and Experimental Botany. 57: 25–31
    Bilger W, Bj?rkman O. (1990). Role of the xanthophyll cycle in photoprotection elucidated by measurements of light-induced absorbance changes, fluorescence and photosynthesis in Hedera canariensis. Photosynthesis Research. 25: 173–185.
    Bingham MJ, Long SP. (1985) Equipment for field and laboratory studies of whole plant and crop photosynthesis and productivity research. In: Coombs J, Hall DO, Long SP, Scurlock JMO (eds) Techniques in Bioproductivity and Photosynthesis, 2nd Edn. Pergamon Press, Oxford, pp 229–250
    Boucher N, Harnois J, Carpentier R. (1990) Heat-stimulation of electron flow in a photosystem I submembrane . Biochem Cell Biol. 68:1000~1004
    Boyer JS. (1982). Plant productivity and environment. Science. 218: 443–448.
    Bradford MM. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 26:248-254
    Bruinsma J.(1961)A comment on the spectrophotometric determination of chlorophyll. Biochim Biophys Acta. 53: 576-578
    Bukhov NG, Heber U, Wiese C, Shuvalov VA. (2001) Energy dissipation in photsynthesis: Does the quenching of chlorophyll fluorescence originate from antenna complex of photosystem II or from the reaction center? Planta. 212:749-758.
    Bukhov NG, Sabat SC, Mobanty P. (1989) Sequential loss of photosynthetic functions during leaf desiccation as monitored by chlorophyll flourescence transient. Plant and cell physiology. 30: 393-398.
    Bukhov NG,Carpentier R. (2003).Measurement of photochemical quenching of absorbed quanta in photosystem I of intact leaves using simultaneous measurements of absorbance changes at 830 nm and thermal dissipation.Planta. 216:630-638.
    Butler WL, Kitajima M. (1975) Fluorescence quenching in photosystem II of chloroplast. Biochim Biophys Acta. 376:116–125.
    Campbell D, Bruce D, Carpenter C, Gustafsson P, ?quist G. (1996) Two forms of the Photosystem II D1 protein after energy dissipation and state transition in the cyanobacterium Synechocystis sp. PCC 7942. Photosynthesis Research. 47: 131-144.
    Cao J, Govindjee. (1990) Chlorophyll a fluorescence transient as an indicator of active and inactive photosystem II in thylakiod membranes. Biochim Biophys Acta. 1015:180-188.
    Chapman D.(1975). Phase transtion and fluidity characteristics of lipids and cell membrane. Quarterly review of biophysics. 8: 185-235.
    Chaumont M, Morot-Gaudry FM., Foyer CH(.1995). Effects of photoinhibitory treatment on CO2 assimilation, D1 protein, ascorbate, glutathione, xanthophylls contents and electron transport rate in vine leaves. Plant Cell and Environment. 18: 1358–1366.
    Cheniae GM, Martin IF. (1970) Site and function of manganese within photosystem II. Role in O2 evolution and system II. Biochim Biophys Acta. 197: 219-239
    Choi SM, Jeong SW, Jeong WJ, Kwon SY, Chow WS, Park Y-I. (2002) Chloroplast Cu/Zn-superoxide dismutase is a highly sensitive site in cucumber leaves chilled in thelight. Planta. 216: 315–324
    Chow WS (1994). In Barber J ed. Molecular processes of photosynthesis .Greenwich: J A I Press:151.
    Chris Somenrille.(1995). Direct tests of the role of membrane lipid composition in low-temperature-induced photoinhibition and chilling sensitivity in plants and cyanobacteria. Proc. Natl. Acad. Sci. USA. 92:6215-6218.
    Chylla RA, Whitmarsh J. (1989) Inactive photosystem II complexes in leaves: Turnover rate and quantitation. Physiologia Plantarum. 90: 765-772.
    Cleland R, Melis A, Neale PJ. (1986) Mechanism of photoinhibition: photochemical reaction center inactivation in system II of chloroplasts. Photosynthesis Research. 9: 79-88.
    Critchley C, Russell AW. (1994). Photoinhibition of photosynthesis in vivo: the role of protein turnover in photosystem II. Physiol. Plant. 92: 188–196.
    Darkóé, Váradi G, Lemoine Y, Lehoczki E. (2000) Defensive strategies agaist high light stress in wild and D1 protein mutant biotypes of Erigeron canadensis. Aust J Plant Physiol. 27: 325-333.
    Dat J, Vandenabeele S, VranováE, Van Montagu M, Van Breusegem D.(2000) Dual action of the active oxygen species during plant stress responses. Cell. Mol. Life Sci. 57, 779–795
    Delieu T, Walker DA. (1981). Polarographic measurement of phtosynthestic oxygen evolution by leaf discs. New Phytologist. 89: 165-175.
    Demmig-Adams B. (1990) Carotenoids and photoprotection in plants: a role for the xanthophyll zeaxanthin. Biochim Biophys Acta 1020: 1–24
    Demmig-Adams B, Adams WW. (1996) Xanthophyll cycle and light stress in nature: uniform response to excess direct sunlight among higher plant species. Planta. 198: 460-470
    Demmig-Adams B, Adams WW III. (1992) Photoprotection and other responses of plants to high light stress. Annu Rev Plant Physiol Plant Mol Biol 43: 599–626
    Demmig-Adams B, Winter K, Krüger A, Czygan FC. (1987) Photoinhibition and zeaxanthin formation in intact leaves. Plant Physiology. 84(2): 218-224.
    Douce R, Joyard J: Biosynthesis of thylakoid membrane lipids. In Advances in Photosynthesis, vol 4. (2003) Oxygenic photosynthesis: the Light Reactions. Edited by Ort DR, Yocum CF. Dordrecht. Kluwer Academic Publishers. 1996: 69-101.
    Draper HH, Hadley M(.1990)Malondialdehyde determination as index of lipid Peroxidation. Methods in Enzymology. 186: 421-431.
    Eckardt NA, Portis ARJ.(1997) Heat denaturation profiles of ribulose - 1,5 - bisphosphate carboxylase / oxygenase ( Rubisco ) and Rubisco activase and the inability of Rubisco activase to restore activity of heat-denaturated Rubisco. Plant Physiology. (113):243 - 248.
    Elstner EF , Heupel A. (1976) Inhibition of nitrite formation from hydroxyl- ammoniumchloride: a simple assay for superoxide dismutase. Analytical Biochemistry. 70: 616-620.
    Enamy I, Kitamura M, Tato T. (1994) . Is the primary cause of thermal inactivation of oxygen evolution in spinach PSII membranes release of the 33 kDa protein or of Mn ? Biochim. Biophys. Acta. 186: 52-58.
    Escoubas JM, Lomas M, Laroche J, Falkowski PG. (1995). Light intensity regulation ofcab gene transcription is signaled by the redox state of plastoquinone pool. Proc. Natl. Acad. Sci. USA. 92:10237-102341.
    Eskling M, Akerlind HE, Akerlind HE. (1997).The xanthophyll cycle,its regulation and components. Physiologia Plantarum. 100: 806-816.
    Faris JA. (1926).Cold chlorosis of suger can. Phytopathyology. 16: 885-891.
    Farquhar CD, Von Caemmerer S, Berry JA. (1980). A biochemical model of photosynthetic CO2 assimilation in leaves of C3 species. Planta. 149: 78-90.
    Feierabend J, Sachaan C, Hertwig B.(1992) Photoinactivation of catalase occurse under both high and low temperatur stress conditions ans accompanies photoinhibition of photosystem II. Plant physiology. 100: 1554-1561.
    Feierabend J, Enger J. (1986) Photoinactivation of catalase in vivo and in leaves. Arch.Biochem.Biophys .251: 567-576.
    Feller U, Crafts-Brandner S J, Salvucci M E. (1998). Moderately high temperatures inhibit ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) activase-mediated activation of Rubisco. Plant Physiology. 116:539-546.
    Foyer CH, Descourvieres P, Kunert K. J. (1994) Protection against oxygen radical: an important defense mechanism studies in transgenic plants. Plant Cell and Environment. 17: 507-523.
    Foyer CH, Halliwell B. (1976) The presence of glutathione and glutathione reductase in chloroplasts: a proposed role in ascorbic acid metabolism. Planta. 133: 21-25.
    Foyer CH, Lelandais M A.(1996) comparison of the relative rate of transport of ascorbate and glucose across the thylakoid, chloroplast and plasmalemma membranes of pea leaf mesophyll cells. Journal of Plant Physiology.148: 391-398.
    Frentzen M. (2004). Phosphatidylglycerol and sulfoquinovosyldiacylglycerol: anionic membrane lipids and phosphate regulation. Current Opinion in Plant Biology .7: 270–276.
    Fromme P, Jordan P, Krauss N, Fromme P, Jordan P, Krauss N. (2001) Structure of photosystem I. Biochim Biophys. Acta. 1507: 5–31.
    Gemel J, Golinowski W, Kaniuga Z. (1986). Low-temperature induced changes in chloroplast ultrastructure in relation to changes of Hill reaction activity, manganese and free fatty acid levels in chloroplast of chilling-sensitive and chilling-resistant plants. Acta Physiologiae Plantarum. 8:135-143.
    Genty B, Briantais JM, Baker NR. (1989) The relationship between the quantum yield of photosynthetic electron transport and quenching of chlorophyll fluorescence. Biochim Biophys Acta. 99:87–92
    Giannopolitis C.N, Ries SK. (1977) uperoxide dismutase .I.Occurrence in higher plants. Plant Physiology. 59: 309-314
    Gillham DJ, Dodge AD.(1986). Hydrogen peroxide scavenging systems in pea chlorolasts. Planta.167: 246-251.
    Gilmore AM. (1997) Mechanistic aspects of xanthophylls cycle dependent photoprotection in higher plant chloroplasts and leaves. Physiologia Plantarum. 99: 197-209.
    Golden SS, Brusslan J, Haselkorn R. (1986) Expression of a family of psbA genes encoding a photosystem II polypeptide in the cyanobacterium Anacystis nidulans R2. EMBO Journal. 5: 2789-2798.
    Gombos Z, Kanervo E, Tsvetkova T, Sakamoto T, Aro EM, Marata N (1997). Geneticenhancement of the ability to tolerate photoinhibition by introduction of unsaturated bonds into membrane glycerolipids. Plant Physiology. 115: 551–559.
    Gombos Z, Várkonyi Z, Hagio M, Iwaki M, Kovács L, Masamoto K, Itoh S, Wada H. (2002) Phosphatidylglycerol requirement for the function of electron acceptor plastoquinone QB in the Photosystem II reaction center. Biochemistry. 41: 3796–3802
    Gonzàlez MMA , Ribas-Carbo M, Giles L, Siedow J N. (1999) The effect of growth and measurement temperature on the activity of the alternative respiratory pathway. Plant Physiology. 120: 765-772.
    Gounaris K, Brain ARR, Quinn PJ. (1984) Structuralre organization of chloroplast thylakoid membranes in responds to heat stress. Biochim Biophys Acta. 766:198-208
    Gounaris K, Mannock D A, Sen A, Brain A P R, Williams W P, Quinn P J. (1983). Polyunsaturated fatty acyl residues of galactopipids are involved in the control of bilayer/non bilayer lipid transition in higher plant chloroplasts. Biochim Biophys Acta. 732: 229-242
    Gounaris K, Whitord D, Barber J. (1983) The effect of thylakoid lipid on an oxygen- evoluting photosystem II perparation. FEBS Letters. 163:230-234.
    Govindjee. (1990) Photosystem II heterogeneity: the acceptor side. Photosynthesis Research. 25:151-160.
    Greenberg BM, Gaba V, Mattoo A-K, Edelman M.(1987). Identification of a primary in vivo degradation product of the rapidly turning-over 32 kd protein of photosystem II. EMBO Journal. 6: 2865-2869.
    Greer D H, Laing W. A(1988) .Photoinhibition of photosynthesis in intact kiwifruit (Actinidia deliciosa) leaves: Recovery and its dependence on temperature. Planta. 174: 159-165.
    Gruszecki WI, Strzalka K. (1991) Does the xanthophylls cycle take part in the regulation of the thylakoid membrane? Biochim Biophys Acta. 1060: 310-314
    Hager A (1980) The reversible, light-induced conversions of xanthophylls in the chloroplast. In: Czygan FC (ed) Pigments in Plants. Fischer, Stuttgart, Germany, pp 57–79.
    Hager A ,Holocher K. (1994). Localization of the xanthophyll-cycle enzyme violaxanthin de-epoxidase within the thylakoid lumen and abolition of its mobility by a (light-dependent) pH decrease. Planta. 192:581-589
    Hagio M, Gombos Z, Várkonyi Z, Masamoto K, Sato N, Tsuzuki M and Wada H. (2000) Direct evidence for requirement of phosphatidylglycerol in Photosystem II of photosynthesis. Plant Physiology. 124, 795–804
    Haldrup A, Simpson DJ, Scheller HV. (2000) Down-regulation of PSI-F subunit of photosystem (PSI) in Arabidopsis thaliana. (The PSI-F subunit is essential for photoautotrophic grown and contribution to antenna function. J Biol Chem. 275: 31211-31218.
    Hartel H, Lokstein H, Grimm B, Rank B. (1996) Kinetic studies on the xanthophyll cycle in barley leaves. Plant Physiology.110: 471-482.
    Haupt W(1999). Chloroplast movement: from phenomenology to molecular biology. Prog. Bot. 63:3-36.
    Haupt W, Scheuerlein R.(1990). Chloroplast movement. Plant Cell and Environment. 13: 595-614.
    Havaux M. (1993). Characterization of thermal damage to the photosynthetic electron transport system in potato leaves. Plant Science. 94, 19–33.
    Havaux M. (1998) Carotenoids as membrane stabilizers in chloroplasts. Trends in Plant Science. 3: 147-151
    Havaux M. (1995) Temperature sensitivity of the photochemical function of photosynthesis in potato (Solanum tuberosum) and a cultivated Andrean hybrid (Solanum Juzepezukii) . Journal of Plant Physiology.146:47-53.
    Havaux M. (1996). Short-term responses of photosystem I to heat stress - Induction of a PS II independent electron transport through PS I fed by stromal components. Photosynthesis Research. 47:85-97.
    Havaux M, Tardy F. (1996). Temperature-dependent adjustment of the thermal stability of photosystem II in vivo, Possible involvement of xanthophyll-cycle pigments. Planta.198:324-333.
    Havaux, M. Greppin, H. Strasser, R.J. (1991). Functioning of photosystems I and II in pea leaves exposed to heat stress in the presence or absence of light. Planta.186:88-98.
    Havaux M, Tardy F, Ravenel J, Chanu D,Parot P. (1996). Thylakoid membrane stability to heat stress studied by flash spectroscopic measurements of the electrochromic shift in intact potato leaves, influence of the xanthophyll content. Plant Cell and Environment. 19: 1359-1368.
    Hodges DM, Andrews CJ, Johnson DA, Hamilton RI. (1997) Antioxidant enzyme responses to chilling stress in differentially sensitive inbred maize lines. Journal of Experimental Botany. 48: 1105-1113.
    Hodges DM, Delong JM, Forney CF.(1999). Improving the thiobarbituric acid-reactive- substances assay for estimating lipid peroxidation in plant tissues containing anthocyanin and other interfering compounds. Planta. 207: 604-611
    Hofmann E, Wrench PM, Sharples FP, Hiller RG, Welte W, Diederichs K (1996) Structural basis of light harvesting by carotenoids: peridinin-chlorophyll-protein from Amphidinium carterae. Science. 272:1788-1791
    Hong SS, Xu DQ. (1999)Light-induced increase in initial chlorophyll fluorescence Fo level and the reversible inactivation of PS II reaction centers in soybean leaves. Photosynthesis Research. 61: 269-280
    Horton P, Ruban A, Walter RG. (1994) Regulation of light harvesting in green plants: indication by nonphotochemical quenching of chlorophyll fluorescence. Physiologia Plantarum. 106: 415-421
    Horton P, Ruban AV, Walters RG. (1996) Regulation of light harvesting in green plant.Annu Rev Plant Physiol Plant Mol Biol. 47: 655-684.
    Hossain MA, Asada K. (1984). Purification of dehydroascorbate reductase from spinach and its characterization as a thiol enzyme. Plant and Cell Physiology. 25: 85-92
    Hossain MA, Nakano Y, Asada K. (1984). Monodehydroascorbate reductase in spinach chloroplasts and its participation in regeneration of ascorbate for scavenging hydrogen peroxide. Plant and Cell Physiology. 25: 385-395
    Houghton J T, Ding Y, Griggs D J, Noguer M, van der Linden P J, Dai X, Maskell K , Johnson CA. (2001). Climate change 2001, The scientific basis. Cambridge University Press,Cambridge.UK.pp 896.
    Huner NPA, Maxwell DP, Gray GR, Savitch LV, Krol M, Ivanov AG, Falk S. (1996). Sensing environmental temperature change through imbalances between energy supply and energy consumption: Redox state of photosystem II. Physiologia Plantarum. 98: 358-364.
    Huner NPA, Williams JP, Maissan EE, Myscich EG, Krol M, Laroche A, Singh J. (1989) Low Temperature-induced Decrease in Trans-delta-3 Hexadecenoic Acid Content is Correlated With Freezing Tolerance in Cereals. Plant Physiology. 89: 144-150.
    Hutchison RS, Groom Q, Ort DR. (2000). Differential effects of chilling-induced photooxidation on the redox regulation of photosynthetic enzymes. Biochemistry. 39:6679–6688.
    Iacono F, Bertamini M, Mattivi F.(1994). Differential effects of canopy manipulation and shading. Note I. Composition of grape berries (Vitis vinifera L. cv. Cabernet Sauvignon). Wein Wiss 49:220–225.
    Inoue K., Sakurai H. & Hiyama T. (1986) Photoinactivation of photosystem I in isolated chloroplast. Plant Cell Physiology. 27: 961–968.
    Inoue N, Emi T, Yamane Y, Kshino Y, Koike H, Satoh K. (2000) Effects of high- temperature treatments on a thermophilic cyanobacterium Synechococcus vulcanus. Plant Cell Physiology. l41: 515-522.
    Inoue N, Taira Y, Emi T, Yamane Y, Kashino Y, Koike H. (2001) Acclimation to the growth temperature and the high-temperature effects on photosystem II and plasma membranes in a mesophilic cyanobacterium, Synechocystis sp. PCC6803. Plant Cell Physiology.42: 1140-1148.
    Ishikawa HA. (1996). Ultrastructural features of chilling injury: injured cells and the early events during chilling of suspension-cultures mung bean cells. American Journal of Botany. 83:825-835.
    Ivanov AG, Morgan RM, Gray GR, Velitchkova MY, Huner NPA (1998) Temperature / light dependent development of selective resistance to photoinhibition of Photosystem I. FEBS Letters. 430:288–292.
    Jagel R. (1970). Photosynthetic apparatus in Selaginella.II. Changes in plastid ultrastructure and pigment content under different light and temperature regimes. Canadian Journal of Botany.48:1853-1860.
    Jahns P, Junge W.(1990) Dicyclohexylarbodiimide-binding proteins related to the short circuit of the protonpumping activity of PSII.Identified as light-harvesting chlorophyll a/b binding proteins. Eur J Biochem.193: 731-736.
    Jansson C, Maenpaa P. (1997) Site-directed mutagenesis for structure-function analysis of the photosystem II reaction center protein D1. Progr Bot. 58: 352-367.
    Johnson N, Horton P. (1993).The dissipation of excess excitation energy in British plant species. Plant Cell and Environment.16: 673-679.
    Jordan. P, Fromme. P, Witt. H.T, Klukas. O, Saenger. W, Krausse. N. (2001) Three- dimensional structure of cyanobacterial Photosystem I at 2.5 angstrom resolution. Nature. 411: 909–917
    Juhler RK, Andreasson E, Yu SG, Albertsson PA. (1993) Composition of photosystem pigments in thyakoid membrane vesicles from spinach. Photosynthesis Research. 35: 171-178.
    Kagawa T, Wada M. (2002). Blue light-induced chloroplast relacation. Plant and Cell Physiology. 43:367-371.
    Kaniuga Z, Sochanowicz B, Zabek J, Krzystyniak K. (1978). Photosynthetic apparatus in chilling sensitive plants. I. Reactivation of Hill reaction activity inhibited on the cold and dark storage of detached leaves and intact plants. Planta. 140: 121-128.
    Kasahara M, Kagawa T, Oikawa K, Suetsugu N, Miyao M , Wada M. (2002) Chloroplast avoidance movement reduces photodamage in plants. Nature. 420:19-26.
    Kasamo K, Kagita F, Yamanishi H, Sakaki T. (1992) Low temperature-induced changes in the thermotropic properties and fatty acid composition of the plasma membrane and tonoplast of cultured rice (Oryza sativa L.) cells. Plant and Cell Physiology. 33: 609-616.
    Kato MC, Hikosaka, Hirotsu N, Makino A, Hirose T.(2003) The excess light energy that is neither utilized in photosynthesis or dissipated by photoprotective mechanisma determines the rate of photoinactivation in photosystem II. Plant Cell Physiology. 44:318-325.
    Kimball SL, Salisbury FB. (1973). Ultrastructural changes of plants exposed to low temperatures. American Journal of Botany 60:1028–1033.
    Kingston-Smith AH, Harbinson J, Williams J, Foyer CH. (1997) Effect of chilling on carbon assimilation, enzyme activation, and photosynthetic electron transport in the absence of photoinhibition in maize leaves. Plant Physiology. 114: 1039–1046.
    Knox JP, Dodge AD. (1985) Singlet oxygen and plants. Phytochemistry 24: 889– 896.
    Kornyeyev D, Holaday S, Logan B. (2003) Predicting the extent of photosystem II photoinactivation using chlorophyll a fluorescence parameters measured during illumination. Plant Cell Physiology. 44: 1064-1070.
    Kratsch HA, Wise RR. (2000). The ultrastructure of chilling stress. Plant Cell and Environment. 23: 337-350
    Krause GH, Weise E (1991). Chlorophyll fluorescence and photosynthesis: the basics. Annu Rev Plant Physiol Plant Mol Biol. 42: 313-349.
    Krause GH. (1988) Photoinhibition of photosynthesis. An evaluation of damage and protective mechanisms. Physiologia Plantarum. 74: 566-574.
    Krieger A , Weis E. (1993). The role of cacilum in the pH-dependent control of photosystem II. Photosynth Research. 37:117-130.
    Krieger A, Moya I, Weis E. (1992) Energy-dependent quenching chlorophyll a fluorescence: effect of pH on stationary fluorescence and picosecond relaxation kinetics in thylakoid membranes and photosystem II preparations. Biochim Biophys Acta. 1102: 167-176.
    Krüger GHJ, Tsimilli-Michael M, Strasser RJ (1997) Light stress provokes plastic and elastic modifications in structure and function of photosystem II in camellia leaves. Physiologia Plantarum. 101:265–277.
    Kruse O, Hankamer B, Konczak C, Gerle C, Morris E, Radunz A, Schmid GH, Barber J (2000) Phosphatidylglycerol is involved in the dimerization of Photosystem II. J. Biol. Chem. 275: 6509–6514.
    Kudoh H, Sonoike K. (2002) Irreversible damage to photosystem I by chilling in the light: cause of the degradation of chlorophyll after returning to normal growth temperature. Planta. 215:541– 548.
    Kunst L, Browse J, Somerville C. (1989). Enhanced thermal tolerance in a mutant of Arabidopsis deficient in palmitic acid desaturation. Plant Physiology. 91:401-408.
    Lavergne J. (1974) Fluorescence induction in algae and chloroplasts. Photochem Photobiol. 20: 377-386.
    Law RD, Crafts-Brandner SJ. (1999) Inhibition and acclimation of photosynthesis to heat stress is closely correlated with activation of ribulose-1?5-bisphosphate carboxylase/ oxygenase. Plant Physiology. 120: 173-181.
    Lee.HY, Hong YN, Chow WS. (2001) Photoinactivation of photosyntem II complexes and photopretection by non-functional neighbours in Capsicum annum L.leaves. Planta. 212: 332-342.
    Leegood RC, Edwards GE. (1996) Carbon metabolism and photorespiration: temperature dependence in relation to other environmental factors. In Photosynthesis and the Environment (Baker, N.R., ed.), pp. 191–221, Kluwer Academic.
    Lindahl M, Yang DH, Andersson B.(1995). Regulatory proteolysis of the major light- harvesting chlorophyll a-b protein of photosystem II by a light-induced membrance- associated enzymic system. Eur.J.Biochem. 231:509-513.
    Liu ZF, Yan HC, Wang KB, Kuang TY, Zhang JP, Gui LU, An XM, Chang WR (2004) Crystal structure of spinachmajor light-harvesting complex at 2.72 A resolution. Nature 428: 287–292.
    Lobell DB, Asner GP. (2003). Climate and management contributions to recent trends in U.S. agricultural yields. Science. 299:1032.
    Loll B, Kern J, Saenger W, Zouni A, Biesiadka J. (2005). Towards complete cofactor arrangement in the 3.0? resolution structure of photosystem II. Nature. 438:1040-1044.
    Long SP, East TM, Baker NR.(1983). Chilling damage to photosynthesis in young Zea maize. 1. Effects of light and temperature variation on photosynthetic CO2 assimilation. Journal of Experimental Botany. 34:177–188.
    Lu CM, Zhang J (2000) Heat-induced multiple effects on PSII in wheat plants. Journal of Plant Physiology. 156:259–265.
    Luxova M, Gasparikova O (1999). The effect of low temperature on root respiration in maize. Biologia. 54:453-458.
    Lyons JM. (1973) Chilling injury in plants. Ann Rev Plant Physiol. 24: 445-528.
    Ma S, Lin C Chen Y.( 1990). Comparative studies of chilling stress on alterations of chloroplast ultrastructure and protein synthesis in the leaves of chilling- sensitive (mungbean) and–insensitive (pea) seedlings. Botanical Bulletin of the Academia Sinic. 31:263-272.
    Maxwell DP, Laudenbach DE, Hunter NPA. (1995) Redox regulation of light- harvesting complex II and cab mRNA aboundance in Dunaliella salina. Plant Physiology. 109: 787-795.
    McCain DC, Croxdale J, Markley JL. (1989) Thermal damage to chloroplast envelope membranes. Plant Physiology. 90: 606-609.
    McCarthy JJ, Canziani DF, Leary NA, Dokken DJ, White KS. (Eds.) (2001). Climate Change 2001: Impacts, Adaptation, and Vulnerability. Summary for poliy makes. Cambridge University Press, Cambridge, UK. 1042 pp.
    Melis A. (1991) Dynamics of photosynthetic membrane composition and function. Biochim Biophys Acta. 1058: 87-106
    Melis A. (1999) Photosystem-II damage and repair cycle in chloroplasts: what modulates the rate of photodamage in vivo? Trends in Plant Science. 4: 130-135.
    Minoda A, Sato N, Nozaki H, Okada K, Takahashi H, Sonoike K, Tsuzuki M. (2002) Role of sulfoquinovosyl diacylglycerol for the maintenance of Photosystem II in Chlamydomonas reinhardtii. Eur. J. Biochem. 269, 2353–2358
    Mitsuhara I, Malik KA, Miura M, Ohashi Y. (1999) Animal cell-death suppressors Bcl-xL and Ced-9 inhibit cell death in tobacco plants. Curr. Biol. 9: 775–778.
    Miyake C, Asada K. (1996) Inactivation mechanism of ascorbate peroxidase at low concentrations of ascorbate; hydrogen peroxide decomposes compound I of ascorbate peroxidase. Plant Cell Physiology. 37:423–430.
    Mohanty N, Murthy SDS, Mohanty P. (1987) Reversal of heat induced alteration in photochemical activities in wheat primary leaves. Photosynthesis Research. 14: 259-267.
    Mohanty P, Vani B, Prakash JS. (2002) .Elevated temperature treatment induced alteration in thylakoid membrane organization and energy distribution between the two photosystems in Pisum sativum. Z Naturforch. 57: 836-42.
    Moon BY, Higashi S-I, Gombost Z, Murata N.(1995).Unsaturation of the membrane lipids of chloroplasts stabilizes the photosynthetic machinery against low-temperature photoinhibition in transgenic tobacco plants. Proc Natl Acad Sci. USA. 92: 6219–6223.
    Murakami Y, Tsuyama M, Kobayashi Y, Kodama H, Iba K. (2000). Trienoic fatty acids and plant tolerance of high temperature. Science. 287: 476-479.
    Murata N. (1983) Molecular species composition of phosphatidylglycerols from chilling- sensitive and chilling-resistant plants. Plant Cell Physiology. 24: 81–86.
    Murata N, Higashi S-I , Fujjmura Y. (1990) Glycerolipids in various preparations of Photosystem II from spinach chloroplasts. Biochim Biophys Acta. 1019: 261–268.
    Murata N, Ishizaki-Nishizawa O, Higashi S, Hayashi H, Tasaka Y, Nishida I. (1992) Genetically engineered alteration in the chilling sensitivity of plants. Nature.356: 313– 326.
    Murata N, Mohanty PS, Hayashi H, Papageogious GC. (1992). Glycinebetaine stablilize the association of extrinsic proteins with photosynthetic oxygen- evolving photosystem II complex. FEBS Letters. 296:187-189.
    Murata N, Sato N, Takahashi N, Hamazaki Y. (1982) Compositions and positional distributions of fatty acids in phospholipids from leaves of chilling-sensitive and chilling-resistant plants. Plant Cell Physiology. 23: 1071–1079..
    Murata N, Siegenthaler PA. (1998). Lipids in photosynthesis: An overview. In: Siegenthaler PA, Murata N, eds. Lipids in Photosynthesis: Structure, Function and Genetics. Kluwer Academic Publishers, Dordrecht. pp. 1–2.
    Musser RL, Thomas SA, Wise RR, Peelter T, Naylor AW. (1984).Chloroplast ultrastructure, chlorophyll flourescence and pigment composition in chilling- stressed soybeans. Plant Physiology. 74:749-754.
    Nakano Y, Asada K. (1981) Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts. Plant Cell Physiology. 22: 867-880.
    Nash D, Miyao M, Murata N. (1985) Heat inactivation of oxygen evolution in Photosystem II particles and its acceleration by chloride depletion and exogenous manganese. Biochim. Biophys. Acta. 807: 127 -133.
    Nessler CL, Long RC,Wernman EA. (1980). Physiological observations of extranuclear temperature-sensitive lethality in Nicotiana tabacum L. tobacco genotypes. Zeitischrift Fur Pflanzenphysiologie. 99: 27-35.
    Nikolai G, Bukov, Robert C, (2000) Heteogeneity of photosystemII reaction centers as influences by heat treatment of barly leaves.Physiologia plantarum. 110:279-285.
    Nishida I, Murata N. (1996) Chilling sensitivity in plants and cyanobacteria: the crucial contribution of membrane lipids. Annu Rev Plant Physiol Plant Mol Biol. 47: 541–568.
    Nishiyama Y, Loss DA, Hayashi H. (1997) Thermal protection of the oxygen evolving machinery by PsbU , an extrinsic protein of photosystemⅡin Synechococcus species PCC 7002. Plant Physiology. 115: 1473 -1480.
    Nishiyama Y, Yamamot H, Allakhverdiev SI, Inaba M. Yokota A. Murata N. (2001) Oxidative stress inhibits the repair of photodamage to the photosynthetic machinery. The EMBO Journal . 20: 5587–5594.
    Niyogi KK. (1999) Photoprotection revisited: genetic and molecular approaches. Annu Rev Plant Physiol Plant Mol Biol. 50: 333-359.
    Niyogi KK. (2000) Safety valves for photosynthesis. Current Opinion in Plant Biology. 3:455-460.
    Noctor G , Foyer CH. (1998) Ascorbate and glutathione: keeping active oxygen under control. Ann Rev Plant Physiol Plant Mol Biol. 49: 249-279.
    Nubberger S, D?rr K, Wang D N.(1993)Lipid-protein interaction in crystals of plant light-harvesting complex. Journal of Molecular Biology. 224: 347—356.
    Oquist G, Chow WS, Anderson JM. (1992) Photoinhibtion of photosynthesis represents a mechanism for the long-term regulation of photosystem II. Planta. 186: 450-460.
    Ort D R, Baker N R.(2002)A photoprotective role for O2 as an alternative electron sink in photosynthesis? Current Opinion in Plant Biology. 5:193-198.
    Ort DR, Whitmarsh J. (1990) Inactive photosystem II centers: A resolution of discrepancies in photosystem II quantition? Photosynth Res. 23: 101-104.
    Ortiz-Lopez, A, Nie GY, Ort DR, Baker NR, 1990. The involvement of the photoinhibition of photosystem II and impaired membrane energization in the reduced quantum yield of carbon assimilation in chilled maize. Planta. 181: 78–84.
    Osmond CB, Ramus J, Levavasseur G , Franklin LA, Henley WJ. (1993) Fluorescence quenching during photosynthesis and photoinhibition of Ulva rotundata blid. Planta. 190: 97-106.
    Osmond CB. (1994) What is photoinhibition? Some implications for the energetics of photosynthesis. In: Baker NR, Bowyer JR (eds) Photoinhibition of photosynthesis. Bios Scientific, Oxford, pp 1–24.
    Ottander C, Hundal T, Andersson B, Huner NPA, Oquist G. (1993) Photosystem II reaction centres stay intact during low temperature photoinhibition. Photosynthesis Research. 35: 121-200.
    Ourisson G, Nakatani Y. (1990) Bacterial carotenoids as membrane reinforcers. A general role for polyterpenoids: membrane stabilization. In: Krinsky NI, Mathews-Roth MM, Taylor RF (eds) Carotenoids: Chemistry and biology. Plenum Press, New York. 237-245.
    Owens TG, Shreve AP, Albrecht AC. (1992)Dynamics and mechanism of singlet energy transfer between carotenoids and chlorophylls: light harvesting and nonphotochemicalfluorescence quenching. In N Murata, eds, Research in Photosynthesis, Vol 4. Kluwer Academic Publishers, Dordrecht, The Netherlands. pp 179-186.
    Padmasree K, Pamavathi L, Raghavendra AS. (2002) Essentiality of mitochondial oxidase melabolism for photosynthetsis: optimization of carbon assimilation and protection against photoinhibition. Current reviews in biochemistry and molecualr biology. 37: 71-119.
    Padmasree K, Raghavendra AS. ( 2001) Restriction of mitochondrial oxidative melabolism leads to suppression of photosynthetic carbon assimilation but not of photochemical electron transport in pea mesophyll protoplast.Current science. 81: 680-684.
    Páli T, Garab G, Horváth LI, Kóta Z. (2003) Functional significance of the lipid–protein interface in photosynthetic membranes. Cell. Mol. Life Sci. 60: 1591–1606.
    Park YI, Chow WS, Anderson JM. (1995)The quantum yield of photoinactivation of photosystem II in Pea leaves is greater at low than high photon exposure. Plant Cell Physiol. 36: 1163-1167.
    Park Y-I, Chow WS, Osmond CB, Anderson JM. (1996) Electron transport to oxygen mitigates against the photoinactivation of photosystem II in vivo. Photosynthesis Research.50: 23–32.
    Patterson BD, Macrae EA, Ferguson IB. (1984) Estimation of hydrogen peroxide in plant extracts using Titanium (IV). Analytical Biochemistry. 139: 487-492.
    Peeler TC, Naylor AW. (1988) A comparison of the effects of chilling on thylakoid electron transfer in pea ( Pisun sativum L. ) and cucumber (Cucumis sativus L. ). Plant Physiology. 86: 143-146.
    Perumal Vijayan, John Browse. (2002) Photoinhibition in Mutants of Arabidopsis Deficient in Thylakoid Unsaturation. Plant Physiology. 129:876-885.
    Pete G. (1986) Increased thermostability of pigment-protein complexes of pea thylakoid fowling catalytic hygrogenztion of membrane lipids. Biochemics Biophysical Acta. 849:131-140.
    Pfündel E, Bilger W. (1994) Regulation and possible function of the violaxanthin cycle. Photosynthesis Research. 42: 89-109
    Philip Y, Young AJ. (1995)Occurrence of the carotenoid lactucaxanthin in higher plant LHCII. Photosynthesis Research. 43: 273-282.
    Pick U, Weiss M, Gounaris K, Barber J. (1987). The role of different thylakoid glycolipids in the function of reconstituted chloroplast ATP synthease. Biochimical Biophysica Acta. 891:28-39.
    Polle A. (2001). Dissecting the superoxide dismutase–ascorbate peroxidase– glutathione pathway in chloroplasts by metabolic modeling. Computer simulations as a step towards flux analysis. Plant Physiology. 126: 445– 462.
    Pospisil P, Tyystjarvi E. (1999) Molecular mechanism of high-temperature- induced inhibition of acceptor side of photosystem II. Photosynthesis Research. 62: 55-66.
    Powles SB. (1984) Photoinhibition of photosynthesis induced by visible light. Ann Rev Plant Physiol 35: 15-44.
    Prásil O, Adir N, Ohad I. (1992) Dynamics of Photosystem II: Mechanism of photoinhibition and recovery process. In: Barber NR, Bowyer JR (eds) Topics in photosynthesis, Vol 11, the photosystems: structure, function, and molecular biology.Oxford: Elsevier Scientific Publisher. 295-348.
    Purvis AC, Shewfelt RJ. (1993).Dose the alternative pathway ameliorate chilling injury in sensiteive plant tissues? Physiologia plantarum. 88:712-718.
    Quinn PJ, Joo F, Vigh L. (1989). The role of unsaturated lipids in membrane structure and stability. Prog. Biophys. Mol. Biol. 53: 71–103.
    Quinn PJ. (1988). Regulation of membrane fluidity in plants. In:Barber J and baker NR eds. Physiological regulation of membrane fluidity Vol III.Alan R Liss, New York, pp 293-321.
    Raison JK, Roberts JKM, Berry JA. (1982). Correlation between the thermal stability of chloroplast (thylakoid) membranes and the composition and fluidity of their polar lipids upon acclimation of the higher plant Nerium oleander to growth temperature. Biochim Biophys Acta. 688:218-228.
    Ribas-Carbo M, Aroca R, Gonzàlez-Meler JJI, Sánchez-Díaz M. (2000) The electron partitioning between the cytochrome and alternative respiratory pathways during chilling recovery in two cultivars of maize differing in chilling sensitivity. Plant Physiology. 122: 199-204.
    Rockholm DC, Yamamoto H Y. (1990) Violaxanthin de-epoxidase. Plant Physiology. 110: 697- 703.
    Roughan PG. (1985) Phosphatidylglycerol and chilling sensitivity in plants. Plant Physiology. 77: 740–746.
    Ruan X, Xu Q, Mao HB, Shan JX, Gong YD, Zhang XF, Kuang TY, Zhao NM. (2000) Comparison between the influence of phosphatidylcholine and Triton X-100 in the protein secondary structures and oxygen-evoluting avtivity of photosystem II. Acta Botanica Sinica. 42 (12): 1220-1224.
    Ruban AV, Horton P. (1992). Mechanism of pH -dependent dissipation of absorbed excitation energy by photosynthetic membrane I.Spectroscopic ananlysis of isolated light- harvesting complexxes. Biochim Biophys Acta. 1116:219-227.
    Ruban AV, Young AJ, Pascal AA, Horton P. (1994) The effect of illumination on the xanthophyll composition of the photosystem II light harvesting complexes of spinach thylakoid membrane. Plant Physiology. 104: 227-234.
    Sairam RK, Srivastava GC. (2002) Changes in antioxidant activity in sub-cellular fractions of tolerant and susceptible wheat genotypes in response to long term salt stress. Sakurai I , Mizusawa N, Wada H, Sato N. (2007). Digalactosyldiacylglycerol is required for stabilization of the oxygen-evolving complex in photosystem II. Plant Physiology 145: 1361-1370.
    Salvucci ME, ?gren WL. (1996) Themechanism of Rubisco activase: insights from studies of the properties and structure of the enzyme. Photosynthesis Research. 47(1): 1-11.
    Santarius KA. (1975) Site of heat sensitivity in chloroplasts and differential inactivation of cyclic and noncyclic photophoshorylation by heating. J Therm Biol. 1: 101-107.
    Sarasasevi K, Raghavendra AS.(1992).Dark respiration protection photosysthesis against photoinhibition in mesophyll protoplasts of pea (Pisum sativum). Plant Physiology. 99: 1232-1237.
    Sayed OH, Earnshaw MJ, Emes MJ. (1994). Characterisetion of the heat induced stimulation of photosystem I mediated electron transport. Acta Bot. Neerl. 43: 137-143.
    Scandalios J G. (1993)Oxygen stress and superoxide dismutses. Plant Physiol. 101: 7-12.
    Schansker G, Srivastava A, Govinjee, Strasser RJ. (2003) Characterization of the 820-nm transission signal paralleling the chlorophyll a fluorescence rise (OJIP) in pea leaves. Functional Plant Biology. 30: 785-796.
    Schansker G, Tóth SZ, Strasser RJ. (2005) Methylviologen and dibromothymoquinone treatments of pea leaves reveal the role of photosystem I in the Chl a fluorescence rise OJIP. Biochim Biophys Acta. 1706: 250–261.
    Scheller HV, Haldrup A. (2005) Photoinhibition of photosystem I. Planta. 221: 5-8.
    Schreiber U, Armond PA. (1978) Heat-induced changes of chlorophyll fluorescence in isolated chloroplasts and related heat-damage at the pigment level. Biochim Biophys Acta. 502: 138-151.
    Schreiber U, Bilger W, Neubauer C. (1994) Chlorophyll fluorescence as a non-invasive indicator for rapid assessment of in vivo photosynthesis. In: Schulze E-D, Caldwell MM (eds) Ecophysiology of photosynthesis. Springer, Berlin Heidelberg New York, pp 49–70.
    Seidler Andreas. (1996) Intermolecular and Intramolecular Interactions of the 33-kDa Protein in Photosystem II. European Journal of Biochemistry. 242 (3) : 485–490.
    Sen A, William WP, KBrain APR. (1981) Formation of inverted micelles in dispersions of mixed galactolipids. Nature. 293:488-490.
    Sharkey TD. (2005) Effects of moderate heat stress on photosynthesis: importance of thylakoid reactions, rubisco deactivation, reactive oxygen species, and thermotolerance provided by isoprene. Plant Cell and Enviroment 28: 269-277.
    Shen J-R, Terashima I, Katoh S. (1990). Cause for dark, chilling-induced inactivation of photosynthetic oxygen-evolving system in cucumber leaves. Plant Physiol. 93: 1354- 1357.
    Shimchic EG, Mccornnell HM. (1973) Lateral phase separation in phospholipid membranes. Biochemistry 12(12): 2351-2360.
    Shyam R, Raghavendra AS, Sane PV. (1993). Role of dark respiration in photoinhibition of photosynthesis and its reactivition in the cyanobacterium Anacystis nidulans. Physiology plantarum. 88:446-452.
    Siegenthaler PA, Rawyler A, Smutny J(.1989)The phospholipids population which sustains the uncoupled noncyclic electron flow activity is localized in the inner monolayer of the thylakoid membrane. Biochim Biophys Acta. 975: 104-111.
    Skaler LA, Miljanich GP, Dratz EA. (1979) Phospholipid lateral phase separation and the partition of cis-parinaric acid and trans-parinaric acid among aqueous, solid lipid, and fluid lipid phases. Biochemistry 18(9): 1701-1716.
    Sommer F, Hippler M, Biehler K, Fischer N, Rochaix JD. (2003) Comparative analysis of photosensitivity in photosystem I donor and acceptor side mutants of Chlamydomonas reinhardtii. Plant Cell and Environment 26:1881–1892.
    Song XS, Hu WH, Mao WH, Ogweno JO, Zhou YH, Yu JQ. (2005) Response of ascorbate peroxidase isoenzymes and ascorbate regeneration system to abiotic stresses in Cucumis sativus L. Plant Physiol Biochem 43: 1082-1088.
    Sonoike K, Kamo M, Hihara Y, Hiyama T, Enami I. (1997) The mechanism of the degradation of PsaB gene product, one of the photosynthetic reaction centre subunits of photosystem I, upon photoinhibition. Photosynthesis Research. 53:55–63.
    Sonoike K, Terashima I, Iwaki M, Itoh S. (1995) Destruction of photosystem I iron–sulphur centres in leaves of Cucumis sativus L. by weak illumination at chilling temperatures. FEBS Letters. 362:235–238.
    Sonoike K, Terashima I. (1994) Mechanism of photosystem-I photoinhibition in leaves of Cucumis sativus L. Planta. 194: 287-293.
    Sonoike K. (1996a) Degradation of PsaB gene product, the reaction centre subunit of photosystem I, is caused during photoinhibition of photosystem I: possible involvement of active oxygen species. Plant Science. 115:157–164.
    Sonoike K.(1996b)Photoinhibition of photosystem I: Its physiological significance in the chilling sensitivity of plants. Plant Cell Physiology. 37(3): 239-247.
    Srivastava A, Govindjee, Strasser RJ. (1999) Greening of peas: parallel measurements on 77 K emission spectra, OJIP chlorophyll a fluorescence transient, period four oscillation of the initial fluorescence level, delayed light emission, and P700. Photosynthetica. 37:365–392
    Srivastava A, Guisse B, Greppin H, Strasser RJ. (1997) Regulation of antenna structure and electron transport in photosystem II of Pisum sativum under elevated temperature probed by the fast polyphasic chlorophyll a fluorescence transient. Biochim Biophys Acta. 1320: 95-106.
    Srivastava A, Juttner F, Strasser RJ. (1998) Action of the allelochemical, fischerellin A, on photosystem II. Biochim Biophys Acta. 1364:326–336
    Stewart CR, Martin BA, Reding L, Cerwick S. (1990) Respiration and alternative oxidase in corn seedling tissues during germination at different temperatures. Plant Physiology. 92: 755-760.
    Strasser BJ, Strasser RJ. (1995) Measuring fast fluorescence transients to address environmental questions: the JIP test. In: Mathis P (ed) Photosynthesis: from light to biosphere, vol V. Kluwer, Dordrecht, pp 977–980.
    Strasser BJ. (1997) Donor side capacity of photosystem II probed by chlorophyll a fluorescence transients. Photosynthesis Research. 52:147–55.
    Strasser RJ, Srivatava A, Tsimilli-Michael M. (1999) Screening the vitality and photosynthetic activity of plants by fluorescence transient. In: Behl RK, Punia MS, Lather BPS (eds) Crop improvement for food security. AAARM, Hisar, India, pp 72–115.
    Strasser RJ, Srivatava A, Tsimilli-Michael M. (2000) The fluorescence transient as a tool to characterize and screen photosynthetic samples. In: Yunus M, Pathre U, Mohanty P (eds) Probing photosynthesis: mechanism, regulation and adaptation. Taylor & Francis, Bristol, pp 445–483.
    Strasser RJ, Tsimill-Michael M, Srivastava. (2004) Analysis of the chlorophyll a fluorescence transient. In: Papageorgiou G and Govindjee (eds) Advances in Photosynthesis and Respiration. Berlin, Springer, 321-362.
    Streb P, Michael-Knauf A, Feierabend J. (1993). Preferential photoinactivation of catalase and photoinhibition of photosystem II are common early symptoms under various osmotic and chemical stress conditions. Physiologia Plantarum. 88: 590-598.
    Sukenik A, Wyman KD, Bennett J, Falkowski PG. (1987) A novel mechanism for regulating the excitation of photosystem II in a green alga. Nature 327, 704–707.
    Susan S. Thayer, Olle Bj?rkman. (1990). Leaf Xanthophyll content and composition in sunand shade determined by HPLC. Photosynthesis Research. 23:331-343.
    Takahashi M, Asada K (1983) Superoxide anion permeability of phospholipid membranes and chloroplast thylakoids. Arch Biochem Biophys. 226: 558–566.
    Takahashi M, Asada K. (1982) Dependence of oxygen affinity for Mehler reaction on photochemical activity of chloroplast thylakoids. Plant Cell Physiology. 25:1457–1461.
    Taylor AO, Craig JA. (1971).Plants under climatic stress.I. Low temperature, high light effects on photosynthesis. Plant Physiology. 47:713-718.
    Teicher HB, M?ler BL, Scheller HV. (2000) Photoinhibition of photosystem I in field- grown barley (Hordeum vulgare L.): induction, recovery and acclimation. Photosynthesis Research: 64:53–61.
    Terashima I, Funayama S, Sonoike K. (1994) The site of photoinhibition in leaves of Cucumis sativus L. at low temperatures is photosystem I, not photosystem II. Planta. 193:300–306.
    Terashima I, Huang LR, Osmond CB. (1989a) Effects of leaf chilling on thylakoid functions measured at room temperature in Cucumis sativus L. and Oryza sativa L. Plant Cell Physiology. 30: 841-850
    Terashima I, Noguchi K, Itoh‐Nemotot, Park YM, Kuhn A, Tanaka K. (1998) The cause of PSI photoinhibition at low temperatures in leaves of Cucumis sativus, a chilling- sensitive. Physiologia Plantarum. 103: 295–303.
    Terashima I, Shen JR, Katoh S. (1989b) Chilling damage in cucumber (Cucumis sativus L.) thylakoids. In Plant Water Relations and Growth under Stress (eds. M Tazawa, M Katsumi, Y Masuda and H. Okamoto) Yamada Science Foundation, Osaka and My K K. Tokyo. 470-472
    Thayer SS, Bjorkman O. (1990) Leaf xanthophyll content and composition in sun and shade determined by HPLC. Photosynthesis Research.23:331-343.
    Tjus SE, Moler BL, Scheller HV. (1998) Photosystem I is an early target of photoinhibition in barley illuminated at chilling temperatures. Plant Physiology 116:755–764.
    Tjus SE, Moler BL, Scheller HV. (1999) Photoinhibition of photosystem I damages both reaction centre proteins PSI-A and PSI-B and acceptor-side located small photosystem I polypeptides. Photosynthesis Research. 60:75–86.
    Tjus SE, Scheller HV, Andersson B, Moller BL. (2001) Active oxygen produced during selective excitation of photosystem I is damaging not only to photosystem I, but also to photosystem II. Plant Physiology. 125:2007–2015.
    Van Hasselt P. (1974). Photo-oxidative damage to the ultrastructure of Cucumis chloroplasts during chilling. Proceedings Konikl Nederl Akademie Van Wetenschappen Amsterdam Series C.77:50-56.
    Van Hasselt PhR, Van Berlo HAC. (1980) Photooxidative damage to the photosynthetic apparatus during chilling. Physiologia Plantarum .50: 52-56.
    van Kooten O, Snel JFH. (1990) The use of chlorophyll fluorescence nomenclature in plant stress physiology. Photosynth Res 25:147–150.
    Vanlerberghe GC, McIntosh L. (1992) Lower growth temperature increases alternative pathway capacity and alternative oxidase protein in tobacco. Plant Physiology. 100: 115-119
    Varadi G, Dorko E, Polos, Szigeti Z, Lehoczki E. (1994) Xanthophyll cycle patterns and invivo photoinhibition in herbicide-resistant biotypes of Conyza Canadensis. Journal of Plant Physiology. 144(66): 669-674.
    Vass I, Styring S, Hundal T, Koivuniemi A, Aro E, Andersson B.(1992) Reversible and Irreversible Intermediates during Photoinhibition of Photosystem II: Stable Reduced QA Species Promote Chlorophyll Triplet Formation . Proc. Natl.Acad. Sci. 89: 1408-1412.
    Vijayan P, Browse J.(2002)Photoinhibition in Mutants of Arabidopsis Deficient in Thylakoid Unsaturation. Plant Physiology. 129:876-885.
    Von Caemmerer S. (2000). Biochemical models of leaf photosynthesis. Canbera, Australia: CSIRO Publishing.
    Voss R, Radum ZA, Schmid GH. (1995) Binding of lipids onto polypeptides of the thylakoid membrane I galactolipids and sulpholipid as prosthetic grounps of corepeptides of the photosystym complexes .Z naturforsch, 47C: 406~415.
    Wada M, Kagawa T. (2001) Photomovement (eds H?der, D.-P. & Lebert, M.) 897–924 (Elsevier, Amsterdam).
    Walker DA. (1990).The use of electrode and flourescence probe in simple measurements of photosynthesis. Sheffield; Oxygraphics Ltd.
    Wangner AM. (1995) Arole for reactive oxygen species as second messengers in the induction of alternative oxidase gene expression in Petrnia hybrida cells. FEBS letters. 368:339-342.
    Webb MS, Green BR. (1991). Biochemical and biophysical properties of thylakoidacyl lipids scattering changes and electrochromic pigment absorption shift in spinach leaves. Zpflanzen physiol. 101: 169~178.
    Weis E, Berry JA. (1987). Quantum efficiency of PS2 in relation to“energy”dependent quenching of chlorophyll flourescence. Biochim Biophys Acta. 894:198-208.
    Weis E. (1981). Reversible effects of high, sublethal temperatures on light- induced light scattering changes and electrochromic pigment absorption shift in spinach leaves.Z. Pflanzenphysiol. 101:169-178.
    Wen XG , Qiu NW, Lu QT, Lu CM. (2005). Enhanced thermotolerance of photosystem II in salt-adapted plants of the halophyte Artemisia anethifolia. Planta. 220: 486-497.
    Wild A, Ball R. (1997) Photosynthetic Unit and Photosystems. A Current View of the Photosynthetic Apparatus. Leiden: Backhugs Publishers pp:127-153.
    Willekens H, Chamnongpol S, Davey M, Schraudner M, Langebartels C, Van Montagu M, InzéD, Van Camp W. (1997) Catalase is a sink for H2O2 and is indispensable for stress defence in C3 plants. The EMBO Journal.16 (16): 4806–4816.
    Wise E. (1981) Reversible effects of high ,sublethal temperature on light induced light scattering changes and electrochromic pigment absorption shift in spinach leaves. Z. Pflanzenphysiol. 101:169-178.
    Wise RR, McWilliam J, Naylor AW. (1983). A comparative study of low-temperature -induced ultrastructural alterations of three species with differing chilling sensitivities. Plant Cell and Environment. 6:525-535.
    Wise RR, Naylor AW. (1987) Chilling-enhanced photooxidation: The peroxidative destruction of lipids during injury to photosynthesis and ultrastructure. Plant Physiology. 83:272-277.
    Wraight CA, Kraan GPB, Gerrits NM. (1972) The pH dependence of delayed and promptfluorescence in uncoupled chloroplasts. Biochim Biophys Acta. 283: 259-267.
    Wydrzynski T, Sauer K. (1980). Periodic changes in the oxidation-state of manganese in photosynthetic oxygen evolution upon illumination with flashes. Biochim Biophys Acta. 589:56-70.
    Xu YN, Siegenthaler PA. (1997) Low temperature treatments induce an increase in the relative content of both linolenic and trans-hexadecenoic acids in thylakoid membrane. Plant Cell Physiology. 38(5): 611-618.
    Yamamoto HY. (1979) Biochemistry of the violaxanthin cycle in higher plants. Pure Appl Chem 51: 639–648.
    Yamamoto Y, Nishimura M. (1983). Organization of the O2-evolution enzyme complex in a highly active O2-evolving photosystem-II prepartion. The Oxygen Evolving System of Photosynthesis. Inoue, Y., Crofts, A. R., Govindjee, Murata, N., Renger, G. and Satoh, K. (Eds.) Academic Press Pp. 229-238.
    Yamane Y, Kashino Y, Koike H, Satoh K. (1997). Increase in the fluorescence F0 level and reversible inhibition of photosystem II reaction center by high temperature treatments in higher plants. Photosynthesis Research. 52:57–64.
    Yamashita S, Butter WL. (1968) Inhibition of chloroplasts by UV-irradiation and heat treatment. Plant Physiology. 43: 2037-2040.
    Yatsuhashi H. (1996). Photoregulation systen for light-origented chloroplast movement. Journal of Plant Research. 109:139-146.
    Yordanov I, Vellikova V. (2000). Potoinhibition of Photosystem 1.. Bulg. J. Plant Physiol. 26 (1–2): 70–92.
    Yun JG, Hayashi T, Yazawa S, Katoh T, Yasuda Y.( 1996), Acute morphological changes of palisade cells of Saintpaulia leaves induced by a rapid temperature drop. Journal of Plant Research. 109:339-342.
    Zhang N, Archie R, Portis Jr. (1999) Mechanisms of light regulation of Rubisco: a specific role for the larger Rubisco activase isoform involving reductive activation by thioredoxin-f. Proc. Natl.Acad. Sci. 96: 9438–9443.
    Zhang S, Scheller HV. (2004) Photoinhibition of PSI at chilling temperature and subsequent recovery in Arabidopsis thaliana. Plant Cell Physiology .45: 1595-1602.
    Zolla L, Rinalducci S. (2002) Involvement of active oxygen species in degradation of light-harvesting proteins under light stresses. Biochemistry. 41: 14391–14402.
    Zurzycki J. (1980) The Blue Light Syndrome (ed. Senger, H.) 50–68 (Springer, Berlin).

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700