用户名: 密码: 验证码:
昆虫抗冻蛋白基因转化烟草抗寒性功能的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
抗冻蛋白(AFP)是广泛存于各种生命体中的一种高效抗冻活性物质,它能以非依数的形式(冰晶的熔点温度与其生长点温度不具有相同的变化)降低水溶液的冰点而对熔点影响甚微,因而保护多种有机体免受结冰引起的伤害,其抗冻活性通常定义为热滞值,大小用热滞系数表示。比较来源不同的多种抗冻蛋白的热滞活性,昆虫抗冻蛋白的热滞值最高为3~6℃,因而昆虫抗冻蛋白基因目前越来越多地做为提高植物抗寒性转化的首选基因。
     本实验室从新疆极地荒漠昆虫准噶尔小胸鳖甲中克隆了抗冻蛋白基因MpAFP149 (含信号肽),它编码120个氨基酸残基,分子量大小为12.7 kDa。去除信号肽的成熟肽含有98个氨基酸,理论分子量大小为10.2 kDa。在成熟的蛋白质序列中,一级结构由l2个氨基酸TCTxSxxCxxAx (X表示其它的任意氨基酸残基)的TXT重复序列组成,每隔6个氨基酸残基,就有一个半胱氨酸重复,除了第一和第二个重复序列,其他重复单位中的每两个半胱氨酸形成一个二硫键。本试验中我们构建了含有MpAFP149基因的不同植物表达载体,采用不同的转化方式转化模式植物烟草,试探讨新疆荒漠昆虫抗冻蛋白基因在植物体内的抗寒功能及提高昆虫抗冻蛋白在植物体内表达和热滞活性的几种途径和方法。
     以高效的烟草核转化体系为平台,构建了含有新疆准噶尔小胸鳖甲抗冻蛋白基因MpAFP149的核单价植物表达载体,通过叶圆盘法转化模式植物烟草,获得了2株转录水平较高的T1代转基因植株T1-5和T1-39。在-1℃处理1 d、2 d和3 d的抗寒实验中,转基因烟草的抗寒能力明显优于野生型烟草。当低温处理1 d时,转基因烟草和对照野生型烟草的离子外渗率都有一定程度的上升但差异不大。当低温处理延长至2 d时,野生型烟草的电导率达到65%,而转基因烟草T1-5和T1-39的相对电导率仅分别为28%和27%。当处理第三天时,相对电导率的增长趋势与第二天相似,野生型烟草、T1-5和T1-39的相对电导率分别为71%,28%和36%。丙二醛是反应植物细胞膜脂过氧化程度的一个指标,它含量的变化可间接反应相对电导率的变化。冷处理前,野生型和转基因烟草的丙二醛差异不大,但随着低温处理时间的延长,野生型烟草的丙二醛含量是转基因烟草丙二醛含量的3倍。结果表明野生型烟草遭受了比转基因烟草更为严重的膜脂氧化伤害。同时丙二醛和相对电导率的含量都随着低温处理的延长而增加,二者之间存在明显的相关性,相关系数为R2=0.9132,这表明相对电导率的提高是由于低温引起的膜脂过氧化造成的。T1代单价转基因烟草(pCAMBIA1302-MpAFP149)在低温下的表型及生理生化结果进一步揭示了准噶尔小胸鳖甲昆虫抗冻蛋白MpAFP149能够赋予植物一定程度的耐寒性。
     国外学者在体外试验中发现,小分子物质柠檬酸可提高昆虫抗冻蛋白的热滞活性,柠檬酸是抗冻蛋白的增强剂。为了进一步提高抗冻蛋白在植物体内的热滞活性,利用RT-PCR技术扩增了烟草柠檬酸合成酶基因tacs,使其构建至单价植物表达载体pCAMBIA1302-MpAFP149中,最终构建成一个同时含有MpAFP149和烟草柠檬酸合成酶基因tacs的植物双价表达载体pCAMBIA1302-MpAFP149-tacs,转化至农杆菌EHA105中。利用叶圆盘法转化烟草,获得了T1代双价转基因烟草。对T1代单价和双价转基因烟草进行了体外-1℃低温试验,转基因烟草的表型明显优于野生型烟草,但单双价转基因烟草之间的表型差异不大。室温恢复中,转基因烟草可恢复生长并仍能存活,而野生型烟草已造成了不可逆的低温伤害。试验结果表明含有昆虫抗冻蛋白基因MpAFP149的单双价转基因烟草均表现出比野生型烟草较强的抗寒能力,但柠檬酸在植物体内未能协同抗冻蛋白进一步提高双价转基因烟草的抗寒性。
     由于叶绿体基因工程能有效解决当前转基因植物中外源基因表达量过低的问题,因而构建了抗冻蛋白基因MpAFP149的叶绿体表达载体,转化植物,旨在提高异源蛋白在植物中的表达量,从而进一步提高植物的耐寒性。根据已构建的大豆叶绿体表达载体,设计特异性引物,将昆虫抗冻蛋白基因MpAFP149插入此载体中,利用基因枪轰击法,转化烟草,经500 mg/L壮观霉素的反复多轮筛选获得四株转基因株系。在-1℃抗寒表型实验中,叶绿体型转基因烟草的耐寒性优于野生型烟草,与核转化的T1代单价转基因烟草抗寒性差别不大,推测可能是由于异源基因MpAFP149在烟草叶绿体基因组中同质化程度较低所造成。
     通过激光扫描共聚焦和免疫胶体金技术显示异源抗冻蛋白MpAFP149主要表达在转基因植物质外体空间的细胞壁上。透射电镜对-1℃连续三天低温处理的细胞器形态学变化进行比较,转基因烟草和野生型烟草的超微结构存在差异,尤其表现在细胞膜、叶绿体和线粒体的膜上。这种超微结构差异可能是由于异源表达的抗冻蛋白与细胞壁间发生相互作用,同时降低了植物细胞的冰点,因而抑制了质外体中冰晶的生长稳定了膜系结构,避免了细胞的冻害,最终提高了转基因烟草细胞的冷耐受性。
     总之本试验获得的转基因烟草在-1℃抗寒实验中均比野生型烟草表现一定的抗寒能力,说明此昆虫抗冻蛋白基因MpAFP149无需进行密码子优化就可有效地在植物体内进行正确表达,可以做为今后转化作物的抗寒首选基因。该结果为减轻新疆冷敏感经济作物棉花在春季遭受冻害及葡萄冬季掩埋等问题提供了理论依据和应用基础。
Antifreeze proteins (AFPs) have been isolated from a variety of organisms and play an important role. AFP causes the freezing point of a solution to be lowered without influence on the melting point in a noncolligative manner by adsorption to the ice surface. The difference between the melting point and the nonequilibrium freezing point can be determined and is termed thermal hysteresis activity (THA). THA is widely used as an indicator of AFPs activity, so AFPs are often referred to as thermal hysteresis proteins (THPs). The THAs among species are quite different and insect AFPs are comparatively high (3–6℃), so AFP genes from insects were widely used for improving the cold tolerance of crops.
     MpAFP149 gene was isolated from Microdera puntipennis dzungarica, a local beetle in Xinjiang desert region. The cDNA of MpAFP149 encoded a polypeptide of 120 amino acid residues with calculated molecular mass of 12.7 kDa. MpAFP149 polypeptide (minus the signal peptide) was 98 residues with calculated molecular mass of 10.2 kDa and comprised of tandem repeats of 12-aa sequence (TCTxSxxCxxAx) with regularly spaced Cys. The two Cys within each repeat form a disulfide bond with the exception of repeats 1 and 2, which are linked by an additional disulfide bond. In the experiments, different plant expression vectors carrying MpAFP149 gene were constructed and transformed the model plant tobacco by using different transformation methods for researching the function of MpAFP149 responded to cold in plants and also looking for the best ways to improve the AFPs expression and thermal hysteresis in plants.
     Basing on the effective system of nuclear transformation to tobacco, the construct of MpAFP149 gene with the signal peptide sequence under control of a cauliflower mosiaic virus 35S promoter was introduced into tobacco by Agrobacterium tumefaciens–mediated transformation. Two T1 generation transgenic tobacco lines T1-5 and T1-39 were obtained which indicated the high transcripts in mRNA level. The cold tolerance of transgenic tobacco was obviously better than wild-type tobacco with cold treatment for 1 d, 2 d and 3 d at -1℃. At an initial stage of cold treatment, ion outflow was all little increased and no difference between transgenic and wild-type tobaccos on one day. There was a clear difference in ion leakage rate after two days exposure to -1℃: the electrolyte leakage reached 65% for wild-type tobacco, 28% for T1-5 and 27% for T1-39. On day three, the ion outflow was increased in similar tendency as day two, with 71%, 28%, 36% for wild-type tobacco plants, T1-5 and T1-39 lines, respectively. The increase of relative conductivity was regarded as the cause of the rise in MDA. MDA concentration in wild-type and transgenic tobacco plants did not vary much before the cold treatment, but it increased more than three times for wild-type tobaccos and two times for T1 transgenic plants after 2-3 days cold treatment. These result suggested that the wild-type plants were suffered severer oxidative lipid injury than transgenic tobacco ones. The amount of both ion leakage and MDA clearly increased with prolonged times of cold treatment. A significant and high correlation (R2=0.9132) was observed between MDA content and permeability of cell membranes to ions which suggested that permeability of cold damaged cell membrane increased with the increasing peroxidation of fatty acids. In terms of phenotype experiments, ion leakage and MDA content, a relationship between the expression of MpAFP149 and an improvement in cold resistance in transgenic plants was inferred.
     Citrate was found as the enhancer of antifreeze proteins and can improve the thermal hysterisis activity of AFP in vitro. Citrate synthase gene (tacs) was amplified from Nicotiana tabacum L. by RT-PCR according to sequence published on Genebank. Another recombinant expression vector pCAMBIA1302-MpAFP149-tacs was constructed and then transformed the tobacco by Agrobacterium tumefacines. At -1℃, transgenic tobacco showed the better cold phenotype than that of wild-type tobacco, but there was no difference between transgenic tobacco containing only MpAFP149 gene and binary transgenic tobacco containing MpAFP149 and tacs gene. When returned to room temperature, MpAFP149 expressed plant overcame dehydration and got recovery completely. However, the wild-type tobaccos displayed severe chlorosis and wilting and suffered inreversible damage to some extent. The result showed that both transgenic tobaccos either containing MpAFP149 or MpAFP149-tacs gene displayed better cold tolerance than wild-type tobacco, but there was no cooperated relationship between MpAFP149 and citrate to further improve the cold tolerance in transgenic tobacco.
     In order to resolve the low expression of heterologous gene in transgenic plants, MpAFP149 gene was constructed into bean chloroplast vector by designing the specific primers and transformed tobacco by gene-gun. We expected increasing the MpAFP149 expression to further improve the plant cold tolerance finally. Four transgenic tobacco lines were obtained by repetitive screen using 500 mg/L spectinomycin. At -1℃, chloroplast transgenic tobaccos displayed the better cold tolerance than wild-type tobacco, but there was no difference with transgenic tobacco containing MpAFP149 gene by nuclear transformation. This result was not consisted with our expected aim and it was possible that homologous degree of interested gene MpAFP149 was relatively low.
     The result of laser scaning microscope and immunogold localization showed that MpAFP149 protein uniformly accumulated in the outer layers of cell wall of transgenic tobacco.The ultrastructure difference at -1℃between transgenic and wild-type plants for consecutive three days was compared by the observation of organelles morphology changes. The organelle morphological alterations in leaves of transgenic and wild-type plants, before and after cold treatment at -1℃, were examined by TEM. The observations revealed that there were altered appearance inside the cells after the cold treatment and the changes were prominent in membrane of cellular organelles, especially in cell membrane, chloroplasts and mitochondria. This protection might be attributed to an interaction between the antifreeze peptides and cell wall, which resulted in the prevention of the ice growth in the apoplast, so that the whole cell could avoid freezing. These results suggested that the expression of the heterologous protein MpAFP149 have significant effects on the morphological changes in organelles, mitigate the freezing-induced structural damage in the membrane system and eventually lead to enhancement of freezing tolerance in transgenic tobacco cells.
     According to above experiment results, we can draw a conclusion that transgenic tobaccos containing MpAFP149 display the better cold tolerance than wild-type tobaccos. It suggested that the MpAFP149 gene did not be optimized according to tobacco codon bias and can be used as the candidate gene for the improvement of frost resistance of commercially important crops.
引文
[1] Yeh Y, Feeney RE. Antifreeze proteins-structures and mechanisms of function[J]. Chem Rev.1996, 96 (2):601-617.
    [2] DeVries AL Antifreeze glycopeptides and peptides: Interactions with ice and water[J]. Meth Enzymol.1986, 127:293-303.
    [3] Marshall CB, Tomczak MM, Gauthier SY, Kuiper MJ, Lankin C, Walker VK, Davies PL. Partitioning of fish and insect antifreeze proteins into ice suggests they bind with comparable affinity[J]. Biochem. 2004, 43: 148-154.
    [4] Duman JG, Bennett V, Sformo T, Hochstrasser R, Barnes BM. Antifreeze proteins in Alaskan insects and spiders[J]. J Insect Physiol. 2004, 50: 259-266.
    [5] Stefen PG, Brian D. Cold survival in freeze intolerant insects: the structure and function of beta-helical antifreeze proteins[J]. Ear J Biochem . 2004, 271:3285-3296.
    [6] Griffith M, Ala P, Yang DSC, Hon WC, Moffat BA.Antifreeze protein produced endogenously in winter rye leaves[J]. Plant Physiol. 1992, 100:593-596.
    [7] Urrutia ME, Duman JG, Knight CA Plant thermal hysteresis proteins[J]. Biochim Biophys Acta.1992,1121:199-206.
    [8] Duman JG, Olsen TM.Thermal hysteresis protein activity in bacteria, fungi, and phylogenetically diverse plants[J]. Cryobiology. 1993, 30: 322-328.
    [9] Doucet CJ, Byass L, Elias L, Worral D, Smallwood M, Bowles J. Distribution and characterization of recrystallization inhibitor activity in plant and lichen species from the UK and maritime antarctic[J]. Cryobiol. 2000, 40: 218–227.
    [10] Huang T, Duman JG.Cloning and characterization of a thermal hysteresis (antifreeze) protein with DNA-binding activity from winter bittersweet nightshade, Solanum dulcamara[J].Plant Mol Biol. 2002, 48:339–350.
    [11] Lin SZ, Zhang ZY, Lin YZ . Antifreeze proteins and molecular genetic improvement in freezing resistance of plants[J]. J Plant Physiol Mol Biol. 2004, 30:251-260.
    [12] Sun XY, Griffth M, Pasternack JJ, Glick BR.Low temperature growth, freezing survival, and production of antifreeze protein by the plant growth promoting rhizobacterium Pseudomonas putida[J]. Can J Microbiol.1995, 41:776-784.
    [13] Kuwabara C, Takezawa D, Shimada T, Hamada T, Fujikawa S, Arakawa K. Abscisic acid- and cold-induced thaumatin-like protein in winter wheat has an antifungal activity against snow mould, Microchium nivale[J]. Physiol Plant.2002, 115:101–110.
    [14] Jack A, Hill PG, Dodd CE, Layboum-Parry J. Demonstration of antifreeze protein activity in Antarctic lake bacteria[J]. Microbiology. 2004, 50:171-180.
    [15] Swanson WJ, Charles FA. Positive Darwinian selection promotes heterogeneity among members of the antifreeze protein multigene family[J]. J Mo1 Evo1.2002, 54 (3): 403-410.
    [16] Leinala EK, Davies PL, Jia Z. Elevated temperature and tyrosine iodirmtion sad in the crystallization and structure determination of an antifreeze protein[J]. Aeta CrystaUogr D Bio1. Crystallogr. 2002, 58: 1081-1083.
    [17] Zachariassen KE, Husby JA. A ntifreeze effect of thermal hysteresis agents protects highly supercooled insects[J]. Nature. 1982, 298: 285-287.
    [18] Duman JG,Wu DW ,Olsen TM , Urrutia M, Tursman D. Thermal-hysteresis proteins[J]. Adv Low-Temp Biol.1993, 2: 131-182.
    [19]陈兵,康乐.昆虫对环境温度胁迫的适应与种群分化[J].自然科学进展. 2005,15(3):265-271.
    [20] Eeva KL, Davies PL, Doucet D, Ty-shenko MG, Walker VK, Jia Z. A beta-helical antifreeze protein isoform with increased activity[J]. J Bio1 Chem. 2002, 277(36):33349-33362.
    [21] Doucet D, Tyshenko MG, Davies PL, Walker VK. A family of expressed antifreeze protein genes from the moth Choristoneura fumiferana. Eur J Biochem. 2002, 269:38-46.
    [22] Yang ZY, Zhou YX, Uu K, Cheng YH, Uu RZ, Chen GJ, Jia ZC. Computational study on the function of water within aβ-helix antifreeze protein dimer and in the process of ice-protein binding[J].Biophysical Joumal. 2003, 85: 2599-2605.
    [23] Marshall CB, Fletcher GL, Davies PL.Hyperactive antifreeze protein in a fish[J]. Nature. 2004,429 (153):1038.
    [24] Graether SP, Kuiper MJ, Gagne SM, Walker VK, Jia Z, Sykes BD, Davies PL. Beta-helix structure and ice-binding properties of a hyperactive antifreeze protein from an insect[J]. Nature. 2000, 406 (6793):325-328.
    [25] Liou YC, Thibauh P, Walker VK, Davies PL, Graham LA. A complex family of highly heterogeneous and internally repetitive hyperactive antifreeze proteins from the beetle Tenebriolitor[J]. Biochemistry. 1999, 38(35):11415-11424.
    [26] Liou YC, Tocilj A, Davies PL, Jia Z. Mimicry of ice structure by surface hydroxyls and water of a beta-helix antifreeze protein[J]. Nature.2000, 406(6793):322-324.
    [27]刘俊杰,李前忠.甲虫抗冻蛋白热滞活性的二维吸附结合模型[J].生物物理学报. 2006, 22(4):268-274.
    [28] Liu K, Jia Z, Chen GJ, Tung CH, Liu RZ. Systematic size study of an insect antifreeze protein and its interaction with ice[J]. Biophys J. 2005, 88 (2):953-958.
    [29] Hew CL, Kao MH, So YP. Presence of cystine-containing antifreeze proteins in the spruce budworm, Choristoneura fumiferana[J]. Can J Zool. 1983, 33:391-403.
    [30] Graether SP, Kuiper MJ, Gagne SM, Walker VK, Jia Z, Sykes BD, Davies PL.β-helix structure and ice-binding properties of a hyperactive antifreeze protein from an insect[J]. Nature. 2000, 401: 325-328.
    [31] Leinala EK, Davies PL, Jia Z. Crystal structure ofβ-helical antifreeze protein points to a general ice binding model[J]. Structure. 2002, 10: 619-627.
    [32]周艳霞,谭宏伟,杨作银,贾宗超,刘若庄,陈光巨.两种昆虫抗冻蛋白抗冻活性差异的分子基础[J].中国科学B辑化学. 2006, 36(6): 516-521.
    [33]周艳霞,张勇,谭宏伟,贾宗超,陈光巨.苏氨酸在昆虫抗冻蛋白抗冻活性中的作用[J]. 2007, 3: 526-529.
    [34] Stefen PG,Brian D.Cold survival in freeze.intolerant insects:the structure and function of beta-helical antifreeze proteins[J].Ear.J.Biochem.2004, 271:3285-3296.
    [35] Hansen TN,Baust JG.Stable, High-Level Expression of a Type I Antifreeze Protein in Escherichia coli[J].Biochim Biophys Acta.1998, 957:217-221.
    [36] Horwath KL, Easton CM, Poggioli TJ. Eur J Entomol, 1996, 93: 419-433.
    [37] Li N, Andorfcr, Duman JG.Enhancement of insect antifreeze protein activity by solutes of low molecular mass[J]. J Exp Biol. 1998, 201(15): 2243-2251.
    [38] Graham LA, Liou YC, Walker VK, Davies PL. Hyperactive antifreeze protein from beetles[J]. Nature.1997, 388:727-728.
    [39] Kristiansen E, Pedersen S, RamLov H. Antifreeze activity in the cerambycid beetle Rhagium inquisitor[J]. J Comp Physiol.1999,169:55-60.
    [40] Yuhua Cheng, Zuoyin Yang, Hongwei Tan, Ruozhuang Liu, Guangju Chen, and Zongchao Jia.Analysis of ice-binding sites in fish type II antifreeze protein by quantum mechanism[J]. Biophys J. 2002, 83 (4): 2202-2210.
    [41] Feeney RE, Yin Y. Trends in Food[J]. Science and Technology. 1998, 9 (3): 102-106.
    [42] Cabriel Amir,Boris Rubinsky,Yigal Kassifa, Liana Horowitzc, Aram K. Smolinskya, Jacob Laveea.Preservation of myocyte structure and mitochondrial integrity in subzero cryopreservation ofmammalian hearts for transplantation using antifreeze proteins an electron microscopy study[J] . Eur J Cardiothorac Surg. 2003, 24:292-297.
    [43] Melanie M, Dirk K, Sergio D, Willem F, Lois M, Robert E, Fern T, John H. A mechanism for stabilization of membranes at low temperatures by an Antifreeze protein[J]. Biophys J. 2002, 82 (2):874-881.
    [44] Heman Chao, Peter L Davie, John F Carpenter. Effects of antifreeze proteins on red blood cell survival during cryopreservation[J]. The Journal of Experimental Biology.1996, 199: 2071-2076.
    [1] Molecular biology of plants under environmental stress. Acta Physiologiae Plantarum [J]. 1997, 19(4): 399-600.
    [2] Li QB, Haskell DW, Guy CL. Coordinate and non-coordinate expression of the stress 70 family and other molecular chaperones at high and low temperature in spinach and tomato [J]. Plant Mol Biol.1999, 39(1): 21-34.
    [3] Hong SW, Jon JH, Kwak JM, Hong SW, Jon JH, Kwak JM, Nam HG. Identification of a receptor like protein kinase gene rapidly induced by abscisic acid, dehydration, high salt, and cold treatments in Arabidopsis thaliana[J]. Plant Physiol.1997, 113(4): 1203-1212.
    [4] Levitt J. Responses of plants to environmental stresses[M]. Academic Press, 2nd edn.1980,Vol I.
    [5] Steponkus PL. Role of the plasma membrane in freezing injury and cold acclimation[J]. Annu Rev Plant Physio1.1984, 35: 543-584.
    [6] Steponkus PL, Uemura M, Webb MS. Membrane destabilization during freeze-induced dehydration [J]. Curr Topics Plant Physiol.1993, l0: 37-47.
    [7] Guy CL. Cold acclimation and freezing stress tolerance: role of protein metabolism[J]. Annu Rev Plant Physio Plant Mol Bio1.1990, 4l: 187-223.
    [8]李美茹,刘鸿先,王以柔.植物抗冷分子生物学研究进展[J].热带植物学报. 2000, 8(1): 70-80.
    [9] Lyons JM. Chilling injury in plants [J]. Annu Rev Plant Physiol. 1973 (24): 445-466.
    [10] Cyril J, Powell GL, Duncan RR, Baird WV. Changes in membrane polar lipid fatty acids of seashore paspalum in response to low temperature exposure[J]. Crop Sci. 2002, 42 (6): 2031-2037.
    [11]王凭青,吴明生,王远亮,王凭青,吴明生,王远亮.植物抗寒基因工程研究最新进展[J].重庆大学学报. 2003, 26 (7): 81-85.
    [12] Somerville C, Browse J, Somerville C, Browse J. Dissecting desaturation[J]. Trends in Cell Bio1.1996, 6: 148-153.
    [13]张羽航,鲍时翔,郑学勤,黄自然,姚汝华.脂肪酸饱和酶的研究进展[J].生物技术通报.1998, 4: 1-8.
    [14] Kodama H, Hamada T, Horiguchi G, Nishimura M, Iba K. Genetic enhancement of cold tolerance by expression of a gene for chloroplast 7.3 fatty acid desaturases in transgenic tobacco[J]. Plant Physiology. 1994, 105: 601-605.
    [15] Wolter FP, Schmidt R, Helnz E. Chilling sensitivity of Arabidopsis thaliana with genetically engineered membrane liquids[J]. EMBO J EurMOl Biol Organ.1992, 11(13): 4685-4692.
    [16] Kodama H, Horiguchi G, Nishiuchi T, Nishimura M, Iba K. Fatty acid desaturation during chilling acclimation is one of the factors involved in conferring low temperature tolerance to young tobacco leaves[J]. Plant Physiology. 1995, 107(4): 1177-1185.
    [17] Hightower R, Cathy B, Ranela D. Expression of antifreeze proteins in transgenic plants[J]. Plant Mol Biol. 1991, 17: 1013-1021.
    [18] Los DA, Horvath I, Vigh L. Cloning of a temperature dependent expression of desaturase desA gene in Synechocystis PCC6803[J]. FEBS.1993, 318(1): 57-60.
    [19] Apel K and Hirt H. Reactive oxygen species: Metabolism,oxidative stress,and signal transduction [J]. Annu Rev Plant Biol.2004, 55: 373-379.
    [20] Gong M. Abscisic acid induced therlmotolerance in maize seedlings is mediated by calciumand associated with antioxidant systems[J]. Plant Physiol. 1998, 153(3/4): 482-491.
    [21] Fryer MJ, Andrews JR, Oxborough K, Fryer MJ, Andrews JR, Oxborough K, Blowers DA, Baker NR. Relationship between CO2 assimilation, photosynthetic electron transport, and active O2 metabolism in leaves of maize in the field during periods of low temperature[J]. Plant Physiol.1998, 116(2): 571-580.
    [22] Prasad TK. Role of catalase in inducing chilling tolerance in preremergent maize seedlings [J]. Plant Physiol.1997, 114(4): 1369-1376.
    [23] Gupta AS, Webb RP, Holaday AS, Auem RD, Holaday AS. Overexpression of superoxide dismutase protects plants from oxidature strees[J]. Plant Physiology. 1993, 103: 1067-1073.
    [24] Allen NR. Dissection of oxidase stress tolerance using transgenic plants[J]. Plant physio1.1995, 107: 1049-1054.
    [25] McKersie BD, Murnaghan J, Bowley SR. Manipulating freezing tolerance in transgenic plants[J]. Acta Physiological Plant arum.1997, 19(4): 17-19.
    [26]刘国顺,陈新建,陈占宽,刘鸿先.植物对水分胁迫响应的分子机制与抗逆基因工程的研究进展[J].热带亚热带学报. 2000, 8(1): 81-90.
    [27]周筱娟.低温诱导的植物抗冻基因研究进展[J].绍兴文理学院学报. 2004, 24 (9): 65-69.
    [28]赵福庚,刘友良.胁迫条件下高等植物体内脯氨酸代谢及调节的研究进展[J].植物学通报.1999, 16(5): 9-16.
    [29]王春明,袁金铎,尹苗,王春明,袁金铎,尹苗.甜菜碱的生物合成及其基因工程研究进展[J].山东师范大学学报:自然科学版.2004, 19(2): 88-91.
    [30] Nanjo T, Kobaysshi M, Yoshiba Y, Kakubari Y, Yamaguchi-Shinozaki K, Shinozaki K. Antisense suppression of proline degradation improves tolerance to freezing and salinity in Arabidopsis thaliana[J]. FEBS Letter.1999, 461: 205-221.
    [31] Huang J, Hirji R, Adam L, Keller WA, Selvaraj G. Genetic engineering of glycinebetaine production toward enhancing stress tolerance in plants: Metabolic Limitations[J]. Plant Physiol. 2000, 122: 747-756.
    [32] Pilton-Smits EAH, Ebskamp MJM, Paul MJ, Smeekens S. Improved performance of transgenic fructan–accumulating tobacco under dronght stress[J]. Plant Physiol.1995, 107: 125-130.
    [33] Xiong LM, Schumaker KS, Zhu JK. Cell signaling during cold, drought, and salt stress [J]. Plant cell. 2002, (14):165-183.
    [34] Shinozaki K, Yamaguchi-Shinozaki K. Molecular responses to dehydration and low temperature: differences and cross-talk between two stress signaling pathways[J]. Curr Opin Plant Biol. 2003(3): 217-223.
    [35] Nuotio S, Heino P, Palva ET. Signal transduction under low temperature stress [M]//Crops response and adaptations to temperature stress. Binghamton: New York, 2001,151-176.
    [36] Heather K, Zarka DG, Haruko O, Michael F,Thomashow MF, Knight MR. Abscisic acid induces CBF gene transcription and subsequent induction of cold-regulated genes via the CRT promoter element[J].Plant Physiol. 2004(135): 1710-1717.
    [37] Fowler S, Thomashow MF, Fowler S, Thomashow MF. Arabidopsis transcriptome profiling indicates multiple regulatory pathways are activated during cold acclimation in addition to the CBF cold response pathway [J]. Plant Cell. 2002, (14):1675-1690.
    [38] Cook D, Fowler S, Fiehn O, Cook D, Fowler S, Fiehn O, Thomashow MF. A prominent role for the CBF cold response pathway in configuring the low-temperature metabolome of Arabidopsis[J]. PNAS. 2004, 101(42): 15243-15248.
    [39] Stockinger EJ, Gilmour SJ, Thomashow MF. Arabidopsis thaliana CBF1 encodes an AP2 domain-containing transcriptional activator that binds to the C-repeat/DRE, a cis-acting DNA regulatory element that stimulates transcription in response to low temperature and water deficit[J]. Proc Natl Acad Sci USA.1997, 94:1035-1040.
    [40] Xin z, Browse J. Cold comfort farm: the acclimation of plants to freezing temperatures[J]. Plant Cell and Envrionment. 2000, 23:893-902.
    [41] Stochinger EJ, Gilmour SJ, Thomashow MF. Arabidopsis thaliana CBF1 encodes an AP2 domain-containing transcriptional activator that binds to the C-repeat/ DRE, a cis-acting DNA regulatory element that stimulates transcription in response to low temperature and water deftcit[J]. Proc NatlAcad Sci USA.1997, 94: 1035-1040.
    [42] Gilmour SJ, Sebolt AM, Salazar MP, Everard JD, Thomashow MF. Overexpression of the Arabidopsis CBF3 transcriptional activator mimics multip biochemical changes associated with cold acclimation[J]. Plant Physiol. 2000,124: 1854-l865.
    [43] Heish TH, Lee JT, Yang PT, Chiu LH, Charng YY, Wang YC, and Chan MT. Heterology expression of the arabidopsis C -Repeat/Dehydration response element binding factor I gene confers elevated tolerance to chilling and oxidative stresses in transgenic tomato[J]. Plant Phsiol. 2002, 129: 1086-1094.
    [44] Saijo Y, Hata S, Kyozuka J, Shimamoto K, Izui K.Over-expression of a single Ca2+ dependent protein kinase confers both cold and salt/drought tolerance on rice plants[J]. Plant J. 2000, 25: 319-327.
    [45]林善枝,张志毅,林元震.植物抗冻蛋白及抗冻分子改良[J].植物生理与分子生物学学报. 2004, 30(3): 251-260.
    [46]潘杰,简令成,钱迎倩.抗寒力诱导过程中特异性蛋白质的合成[J].植物学集刊.1994, 7:144-157.
    [47] Thomashow MF. Plant cold acclimation, freezing tolerance genes and regulatory mechanisms[J]. Annu Rev Plant Physiol Plant Mol Bio1.1999, 50:571-599.
    [48] Lin SZ. Cold acclimation of freezing resistance of Populus tomentosa and identification of antifreeze protein in Populus suaveolens[D]. Beijing:Beijing Forestry University.
    [49]林善枝,张志毅.低温诱导植物抗寒冻性研究与毛白杨抗冻性遗传改良策略[J].北京林业大学学报. 2000, 22(6): 89-94.
    [50]康国章,王正询,孙谷畴.植物的冷调节蛋白[J].植物学通报.2002, 19 (2):239-246.
    [51]马建忠.植物的冷诱导基因[J].农业生物技术学报. 1996, 4(1):8-14.
    [52]王艇,苏应娟,刘良式.植物低温诱导蛋白和低温诱导基因的表达调控[J].武汉植物学研究.1997, 15(1):80-90.
    [53] Pearce RS. Molecular analysis of acclimation to cold[J]. Plant Growth Regul.1999, 29:47-76.
    [54] Artus NN, Uemura M, Steponkus PL, Gilmour SJ, Lin C, Thomashow MF.Constitutive expression of the cold-regulated Arabidopsis thsaliana COR15a gene afects both chloroplast freezing to tolerance[J]. Proc Nail Acad Sci USA. 1996, 93: 13404-13409.
    [55] Steponkus PL, Uemura M, Josdph RA, Gilmour SJ, Thomashow MF. Mode of action of the COR15a gene on the freezing toleroance of Arabidopsis thaliana[J]. Proc Natl Acad Sci USA. 1998, 95: 14570-14575.
    [56] Xu D, Duan X, Wang B, Hong B, Ho T, Wu R. Expression of a late embryogenesis is abundant protein gene, HVA1, from barely confers toleran ce to water deficit and salt stress in transgenic rice[J]. Plant Physiol.1996, 110: 249-257.
    [57]费云标,孙龙华,黄涛,舒念红,高素琴,简令成.沙冬青高活性抗冻蛋白的发现[J].植物学报.1994, 36 (8): 649-650.
    [58] Antikainen M, Griffith M. Antifreeze protein accumulation in freezing-tolerant cereals [J]. Physiol Plant.1997, 99(3): 423-432.
    [59] Worrall D, Elias L, Ashford D, Smallwood M, Sidebottom C,Lillford P, Telford J, Holt C, Bowles D. A carrot leucine-rich-repeat protein that inhibits ice recrystallization[J]. Science. 1998, 282: 115-117.
    [60] Huang T, Duman JG. Cloning and characterization of a thermal hysteresis(antifreeze) protein with DNA-binding activity from winter bittersweet nightshade,Solanum dulcamara [J]. Plant Mol Biol. 2002, 48: 339-350.
    [61] Pihakaski-Maunsbach K,Tamminen I,Pietiainen M,GriffitIl M. Antifreeze proteins are secreted by winter rye cells in suspension culture[J]. Physiol Plant. 2003, 118: 393-398.
    [62] Urrutia ME,Duman JG,Knight CA. Plant thermal hyseteresis proteins[J]. Biochim Biophys Acta.1992,1121:199-206.
    [63] Griffith M, Antikalnen M, Hon W C, Pihakaski-Maunsbach K, Yu XM, Chun YU, Yang SC. Antifreeze proteins in winter rye[J]. Physiol Plant. 1997, 100:327-332.
    [64] Sidebottom C, Worrall D. Heat-stable antifreeze protein from grass[J]. Nature. 2000, 406: 56-63.
    [65] Duman JG. Antifreeze and ice nucleator proteins in terrestrial arthropods[J]. Annu Rev Physiol. 2001, 63: 327-357.
    [66] Griffith M, Marentes E, Ala P. The role of ice-binding proteins in frost tolerance of winter rye. In:Li PH (ed). Advan ce in Plan t Cold Hardiness[M]. Boca Raton, Ann Arbor London Tokyo: CRC press. 1993, 178-186.
    [67] Pihakaski-Maunsbach K, Tamminen I, Pietiainen M, GriffitIl M. Antifreeze proteins are secreted by winter rye cells in suspension culture[J]. Physiol Plant. 2003, 118: 393-398.
    [68]魏令波,江勇,舒念红,高素琴,费云标.沙冬青叶片热稳定抗冻蛋白特性分析[J].植物学报.1999, 41(8): 837-84l.
    [69] Wallis JG, Wang HY, Guerra DJ. Guerra. Expression of a synthetic antifreeze protein in potato reduces electrolyte release at freezing temperatures[J]. Plant Mol Biol.1997, 35: 323-330.
    [70] Culter AJ. Winter flounder antifreeze protein imp roves the cold hardiness of plant tissue[J]. J PlantPhysio1.1989,135 (3) :351-354.
    [71] Kenward KD, Brandle J, McPherson J, Davies PL. Type II fish antifreeze protein accumulation in transgenic tobacco does not confer frost resistance[J]. Transgenic Research. 1999, 8 (2): 105-117.
    [72] Georges F, Saleem M, Cutler AJ. Design and cloning of a synthetic gene for the flounder antifreeze protein and its expression in plant cell[J].Gene. 1990, 91: 159-165.
    [73]黄永芬,汪清胤,付桂荣,赵晓祥,杨志兴.美洲拟鲽抗冻蛋白基因afp导入番茄的研究[J].生物化学杂志. 1997, 13 (4): 418-422.
    [74] Lee JS. The redaction of the freezing point of tobacco plants transformed with the gene encoding for the antifreeze protein from winter flounder[J]. J Cell Bio chem. 1990, 14(supple): E303.
    [75] Kenward KD, Brandle J, McPherson J, Davies PL. Type II fish antifreeze protein accumulation in transgenic tobacco does not confer frost resistance[J]. Transgenic Research.1999,8: 105-117.
    [76] Huang T, Nicodemus J, Zarka DG, Thomashow MF, Wisniewski M, Duman G. Expression of an insect(Dendroides canadensis)antifreeze protein in Arabidopsis thaliana results in a decrease in plant freezing temperature[J]. Plant Mol Biol. 2002, 50: 333-342.
    [77] Kenward KD, Altschuler M, Hildebrand D, Davies PL. Accumulation of type I fish antifreeze protein in transgenic tobacco is cold-specific[J]. Plant Mol Biol.1993, 23: 377-38.
    [78] Holmberg, N, Farre′s J, Bailey JE, Kallio PT. Targeted expression of a synthetic codon optimized gene, encoding the spruce budworm antifreeze protein, leads to accumulation of antifreeze activity in the apoplasts of transgenic tobacco[J]. Gene. 2001, 275: 115–124.
    [79] Worrall D, Ashford D, Ashford D. A carrot leucine-rich-repeat protein that inhibits ice recrystallization [J]. Science. 1998, 282, 115–117.
    [80] Meyer K, Keil M, Naldrett MJ. A leucine-rich repeat protein of carrot that exhibits antifreeze activity[J]. FEBS Lett. 1999, 447: 171–178.
    [81] Fan Y, Fan Y, Lu B, Wang H, Wang S, Wang J. Cloning of antifreeze protein gene from carrot and its influence on cold tolerance in transgenic tobacco plants[J]. Plant Cell Rep. 2002, 21: 296–301.
    [1]康杰芳,王喆之.头孢霉素类抗生素在转基因烟草中作用的初步研究[J].西北植物学报.2003, 23(1): 60-63.
    [2]张宁,王蒂.农杆菌介导的烟草高效遗传转化体系研究[J].甘肃农业科技. 2004, 9: 11-13.
    [3] Horseh RB, Fry JE, Hoffmann NI, Eichholtz D, Rogers SG, Fraley RT.A simple and general method for transferring genes into plants[J]. Science. 1985, 227: 1129-1131.
    [4]章镇,孙爱君,房经贵,盛炳成.农杆菌介导rolC基因转化烟草植株的研究[J].南京农业大学学报. 2001,24(1): 25-29.
    [5]慕平利,崔红.烟草叶片直接再生一基因转化体系的建立[J].河南农业科学. 2005, 5: 27-30.
    [6]王艳,贺宾,李金耀,曾幼玲,秦丽,蒋刚强,张富春.提高农杆菌基因转化率方法的研究[J].生物技术. 2005,12 (6): 51-53.
    [7]王艳,曾幼玲,贺宾,秦丽,李金耀,高燕,张富春.农杆菌介导NHX基因转化甘蓝型油菜的研究[J].作物学报. 2006, 32(2): 278-282.
    [8] Michaels SD, John MC, Amasino RM. Removal of polysaccharides from plant DNA by ethanol precipitation[J]. Biotechniques.1994, 17 (2): 247-276.
    [9] J萨姆布鲁克, EF弗里奇,T曼尼阿蒂斯.分子克隆实验指南[M].北京出版社. 1999, 478-481.
    [10] Yoichi O, Masahiro M. Meropenem and moxalactam: Novel b-lactam antibiotics for efficient Agrobacterium-mediated transformation[J]. Plant Science. 2007, 172: 564–572.
    [11]宋志红,崔红,刘国顺. Ri质粒转化烟草影响因素的研究[J].河南农业大学学报. 2004, 38 (3): 259-262.
    [12]陈秋苹,刘学群,王春台.根癌农杆菌介导的糖苷转移酶基因转化烟草的条件研究[J].化学与生物工程. 2005, 6: 9-11.
    [13]彭友良,彭日荷,黄晓敏,李贤,孙爱君,姚泉洪.带内含子卡那霉素抗性基因双元载体构建及烟草转化[J].植物生理学报. 2001, 27 (1): 55-61.
    [14] Pollock K, Barfield DG, Shields R. The toxicity of antibiotics to plant cell cultures[J]. Plant Cell Reports.1983, 2: 36-39.
    [15] HolFord P, Newbury HJ. The efects of antibiotics and their breakdown products on the in-vitro growth of Antirhinum majus[J]. Plant Cell Reports. 1992, 11: 93-96.
    [16]石淑稳,周永明.甘蓝型油菜下胚轴培养和高频率芽再生技术的研究[J].中国油料作物学. 1998, 20 (2): 1-6.
    [17]杨成丽,刘树楠,周吉源,刘德立.高效烟草遗传转化体系的建立及甜蛋白基因的导入[J].生物技术. 2006, 14 (2): 9-11.
    [18]柴红梅,张绍松,万萌. GNA和α-PAP双抗表达载体的构建及对烟草的遗传转化[J].西南农业学报. 2002, 15 (4): 35-37.
    [1] Jin HL, Li YJ, Ma ZH, Zhang FC, Xie QG, Gu DF, Wang B. Effect of chemicaluvants on DNA vaccination[J].Vaccine. 2004, 22: 2925-2935.
    [2] J.萨姆布鲁克, DW.拉塞尔.分子克隆实验指南[M].第三版, 2002.
    [3] Sanjay G, Dennis M. Klinman R A. DNA Vaccines :immunology , application , and optimization[J]. Annu Rev Immunol. 2000,18 :927-974.
    [4] Donnelly JJ, Ulmer JB, Liu MA. DNA vaccine[J]. Life Sci. 1997, 60:163-172.
    [5]和晶亮. DNA疫苗的相关研究进展[J].动物医学进展, 2007, 28 :44-47.
    [6]石毅.核酸疫苗的研究进展[J].安徽农业科学. 2006, 34(4) :682-683.
    [7]程海,唐欣昀,刘勇.临床用DNA疫苗生产工艺的研究进展[J].微生物学免疫学进展. 2006,34 (2) :63-66.
    [8] Hassett D E, Whitton J L. DNA immunization[J]. Trends Microbiol. 1996, 4 (8):307-312.
    [9] Henke A. DNA immunization-a new chance in vaccine research[J]. Med Microbiol Immunol. 2002, 191: 187-190.
    [10] Habel A, Chanel C, Le Grand R, Martinon F, Couillin L, Mooq C, Doms R, Gauduin MC, Hurtrel B, Guillet JG. DNA vaccine protection against chalenge with simian/human immunodeficiency virus 89.6 in rhesus macaques[J]. Dev Biol. 2000, 104(6):101-105.
    [11] Seangdeun M , Panida K, Watchara K. Production of polyclonal and monoclonal antibodies against CD54 molecules by intrasplenic immunization of plasmid DNA encoding CD54 protein[J]. Immunol Letters. 2001, 76: 25-30.
    [12]胡太蛟,苏军,胡昌泉,陈在杰,林天龙,王锋.核酸免疫制备豇豆胰蛋白酶抑制剂抗体的制备及初步应用[J].福建农业学报.2006, 20(2): 104-107.
    [13]宋建明,孙向乐,王一理,司履生.人乳头状瘤病毒(HPV)16L1基因联合免疫的体液免疫反应及其抗体的体外中和实验[J].中华病理学杂志. 2005, 34(7): 421-424.
    [14] Schild GC, Minor PD. Human immunodeficiency virus and AIDS vaccine[J]. Lancet.1990, 335:: 1081-1084.
    [15] Rao XC, Li S, Hu JC, Jin XL, Hu XM, Huang JJ, Chen ZJ, Zhu JM, Hu FQ. A novel carrier molecule for high-level expression of peptide antibiotics in Escherichia coli[J]. Protein Expression and Purification. 2004, 36: 11-18.
    [16] Ramsay AJ, Kent SJ, Strugnell RA, Suhrbier A, Thomson SA, Ramshaw IA. Genetic vaccination strategies for enhanced cellular, humoral and mucosal immunity[J]. J Immunol Rev. 1999, 171(2): 27-44.
    [17]王娉,王启贵,李辉,张富春.鸡C/EBP-a基因表达载体的构建及抗血清制备[J].细胞与分子免疫学杂志. 2007, 23(10): 978-981.
    [18]郑耀虎,张霞,张富春,曾幼玲.花花柴Na+/H+反向运输载体的表达和抗血清制备[J].植物生理学通讯. 2007, 43(3): 524-528.
    [19]刘淑娟,郑维国,纪宗玲,陈苏民,张新海,杨力军.人DOC-2按极端PID结构域的克隆与原核表达[J].细胞与分子免疫学杂志. 2003, 19(2): 140-144.
    [20]周宇荀,魏东芝,王二力.融合蛋白表达载体pGEX及其应用[J].生命科学. 1998, 10 (3): 122-124..
    [1] Andrews CJ. How do plants survive ice[J]. Ann Bot .1996, 78: 529-536.
    [2] Fernando Novillo, Jose M. Alonso, Joseph R. Ecker, Julio Salinas. CBF2-DREB1C is a negative regulator of CBF1-DREB1B and CBF3-DREB1A expression and plays a central role in stress tolerance in Arabidopsis[J]. Proc Natl Acad Sci USA.2004, 16: 3985-3990.
    [3] Daley ME, Spyraeopoulos L, Jia Z, Davies PL, Sykes BD. Structure and dynamics of a beta-helical antifreeze protein[J]. Biochemistry. 2002, 41: 5515-5525.
    [4] Jason B,Michael JK,Peter LD. Antifreeze protein dimer: when two ice-binding faces are better than one[J]. J Bio1 Chem. 2003, 278: 38942-38947.
    [5] Swanson WJ, Charles FA. Positive Darwinian selection promotes heterogeneity among members ofthe antifreeze protein multigene family[J]. J Mo1 Evo1. 2002, 54: 403-410.
    [6] Yeh Y, Feeney RE. Antifreeze proteins-structures and mechanisms of function. Chem Rev. 1996, 96 (2): 601-617.
    [7] DeVries AL Antifreeze glycopeptides and peptides: Interactions with ice and water[J]. Meth Enzymol. 1986,127:293–303.
    [8] Marshall CB, Tomczak MM, Gauthier SY, Kuiper MJ, Lankin C, Walker VK, Davies PL. Partitioning of fish and insect antifreeze proteins into ice suggests they bind with comparable affinity[J]. Biochem. 2004,43:148-154.
    [9] Duman JG, Bennett V, Sformo T, Hochstrasser R, Barnes BM. Antifreeze proteins in Alaskan insects and spiders[J]. J Insect Physiol. 2004, 50:259–266.
    [10] Stefen PG, Brian D. Cold survival in freeze intolerant insects: the structure and function of beta-helical antifreeze proteins[J]. Ear J Biochem. 2004, 271:3285-3296.
    [11] Griffith M, Ala P, Yang DSC, Hon WC, Moffat BA.Antifreeze protein produced endogenously in winter rye leaves[J]. Plant Physiol. 1992,100:593-596.
    [12] Urrutia ME, Duman JG, Knight CA Plant thermal hysteresis proteins[J]. Biochim Biophys Acta. 1992,1121:199-206.
    [13] Duman JG, Olsen TM.Thermal hysteresis protein activity in bacteria, fungi, and phylogenetically diverse plants[J]. Cryobiology, 1993,30:322-328.
    [14] Doucet CJ, Byass L, Elias L, Worral D, Smallwood M, Bowles J. Distribution and characterization of recrystallization inhibitor activity in plant and lichen species from the UK and maritime antarctic[J]. Cryobiol. 2000, 40:218–227.
    [15] Huang T, Duman JG.Cloning and characterization of a thermal hysteresis (antifreeze) protein with DNA-binding activity from winter bittersweet nightshade, Solanum dulcamara[J]. Plant Mol Biol. 2002 48:339–350.
    [16] Lin SZ, Zhang ZY, Lin YZ . Antifreeze proteins and molecular genetic improvement in freezing resistance of plants[J]. J Plant Physiol Mol Biol. 2004, 30: 251-260.
    [17] Sun XY, Griffth M, Pasternack JJ, Glick BR.Low temperature growth, freezing survival, and production of antifreeze protein by the plant growth promoting rhizobacterium Pseudomonas putida[J]. Can J Microbiol.1995, 41:776-784.
    [18] Kuwabara C, Takezawa D, Shimada T, Hamada T, Fujikawa S, Arakawa K. Abscisic acid- and cold-induced thaumatin-like protein in winter wheat has an antifungal activity against snow mould, Microchium nivale[J]. Physiol Plant.2002, 115:101–110.
    [19] Jack A, Hill PG, Dodd CE, Layboum-Parry J. Demonstration of antifreeze protein activity in Antarctic lake bacteria[J]. Microbiology. 2004,50:171-180.
    [20] Swanson WJ, Charles FA. Positive Darwinian selection promotes heterogeneity among members of the antifreeze protein multigene family[J]. J Mo1 Evo1. 2002, 54 (3): 403-410.
    [21] Leinala EK, Davies PL, Jia Z. Elevated temperature and tyrosine iodirmtion sad in the crystallization and structure determination of an antifreeze protein[J].Aeta CrystaUogr D Bio1. Crystallogr.2002, 58: 1081-1083.
    [22] Yang ZY, Zhou YX, Liu K, Cheng YH, Liu RZ, Chen GJ, Jia ZC. Computational study on the function of water within a B-helix antifreeze protein dimer and in the process of ice-protein binding. [J]. Biophy J.2003, 85: 2599-2605.
    [23] Kenward KD, Brandle J, McPherson J, Davies PL. Type II fish antifreeze protein accumulation in transgenic tobacco does not confer frost resistance[J]. Transgenic Research.1999, 8: 105-117.
    [24]黄永芬,汪清胤,付桂荣,赵晓祥,杨志兴.美洲拟鲽抗冻蛋白基因导入番茄的研究[J].生物化学杂志.1997,13 (4): 418-422.
    [25] Georges F, Saleem M, Cutler AJ. Design and cloning of a synthesis gene for the flounder antifreeze protein and its expression in plant cells[J]. Gene,1990, 91: 159-165.
    [26] Hightower R, Cathy B, Ranela D. Expression of antifreeze proteins in transgenic plants[J]. Plant Mol Biol. 1991,17: 1013-1021.
    [27] Wallis JG, Wang H-Y, Guerra DJ. Guerra. Expression of a synthetic antifreeze protein in potato reduces electrolyte release at freezing temperatures[J]. Plant Mol Biol.1997, 35: 323-330.
    [28] Huang T, Nicodemus J, Zarka DG, Thomashow MF, Wisniewski M, Duman G. Expression of an insect(Dendroides canadensis)antifreeze protein in Arabidopsis thaliana results in a decrease in plant freezing temperature[J]. Plant Mol Biol. 2002, 50: 333-342.
    [29]赵干,马纪,薛娜,杨长赓,专芳芳.准噶尔小胸鳖甲抗冻蛋白基因的克隆和抗冻活性分析[J].昆虫学报. 2005, 48 (6): 667-673.
    [30]夏平安,刘维全,江禹,孙绍光,杨淑艳,王吉贵.家蚕卵黄蛋白基因启动子区的克隆与活性分析[J].遗传学报.2004, 31: 688-694.
    [31] Nielsen H, Engelbrecht J, Brunak S, von Heijne G. Identification of prokaryotic and eukaryotic signal peptides and prediction of their cleavage sites[J]. Protein Eng. 1997, 10: 1–6.
    [32] J.萨姆布鲁克, DW.拉塞尔.分子克隆实验指南[M].第三版2002.
    [33]安千里,杨学健,董越梅,冯丽洁,匡柏健,李久蒂.用共聚焦激光扫描显微镜观测GFP标记的内生固氮菌Klebsiella oxytoca SA2侵染水稻根[J].植物学报. 2001,43 (6): 558-564.
    [34] Walkerpeach CR, Velten J. Agrobacterium-mediated gene transfer to plant cells: co-integrate and binary vector systems[M]. In: Gelvin SB, Schilperoort RA. Plant Mol Biol Manual B1. Kluwer: Dordrecht ,1994, 1-19.
    [35] Horsch RB, Fry JE, Hoffman NL, Eichholtz D, Rogers SG, Fraley RT. A simple and general method of transferring genes into plants[J]. Science. 1985, 227: 1229-1231.
    [36] Michaels SD, John MC, Amasino RM. Removal of polysaccharides from plant DNA by ethanol precipitation[J]. Biotechniques.1994, 17: 247-276.
    [37]徐柏森,张耀丽,何开跃,王章荣,彭冶,甘习华,杨静.植物透射电镜样品制备技术探讨[J].中国野生植物资源. 2006, 25(3): 41-43.
    [38] Herman EM, Rotter K, Premakumar R, Elwinger G, Bae R, Ehler-King L, Chen S, Livingston. DP. Additional freeze hardiness in wheat acquired by exposure to -3℃is associated with extensive physiological, morphological, and molecular changes[J]. Exp Bot. 2006, 57(14): 3601-3618.
    [39] Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein using the principle of protein-dye binding[J]. Ann Biochem. 1976, 72:248-254.
    [40]赵世杰,史国安,董新纯.植物生理学实验指导[M]. 2002, 84-131.
    [41] Fryer MJ, Andrews JR, Oxborough K, Blowers DA, Baker NR. Relationship between CO2 assimilation, photosynthetic electron transport, and active O2 metabolism in leaves of maize in the field during periods of low temperature[J]. Plant Physiol. 1998, 116: 571–580.
    [42] Marshall CB, Daley ME, Graham LA, Sykes BD, Davies PL. Identification of the ice-binding face of antifreeze protein from Tenebrio molitor[J]. FEBS Letters. 2002, 529: 261-267.
    [43] Olsen TM, Sass SJ, Li N, Duman JG. Factors contributing to seasonal increases in inoculative freezing resistance in overwintering fire-colored beetle larvae Dendroides canadensis (Pyrochroidae) [J]. J Exp Biol., 1998, 201: 1585-1594.
    [44] Olsen TM, Duman JG. Maintenance of the supercooled state in overwintering Pyrochroid beetle larvae Dendroides canadensis: role of hemolymph ice nucleators and antifreeze proteins[J]. J Comp Physiol. 1997, 167: 105-113.
    [45] Olsen TM, Duman JG. Maintenance of the supercooled state in the gut of overwintering Pyrochroid beetle larvae Dendroides canadensis: role of gut ice nucleators and antifreeze proteins[J]. J Comp Physiol.1997, 167: 114-122.
    [46] Graham LA, Qin WS, Lougheed SC, Davies PL, Walker VK Evolution of Hyperactive, Repetitive Antifreeze Proteins in Beetles[J]. J Mol Evol. 2007, 64: 387–398.
    [47] Graham LA, Liou YC, Walker VK, Davies PL. Hyperactive antifreeze protein from beetles[J]. Nature. 1997, 388: 727–728.
    [48] Liou YC, Thibault P, Walker VK, Davies PL, Graham LA. Acomplex family of highly heterogeneous and internally repetitive hyperactive antifreeze proteins from the beetle Tenebrio molitor[J]. Biochemistry. 1999, 38: 11415-11424.
    [49] Leinala EK, Davies PL, Doucet D, Tyshenko MG, Walker VK, Jia Z. A beta-helical antifreeze protein isoform with increased activity: Structural and functional insights[J]. J Biol Chem. 2002, 277: 33349-33352.
    [50] Marshall CB, Daley ME, Sykes BD, Davies PL .Enhancing the activity of a beta-helical antifreezeprotein by the engineered addition of coils[J]. Biochemistry. 2004, 43: 11637–11646.
    [51] Edwards AR, Van den Bussche RA, Wichman HA, Orser CS.Unusual pattern of bacterial ice nucleation gene evolution[J]. Mol Biol Evol.1994, 11: 911-920.
    [52] Wilson PW, Leader JP. Stabilization of supercooled fluids by thermal hysteresis protiens[J]. Bio phys J.1995, 68: 2098-2107.
    [53] Vries AL. Antifreeze glycopeptides and peptides: interactions with ice and water[J]. Meth Enzymol. 1986,127: 293-303.
    [54] Carpenter JF, Hansen TN. Antifreeze protein modulates cell survival during cryopreservation: mediation through influence on ice crystal growth[J]. Proc Natl Acad Sci USA.1992, 89: 8953-8957.
    [55] Graham LA, Qin WS, Lougheed SC, Davies PL, Walker VK. Evolution of Hyperactive, Repetitive Antifreeze Proteins in Beetles[J]. J Mol Evol. 2007, 64:387–398.
    [56] Pearce RS. Extracellular ice and cell shape in frost-stressed cereal leaves:low-temperature scanning-electron-microscopy study[J]. Planta. 1988, 175: 313–324.
    [57] Steponkus PL, Webb MS Freeze-induced dehydration and membrane destabilization in plants. In: Somero GN, Osmond CB, Bolis DH (eds) Water and Life: comparative analysis of water relationships at the organismic, cellular and molecular level[M]. Springer-Verlag, Berlin, 1992, 338-362.
    [58] Levitt J. Responses of Plant to Environmental Stress Chilling, Freezing, and High Temperature Stresses[M], 2nd. Academic Press. New York, 1980, 17-20.
    [59] Pearce, RS . Plant freezing and damage[J]. Ann Bot. 2001, 87: 417–424.
    [60] Meyer K, Keil M, Naldrett MJ. A leucine-rich repeat protein of carrot that exhibits antifreeze activity[J]. FEBS Lett. 1999, 447: 171–178.
    [61] Wallis JG, Wang H, Guerra DJ. Expression of a synthetic antifreeze protein in potato reduces electrolyte release at freezing temperatures[J]. Plant Mol Biol. 1997, 35: 323–330.
    [62] Kenward KD, Brandle J, McPherson J, Davies PL. Type II fish antifreeze protein accumulation in transgenic tobacco does not confer frost resistance[J].Transgenic Res. 1999, 8: 105–117.
    [63] Holmberg, N, Farre′s J, Bailey JE, Kallio PT. Targeted expression of a synthetic codon optimizedgene, encoding the spruce budworm antifreeze protein, leads to accumulation of antifreeze activity in the apoplasts of transgenic tobacco[J]. Gene. 2001, 275: 115–124.
    [64] Huang T, Nicodemus J, Zarka DG, Thomashow MF, Wisniewski M, Duman JG. Expression of an insect (Dendroides canadensis) antifreeze protein in Arabidopsis thaliana results in a decrease in plant freezing temperature[J]. Plant Mol Biol. 2002, 50: 333–344.
    [65] Khanna HK, Daggard GE. Targeted expression of redesigned and codon optimised synthetic gene leads to recrystallisation inhibition and reduced electrolyte leakage in spring wheat at sub-zero temperatures[J]. Plant Cell Rep. 2006, 25: 1336–1346.
    [66] Kusnadi AR, Nikolov ZL, Howard JA. Production of recombinant proteins in transgenic plants: practical considerations[J]. Biotechnol Bioeng. 1997, 56: 473– 484.
    [67] Holmberg N, Farre′s J, Bailey JE, Kallio PT. Targeted expression of a synthetic codon optimized gene, encoding the spruce budworm antifreeze protein, leads to accumulation of antifreeze activity in the apoplasts of transgenic tobacco[J]. Gene. 2001, 275: 115–124.
    [68] Liou YC, Thibault P, Walker VK, Davies PL, Graham LA . Acomplex family of highly heterogeneous and internally repetitive hyperactive antifreeze proteins from the beetle Tenebrio molitor[J]. Biochemistry. 1999, 38: 11415–11424.
    [69] Duman JG. Antifreeze and ice nucleator proteins in terrestrial arthropods[J]. Annu Rev Physiol. 2001, 63: 327-357.
    [70] Rajashekar CB, Li PH, Carter JV. Frost injury and heterogeneous ice nucleation in leaves of tuber-bearing Solanum species[J]. Plant Physiol. 1983, 71: 749-755.
    [71] Kenward, KD, Brandle J, McPherson J, Davies PL. Type II fish antifreeze protein accumulation in transgenic tobacco does not confer frost resistance[J].Transgenic Res. 1999, 8: 105–117.
    [72] Knight CA Wen DY, Laursen RA. Nonequilibrium antifreeze peptides and the recrystallization of ice[J].Cryobiology. 1995, 32: 23–34.
    [73] Rhodes D. Metabolic responses to stress. In: Davies DD (eds) The Biochemistry of Plants[M]. Vol XII Academic Press, New York, 1987, 210–241.
    [74] Steponkus PL. Role of the plasma membrane in freezing injury and cold acclimation[J]. Annu Rev Plant Physiol. 1984, 35: 543–584.
    [75] Borochov A, Walker MA, Kendall EJ, Pauls KP, McKersieBD. Effect of a freeze-thaw cycle on properties of microsomal membranes from wheat[J]. Plant Physiol. 1987, 84: 131–134.
    [76] Pukacki PM, Kendall EJ, McKersie BD. Membrane injury during freezing stress to winter wheat (Triticum aestivum L.) crowns[J]. J Plant Physiol. 1991, 138: 516–521.
    [77] Thomashow MF. Plant cold acclimation: freezing tolerance genes and regulatory mechanisms[J]. Annu Rev Plant Physiol Plant Mol Biol. 1999, 50:571–599.
    [78] Tomczak MM, Hincha DK, Estrada SD, Wolkers WF, Crowe LM, Feeney RE, Tablin F, Crowe JH . A Mechanism for Stabilization of Membranes at Low Temperatures by an Antifreeze Protein[J]. Biophysical Journal. 2002, 82: 874–881.
    [79] Rubinsky B, Arav A, Mattioli M, DeVries AL. The effect of antifreeze glycopeptides on membrane potential changes at hypothermic temperatures[J]. Biochem Biophys Res Commun. 1990, 173: 1369–1374.
    [80] Rubinsky B, Arav A, Fletcher GL (1991) Hypothermic protection: a fundamental property of“antifreeze”proteins[J]. Biochem Biophys Res Commun. 180: 566–571
    [81] Hays LM, Feeney RE, Crowe LM, Crowe JH, Oliver AE. Antifreeze glycoproteins inhibit leakage from liposomes during thermotropic phase transitions[J]. Proc Natl Acad Sci. 1996, 93: 6835–6840.
    [82] Tablin F, Oliver AE, Walker NJ, Crowe LM, Crowe JH. Membrane phase transition of intact human platelets: correlation with cold-induced activation[J]. J Cel Physiol. 1996, 168: 305–313.
    [83] Crowe JH, Tablin F, Tsvetkova N, Oliver AE, Walker N, Crowe LM. Are lipid phase transitions responsible for chilling damage in human platelets ?[J]. Cryobiology. 1999, 38: 180–191.
    [84] Tsvetkova NM, Crowe JH, Walker NJ, Crowe LM, Oliver AE, Wolkers WF, Tablin F. Physical properties of membrane fractions isolated from human platelets: implications for chilling induced platelet activation[J]. Mol Membr Biol .1999, 16: 265–272.
    [85] Dexter ST. Evaluation of crop plants for winter hardiness[J]. Adv Agron. 1956, 8: 203-209.
    [86] Duman G. The inhibition of ice nucleators by insect antifreeze proteins is enhanced by glycerol and citrate[J]. J Comp Physiol B. 2002, 172: 163-168.
    [87] Wu DW, Duman JG, Xu L. Enhancement of insect antifreeze protein activity by antibodies[J]. Biochim Biophys Acta. 1991, 1076: 416-420.
    [88] Li N, Andorfer CA, Duman JG. Enhancement of insect antifreeze protein activity by solutes of low molecular mass[J]. J Exp Biol.1998a, 201: 2243-2251.
    [89] Juan Manuel de la Fuente, Verenice Ramirez-Rodriguez, Jose′Luis Cabrera-Ponce, Luis Herrera-Estrella. Aluminum tolerance in transgenic plants by alteration of citrate synthesis[J]. Science. 1997, 276: 1566-1568.
    [90]王艳,邱立明,谢文娟,黄薇,叶锋,张富春,马纪.昆虫抗冻蛋白基因转化烟草的抗寒性[J].作物学报.2008, 34(3): 397-402.
    [91] Timasheff SN. A physicochemical basis for the selection of osolytes by nature.In: Somero GN, Osmond CB,Bolis CL(eds)Water and life: comparative analysis of water relationship at the organismic, cellular and molecular level[M]. Springer, Berlin Heidelberg New York. 1992, 70-84.
    [92] Duman JG.Thermal hystersis factors in overwintering insects[J].Insect Physiol.1979,25: 805-810.
    [93] Duman JG.. Factors involved in the overwintering survival of the freeze tolerant beeltle Dendroides Canadensis[J]. J Comp Physiol.1980, 136: 53-59.
    [94] Duman JG.Thermal hysterisis antifreeze proteins in the midgut fluid of overwintering larve of the beetle Dendroides Canadensis[J]. J Exp Zool.1984, 230: 355-361.
    [95] Daniell H, Khan MS, Alison L. Milestones in chloroplast genetic engineering: An environmentally friendly era in biotechnology[J]. Trends in Plant Science. 2002, 7: 84-91.
    [96] Daniell H. Molecular strategies for gene containment in transgenic crops[J]. Nature Biotechnology. 2002, 20: 581-586.
    [97] Daniell H, Chebolu S, Kumar S, Singleton M , Falconer R. Chloroplast–derived vaccine antigens and other therapeutic proteins[J]. Vaccine. 2005, 23: 1779-1783.
    [98] Lee SB, Kwon HB, Kown SJ, Park SC, Jeong MJ, Han SE, Byun MO, Daniell H. Accumulation oftrehalose within transgenic chloroplasts confers drought tolerance[J]. Molecular Breeding.2003, 11: 1-13.
    [99] Boynton JE, Gillham NW, Harris EH, Hosler JP, Johnson AM, Jones AR, Randolph-Anderson BL, Robertson D, Klein TM. Chloroplast transformation in chlamydomonas with high velocity microprojectiles[J]. Science. 1988, 240: 1534-1538.
    [100] Lutz KA, Knapp JE, Maliga P. Expression of bar in the plastid genome confers herbicide resistance [J]. Plant physioloty. 2001, 125: 1585-1590.
    [101]苏宁,杨波,孟昆,李佚女,孙萌,孙丙耀,沈桂芳.水稻双价抗虫基因共转化烟草叶绿体的研究[J].中国农业科学. 2002, 35(4): 394-398.
    [102] DeGray G, Rajasekaran K, Smith F, Sanford J, Daniell H. Expression of an antimicrobial peptide via the chloroplast genome to control phytopathogenic bacteria and fungi [J]. Plant physiology, 2001, 127: 852-862.
    [103] Watson J, Koya V, Leppla S H and Daniell H. Expression of Bacillus anthracis protective antigen in transgenic chloroplasts of tobacco, a non-food/feed crop [J]. Vaccine. 2004, 22: 4374-4384.
    [104] Kang TJ, Loc NH, Jang MO, Jang YS, Kim YS, Seo JE and Yang MS. Expression of the B subunit of E.coli heat-labile enterotoxin in the chloroplasts of plants and its characterization [J]. Transgenic Research, 2003, 12: 683-691.
    [105] Erickson JM. Chloroplast transformation:Current results and future prospects. Donald RO,Charles F Y.Oxygenic photosynthesis, the light reaction[M]. Dordrecht: Kluwer Academic Publishers, 1996: 589-619.
    [106] Bendich AJ. why the chloroplast and mitochondria contain so many copies of their genome[J]. Bioessays. 1987, 6: 279-282.
    [107]陈飒,李金耀,吴平,孙寰,赵丽梅,寿惠霞.大豆叶绿体转化载体pJY系列的构建及其在烟草上的转化研究[J].农业生物技术学报. 2007, 15(6): 899-904.
    [108] Sambrook J and Russell D. Molecular Cloning:A Laboratory Manual, 3rd ed[M].New York: Cold Spring Harbor Laboratory Press.
    [109] Svab Z ans Maliga P. High-frequency plastid transformation in tobacco by selection for a chimeric aadA gene[J]. Proceedings of National Academy of Sciences of the USA.1993, 90: 913-917.
    [110] Bock R. Analysis of RNA editiong in plastids[M]. Methods. 1998, 15(1): 75-83.
    [111] Kuroda H, Maliga P. Complementarity of the 16S rRNA penultimate stem with sequences downstream of the AUG destabilizes the plastid mRNAs[J]. Nucleic Acids Res. 2001, 29: 970-975.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700