用户名: 密码: 验证码:
大豆耐淹性鉴定及其形态解剖特征、遗传与QTL定位
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
涝害是世界上许多国家的重大自然灾害。大豆原产于我国,从南到北,包括江汉平原以及长江中下游平原有着广泛栽培。这两个地区处在亚热带季风气候控制下,在5~9月常有暴雨甚至大暴雨发生,这一时期正是大豆的生长时期,常使大豆发生涝害,严重影响大豆的生产。因此,选育能够在湿涝土壤上生长的耐性大豆品种具有重要的实践意义。
     耐涝性分为耐湿/渍性和耐淹性。本研究旨在建立大豆耐淹性的鉴定方法,对丰富的大豆种质资源进行耐淹性鉴定,研究我国各生态区大豆种质资源耐淹性的变异特点,发掘优异资源;同时研究不同耐淹性大豆的形态解剖变化,耐淹性的遗传机制,定位耐淹性QTL,筛选与之紧密连锁的分子标记以期为耐涝育种的标记辅助选择提供参考。
     1.耐涝性指标筛选结果,涝、渍处理下以根、茎生长为指标的环境波动大、时间长,而全淹条件下死苗率鉴定方法相对最稳定、最简单。2005和2006年,在南京农业大学江浦试验站的简易温室内,以相对死苗率为鉴定指标,对来源地不同的749份大豆资源,其中栽培大豆[Glycine max(L.)Merr.]545份,野生大豆[Glycine soja Seib.etZucc.]204份,分4批进行苗期耐淹性盆栽鉴定试验,通过共同对照进行比较分析。结果表明:(1)野生和栽培大豆耐淹性均存在相当大的遗传变异,野生和栽培大豆相对死苗率变幅分别为0.0%~207.4%、0.0%~222.2%,呈现出中间多、两头少的单峰态分布;野生大豆中的极端耐淹材料略比栽培大豆的多,但在全国二者大部分材料的耐淹性差异不大;野生大豆的耐淹性在生态区域内和生态区域间均存在一定的变异,栽培种的耐淹性在生态区域内的变异比生态区域间的变异大,各个生态区域内均存在丰富的变异,变异系数均在30.0%以上。(2)耐淹性与地理纬度、籽粒大小、生育期长短及脂肪含量等有低程度相关。(3)遴选出N24835.0、N24850.0、N23444.0、N04974.1等11份高度耐淹的野生和栽培优异种质,相对死苗率均为0.0%,占所选资源总数的1.5%。这些特异材料分别来自Ⅰ、Ⅱ、Ⅲ、Ⅳ、Ⅵ生态区,可供耐淹性新品种选育和有关形态解剖、生理生化、遗传等耐淹基础性研究。
     2.以不耐淹的南农1138-2和高耐淹的科丰1号、PI342618B、PI326582B为试验材料(前两者为栽培大豆;后两者为野生大豆),在盆栽条件下人工模拟水涝胁迫,调查其形态性状和解剖结构。结果显示:(1)涝胁迫对大豆地下部的负面影响比对地上部大,表现在地下部主根长变短,侧根稀疏,地上部新生叶片小,植株下部叶片黄化,株高增量和茎干重反而高于对照。(2)主根长、侧根数、根干重、根冠比各性状的相对受害率(relative iniury rate,RIR)从大到小顺序均为南农1138-2、科丰1号、PI326582B、PI342618B,与材料的耐淹性强弱正好相反。(3)涝处理后,大豆淹水茎基部逐渐增粗并产生不定根,供试栽培大豆不定根和主根的皮层均形成通气组织且耐淹性强的科丰1号比耐淹性弱的南农1138-2发达;但耐淹野生大豆体内(不定根、主根及茎叶)均未见通气组织结构,表明耐性种质除形成发达通气组织外,还存在其它耐涝机制。
     3.选用“科丰1号(高度耐淹)×南农1138-2(不耐淹)”衍生的184个重组自交系(NJRIKY)及其亲本为材料,以盆栽全淹条件下的存活率为耐淹性指标,进行耐淹性遗传分析和QTL定位。遗传分析采用主基因+多基因混合遗传模型分离分析法;QTL定位研究是在国家大豆改良中心提供的遗传图谱基础上,利用WinQTLCartographer Version 2.5软件的复合区间作图法(CIM)及多区间作图法(MIM)进行的。该遗传图谱共包含25个连锁群、488个标记,覆盖基因组4226.4cM,每个连锁群平均19.5个标记,标记平均间距8.6cM。结果表明:(1)两次试验的耐淹性均存在超亲变异,试验间、家系间以及试验与家系互作间的差异均极显著。(2)NJRIKY大豆群体的耐淹性为3对等加性主基因(即F-3)遗传模型,主基因遗传率为42.40%。(3)在QTL分析中,CIM和MIM共同检测到3个耐淹QTL,分别位于A1、D1a和G连锁群上的Satt648~K418 2V、Satt531~A941V和Satt038~Satt275(B53B~Satt038)区间,表型贡献率为4.4%~7.6%。分离分析与QTL定位的结果相对一致,至少有3个主基因或QTL,两者能相互印证。本研究对大豆耐淹性定位结果与前人定位结果有一定的差异,有待进一步研究的检验和拓展。
Flooding is often a serious natural disaster in the world.Soybean,originated in China, is planted from the south to the north in the country,including Jiang-Han Plain and the Middle and Lower valleys of Changjiang River.In the two regions,under the control of a subtropical monsoon climate,there often happen some heavy rainstorms during May to September,which cause flooding during soybean growing stages and then cause the reduction of soybean yield.Therefore,breeding for soybeans with flooding tolerance is of great significance for enhancing productivity.
     Flooding tolerance has been recognized in two categories:tolerance to soil waterlogging and tolerance to submergence.The main objectives of this study were:(1) to establish identification procedure of flooding tolerance,to evaluate the variation of submergence tolerance among soybean germplasm from different eco-regions in China,and to dentify elite accessions with submergence tolerance;(2) to study the morpho-anatomical characteristics of soybeans with different submergence tolerance;(3) to reveal the inheritance mechanism and to map QTLs of submergence tolerance.
     A total of 749 accessions,composed of 545 accessions of cultivated soybean[Glycine max(L.)Merr.]and 204 accessions of annual wild soybean[Glycine soja Sieb.et Zucc.], sampled from different eco-regions,were used in the pot experiment in 2005 and 2006. According to the preliminary studies,tolerance to submergence with relative death percentage as tolerance index was used in the later experiments due to its better stability and simplicity in comparison with the other indices.The submergence experiment of soybean was conducted at seedling stage with artificial flooding under randomized complete blocks design in the plastic greenhouse at Jiangpu Station,Nanjing Agricultural University.(1) There showed significant genetic differences among the genotypes of both wild and cultivated soybean.A single peak frequency distribution with the majority in the middle part and less frequencies at both sides was observed,the relative death percentage (RDP) of wild and cultivated soybean varied between 0.0%and 207.4%,0.0%and 222.2%, respectively.The frequency of highly tolerant wild soybean was slightly more than that of cultivated soybean,but most part of both cultivated and wild soybean was intermediate and less sensitive to submergence.There existed certain amount of variation of submergence tolerance both within and among eco-regions in G soja,while in G max the among eco-region variation was smaller than the within eco-region variation,of which the CV values were all more than 30.0%.(2) There showed a weak correlation between submergence tolerance and some traits,including geographical latitude,100-seed weight, maturity date,and fat content.(3) Eleven elite accessions with high tolerance to submergence,including eight G soja and three G max accessions,such as N24835.0, N24850.0,N23444.0,N04974.1,et al.were identified and screened out.The relative death percentage of them was 0.0%,and they accounted for 1.5%of total accessions from Eco-regionⅠ,Ⅱ,Ⅲ,Ⅳ,andⅥ.These accessions will be important sources for future submergence tolerance breeding programs and fundamental researches on morphology, anatomy,physiology,biochemistry and genetics.
     The morpho-anatomical characteristics of submergence tolerance was studied in an artificial flooding experiment in pots with Nannong 1138-2(sensitive,G max),Kefeng No.1(highly tolerant,G.max),PI342618B(highly tolerant,G.soja),PI326582B(highly tolerant,G.soja).(1) Flooding stress caused more adverse effects on underground root system than on aboveground shoot system,with tap root length shorter,lateral roots sparse and total roots reduced,while new leave size reduced,lower part leaves chlorotic,plant height and dry shoot weight increased.(2) The descending order of relative injury rate(RIR) of taproot length,number of lateral roots,dry root weight and root/shoot ratio was Nannong 1138-2,Kefeng No.1,PI326582B,PI342618B,adverse to the order of submergence tolerance.(3) Under flooding,the submerged stem base was thick and hypertrophied,and adventitious roots emerged from the flooded part of the stem above the soil.Aerenchyma formation occurred in adventitious root and tap root cortex of cultivated soybeans(G.max), and highly tolerant Kefeng No.1 had more extensive aerenchyma tissues than sensitive Nannong 1138-2 did.Wild soybeans(G.soja) expressed no aerenchyma formation in adventitious roots,tap roots,stems and leaves.
     Kefeng No.1(highly tolerant) and Nannong 1138-2(sensitive),with large difference in submergence tolerance between the two parents,were used to study the inheritance of submergence tolerance in soybean.The survival percentage of seedlings of the RIL population NJRIKY derived from Kefeng No.1×Nannong 1138-2 was evaluated under completely submerged condition in pot experiment.Genetic analysis was performed under major gene plus polygene mixed inheritance model in the P_1,P_2,and F_(7:11) of the cross 'Kefeng No.1×Nannong 1138-2'.QTL mapping for submergence tolerance in soybean was carried out on the genetic linkage map provided by National Center for Soybean Improvement under the methods of composite interval mapping(CIM) and multiple interval mapping(MIM) of software WinQTL Cartographer Version 2.5.The genetic linkage map contained 488 SSR markers,spanning 25 linkage groups at a total distance 4226.4cM,with an average distance of 8.6cM between the flanking markers.The results from segregation analysis showed that submergence tolerance of soybean was controlled by three major genes with the heritability of 42.40%and no polygene detected.With composite interval mapping(CIM) and multiple interval mapping(MIM),three QTLs associated with submergence tolerance were identified in both CIM and MIM,which located in Satt648~K418_2V,Satt531~A941V and Satt038~Satt275(B53B~Satt038) on linkage groups A1,D1a and G,respectively,explaining 4.4%~7.6%of the total phenotypic variation.The results from segregation analysis and QTL mapping appeared relatively consistent and could verify each other.However,there is some difference between the present results and those in the literature,therefore,further study is to be considered.
引文
1 Akaike H.Application Of Statistics,P.R.Krishnaiah(ed.).North Holland Publishing Company,Amsterdam,1977,27-41.
    2 Akkaya M S,Shoemaker R C,Specht J E,et al.Integration of simple sequence repeat DNA markers into a soybean linkage map[J].Crop Sci,1995,35:1439-1445.
    3 Apuya N R,Frazier,Keim P,et al.Restriction fragment length polymorphisms as genetic markers in soybean,Glycine max(L.) Merri[J].Theor Appl Genet,1988,75:889-901.
    4 Armstrong W,Armstrong J,Beckett P M,et al.Convective gas-flows in wetland plant aeration[M].In:Jackson M B,Davies D D,Lambers H.eds.Plant Life under Oxygen Deprivation:Ecology,Physiology and Biochemistry.The Hague:SPB Academic,1991b:283-302.
    5 Armstrong W,Beckett P M,Justin S H F W,et al.Modeling and others aspects of root aeration by diffusion[M].In:Plant Life under Oxygen Deprivation(Jackson,M.B.,Davies,D.D.and Lambers,H.,Eds.),SPB Academic Publ.,Hague,Netherlands,1991a:267-282.
    6 Armstrong W,Brindle R,Jackson M B.Mechanisms of flood tolerance in plants[J].Acta Bot Neerl,1994a,43:307-358.
    7 Armstrong W,Strange M E,Cringle S,et al.Micro-eletrode and modeling study of oxygen distribution in roots[J].Ann Bot,1994b,74:287-299.
    8 Armstrong W.Aeration in higher plants.In Advances in Botanical Research[M].Ed.H W Woolhouse.Academic Press,London,1979,7:225-332.
    9 Bacanamwo M,Harper J E.The feedback mechanism of nitrate inhibition of nitrogenase activity in soybean may involve asparagine and/or products of its metabolism[J].Plant Physiol,1997,100:371-377.
    10 Bacanamwo M,Purcell L.Soybean dry matter and N accumulation response to flooding stress N sources and hypoxia[J].J Exp Bot,1999,50:689-696.
    11 Biemelt S,Keetman U,Albrecht G.Re-aeration following hypoxia or anoxia leads to activation of the antioxidative defense system in roots of wheat seedlings[J].Plant Physiol,1998,116:651-658.
    12 Boru G,Ginkel M van,Kronstad W E,et al.Expression and inheritance of tolerance to waterlogging stress in wheat[J].Euphytica,2001,117:91-98.
    13 Box J.Winter wheat grain yield responses to soil oxygen diffusion rates[J].Crop Sci,1986,26:335-361.
    14 Bradford K J,Yang S F.Stress-induced ethylene production in the ethylene-requiring mutant diageotropica[J].PI Physiol,1980b,65:326-331.
    15 Bradford K J,Yang S F.Xylem transport of 1-aminocyclopropane-1-carboxylic acid,an ethylene precursor,in waterlogged tomato plants[J].PI Physiol,1980a,65:322-326.
    16 Bradford K J.Effects of soil flooding on leaf gas exchange of tomato plants[J].Plant Physiol,1983,73:475-479.
    17 Brummer E C,Graef G L,Orf J H,et al.Mapping QTL for seed protein and oil content in eight soybean populations[J].Crop Sci,1997,37:370-378.
    18 Carpenter J R,Mitchell C A.Root respiration characteristics of flood-tolerant and intolerant tree species[J].J Am Soc Hort Sci,1980,105:684-687.
    19 Chang S J C,Doubler T W,Gibson P T,et al.Two additional loci underlying durable field resistance to soybean sudden death syndrome(SDS)[J].Crop Sci,1996,36(6):1684-1688.
    20 Churchill G A,Doerge R W.Empirical threshold values for quantitative trait mapping[J].Genetics,1994,138(3):963-971.
    21 Cianzio S R,Lin S,Shoemaker R C.Mapping genetic loci for iron deficiency chlorosis in soybean[J].Mol Breed,1997,3:219-229.
    22 Concibido V C,Denny R,Lange D A,et al.Genome mapping of soybean cyst nematode resistance genes in Peking,PI90763,and PI88788 using DNA markers[J].Crop Sci,1997,37:258-264.
    23 Cookson C,Osborne D J.The stimulation of cell extension by ethylene and auxin in aquatic plants[J].Planta,1978,144:39-47.
    24 Comelious B,Chen P,Chen Y,et al.Identification of QTLs underlying water-logging tolerance in soybean[J].Mol Breed,2005,16:103-112.
    25 Crawford R M M,Braendle R.Oxygen deprivation stress in a changing environment[J].J Exp Bot,1996,47(295):145-159.
    26 Cregan P B,Jarvik T,Bush A L,et al.An integrated genetic linkage map of the soybean genome[J].Crop Sci,1999,39:1464-1490.
    27 Curt J R.Identification of soybean cultivars tolerance to wateflogging through analyses of leaf nitrogen concentration[D].Dissertation for Master Degree of B.S.Louisiana State University,2006.
    28 Daugherty C J,Musgrave M E.Characterization of populations of rapid-cycling brassica rapa L.selected for differential waterlogging tolerance[J].J Exp Bot,1994,45:385-392.
    29 Diers B W,Shoemaker R C.Restriction fragment length polymorphism analysis of soybean fatty acid content[J].JAOCS,1992a,69:1242-1244.
    30 Doerge R W,Churchill G A.Permutation tests for multiple loci affecting a quantitative character[J].Genetics,1996,142(1):285-294.
    31 Drew M C,Jackson M B,Giffard S.Ethylene-promoted adventitious rooting and development of cortical air spaces(aerenchyma) in roots may be adaptive responses to flooding in Zea mays[J].Planta,1979,147:83-88.
    32 Drew M C,Lynch J M.Soil anaerobiosis,microorganisms and root function[J].Annu Rev Phytopathol,1980,18:37-66.
    33 Drew M C.Oxygen deficiency and root metabolism:injury and acclimation under hypoxia and anoxia[J].Annu Rev Plant Physiol Plant Mol Biol,1997,48:223-250.
    34 Drew M C.Oxygen deficiency in the root environment and plant mineral nutrition.In M.B.Jackson et al(ed.) Plant life under oxygen deprivation[M].Academic publishing,The Hague,1991:301-316.
    35 Drew M C.Sensing soil oxygen[J].Plant Cell Environ,1990,13:681-693.
    36 Fitter A H,Hay R K M.Environmental physiology of plants[M].Academic Press,London,1981.
    37 Gai J Y,Wang J K.Identification and estimation of QTL model and effects[J].Theo Appl Genet, 1998,97: 1162-1168.
    38 Githiril S M, Watanabe S, Harada K, et al. QTL analysis of flooding tolerance in soybean at an early vegetative growth stage[J]. Plant Breeding, 2006, 125: 613-618.
    39 Good A G, Muench D G. Long-term an.aerobic metabolism in root tissue: Metabolic products ofpyruvate metabolism[J]. Plant Physiol, 1993,101: 1163-1168.
    40 Heatherly L G, Pringle H C. IILSoybean cultivars' response to flood irrigation of clay soil[J]. Agron J, 1991, 83: 231-236.
    41 Hojberg O, Sorensen J. Microgradients of microbial oxygen sumption in a barley rhizosphere model system[J]. Appl Envion Microbiol, 1993, 59: 43-37.
    42 Holmberg N, Bulow L. Advance on enhance plant abiological stress tolerance by transgene[J]. Trend in Plant Science, 1998, 3(2): 61-66.
    43 Hou F F, Thseng F S. Studies on the flooding tolerance of soybean seed: varietal differences [J]. Euphytica, 1991, 57:169-173.
    44 Huang B R, Johnson J W. Root respiration and carbohydrate status of two wheat genotypes in responses to hypoxia[J]. Ann Bot, 1995, 75(4): 427-432.
    45 Huang B, Johnson J W, Nescnith S, et al. Growth, physiological and anatomical responses of two wheat genotypes to waterlogging and nutrient supply[J]. J Exp Bot, 1994, 45: 193-202.
    46 Huang B, Johnson T W, Nesmith D S, et al. Nutrient accumulation and distribution of wheat genotypes in response to waterlogging and nutrient supply[J]. Plant and Soil, 1995,173: 47-54.
    47 Jackson M B, Davies W J, Else M A. Pressure-flow relationships: xylem solutes and root hydraulic conductance in flooded tomato plants[J]. Ann Bot, 1996, 77: 17-24.
    48 Jackson M B, Drew M C. Effects of flooding on growth and metabolism of herbaceous plants[M]. In: Kozlowski, T.T. (Ed.), Flooding and Plant Growth. Academic Press, New York, NY, Orlando, Florida, U.S.A., 1984: 47-128.
    49 Jackson M B. Ethylene and responses of plants to excess water in their environment: a review[M]. In: Roberts J A, Tucker G E. eds. Ethylene and Plant Development. London: Butterworths, 1984: 241-265.
    50 Jackson M B. Rapid injury to peas by soil waterlogging[J]. J Sci Food Agric, 1979, 30: 143-152.
    51 Johnson J, Cobb B G, Drew M C. Hypoxic induction of anoxia tolerance in root tips of Zea mays[J]. Plant Physiol, 1989, 91: 837-841.
    52 Joly C A. Flooding tolerance: a reinterpretation of Crawford's metabolic theory[J]. Pro Roy Soc Edinburgh, 1994, 102B: 343-354.
    53 Justin S H F W, Armstrong W. Oxygen transport in the salt marsh genus Puccinelia with particular reference to the diffusive resistance of the root-shoot junction and the use of paraffin oil as a diffusive barrier in plant studies[J]. J Exp Bot, 1983, 34: 980-986.
    54 Justin S H F W, Armstrong W. The anatomical characteristics of roots and plant response to soil flooding[J]. New Phyt, 1987, 106: 465-495.
    55 Keim P, Diers B W, Olson T C, et al. RFLP mapping in soybean association between marker loci and variation in quantitative traits[J]. Genetics, 1990, 126: 735-742.
    56 Keim P. A high density soybean genetic map based on AFLP marker[J]. Crop Sci, 1997, 37: 537-543.
    57 Kennedy R A, Fox T C, Everard J D. Biochemical adaptations to anoxia: Potential role of mitochondrial metabolism to flood tolerance in Echinochloa phyllopogon (Barnyard Grass) [M]. In: Jackson M B, Davies D D, Lambers H.(eds) Plant Life Under Oxygen Deprivation-Ecology, Physiology and Biochemistry. The Netherlands: SPB Academic Publishing bv, 1991: 202-217.
    58 Kieber J J. The ethylene response pathway in arabidopsis[J]. Annu Rev Plant Physiol Plant Mol Biol, 1997, 48: 277-296.
    59 Kludze H K, Delaune R D, Patrick W H. Aerenchyma formation and methane and oxygen exchange in rice[J]. Soil Sci Soc Am J, 1993, 57: 386-391.
    60 Knee M. Fruit metabolism and practical problems of fruit storage under hypoxia and anoxia[M]. In: Jackson M B, Davies D D, Lambers H. eds. Plant Life under Oxygen Deprivation: Ecology, Physiology and biochemistry. The Hague: SPB Academic, 1991: 229-243.
    61 Kozlowski T T, Pallandy S G. Flooding and plant growth[J]. Academic Press Inc, 1984: 165-193.
    62 Kozlowski T T. Water supply and tree growth. Part. II. Flooding[J]. For Abstr, 1982, 43: 145-161.
    63 Ku H S, Suge H, Rappaport L, et al. Stimulation of rice coleoptile growth by ethylene[J]. Planta, 1970, 90: 181-189.
    64 Laan P, Berrevoets M J, Lythe S, et al. Root morphology and aerenchyma formation as indicators of the flooded-tolerance of Rumex species[J]. J Ecol, 1989, 77: 693-703.
    65 Lark K G, Weisemann J M, Matthews B F, et al. A genetic map of soybean (Glycine max L.) using an intraspecific cross of two cultivars: Minsoy and Noir I[J]. Theor Appl Genet, 1993, 86: 901-906.
    66 Linkemer G, Board J E, Musgrave M E. Waterlogging effect on growth and yield components of late-planted soybean[J]. Crop Sci, 1998, 38: 1576-1584.
    67 Mansur L M, Orf J H, Chase K, et al. Genetic mapping of agronomic traits using recombinant inbred lines of soybean[J]. Crop Sci, 1996, 36: 1327-1336.
    68 Matthew S, VanToai T T, Fausey N, et al. Evaluation on-farm flooding impacts on soybean[J]. Crop Sci, 2001,41:93-100.
    69 Metraux J P, Kende H. The cellular basis of the longation response in submerged deepwater rice[J]. Plants, 1984,160: 73-77.
    70 Metraux J P, Kende H. The role of ethylene in the growth response of deepwater rice[J]. Plant Physiol, 1983,72:441-446.
    71 Nandi S, Subudhi P K, Senadhira D, et al. Mapping QTL for submergence tolerance in rice by AFLP analysis and selective genotyping[J]. Mol Gen Genet, 1997,255: 1-8.
    72 Oosterhuis D M, Scott H D, Hampton R E, et al. Physiological response of two soybean [Glycine max(L.)Merr] cultivars to short-term flooding[J]. Environ Exp Bot, 1990, 30: 85-92.
    73 Opik H. Effects of anaerobiosis on respiration rate, cytochrome oxidase activity and mitochondrial structures in coleoptiles of rice (Oryza sativa L.)[J]. J Cell Sci, 1973, 12: 725-739.
    
    74 Patra B N, Mohanty S K. Effect of nutrients and liming on changes in PH, redox potential, and uptake of iron and manganese by wetland rice in iron-toxic soil[J].Biol.Fertil Soils,1994,17:285-288.
    75 Perata P,Alpi A.Ethanol-induced injuries to carrot cells[J].Plant Physiol,1991,95:748-752.
    76 Pezeshki S R.Plant response to flooding.In R.E.Wilkinson(ed.),Plant-Environment Interactions[M].Marcel Dekker,Inc,New York,USA.In the roots of anoxia-tolerant Carex species,a fine gas-channel system exists,which penetrates into the very youngest root parts.1994:289-312.
    77 Pezeshki S R.Wetland plant responses to soil flooding[J].Environ Exp Bot,2001,46:299-312.
    78 Pfster-Sieber M,Brandle R.Aspects of plant behaviour under anoxia and post-anoxia[J].Pro Roy Soc Edinburgh,1994,102B:313-324.
    79 Raph W.Soybeans respond to controlled waterlogging[J].Rural Res,1983,120:4-8.
    80 Reid D M.Effects of flooding on hormone relations[M].In:Kozlowski T T(ed).Flooding and Plant Growth.Orlando:Acdemic Press Inc,1984,194-212.
    81 Reyna N,Cornelious B,Shamnon J G,et al.Evaluation of a QTL for waterlogging tolerance in southern soybean germplasm[J].Crop Sci,2003,43:2077-2082.
    82 Ridge I.Ethylene and growth control in amphibious plants[M].In:Crawford R M M ed.Plant Life in Aquatic and Amphibious Habitats.Oxford:Blackwell Scientific Publications,1987:53-77.
    83 Roberts J K M,Callis J,Jardetzky O,et al.Cytoplasmic acidosis as a determinant of flooding in tolerance in plants[J].Proc Natl Acad Sci USA,1984,81:6029-6033.
    84 Roberts J K M,Callis J,Wemmer D,et al.Mechanism of cytoplasmic PH regulation in hypoxic maize root tips and its role in survival under hypoxia[J].Proc Natl Acad Sci USA,1984,81:3379-3383.
    85 Russell D A,Wong D M L,Sachs M M.The anaerobic response of soybean[J].Plant Physiol,1990,92:401-407.
    86 Sachs M M.Molecular genetic basis of metabolic adaptation to anoxia in maize and its possible utility for improving tolerance of crops to soil waterlogging[M].In:Jackson M B,Black C R.Interacting Stresses on Plants in a Changing Climate.NATO ASI Series,1993,116:375-393.
    87 Sakano K.Revision of biochemical pH-stat:Involvement of alternative pathway metabolisms[J].Plant Cell Physiol,1998,39(5):467-473.
    88 Scott H D,DeAngulo J,Daniels M B,et al.Flood duration effects on soybean growth and yield[J].Agro Jour,1989,81:631-636.
    89 Scott H D,DeAngulo J,Wood L S,et al.Influence of temporary flooding at three growth stages on soybean growth on a clayey soil[J].J Plant Nutr,1990,13:1045-1071.
    90 Seong R C,Kim J G,Nelson C J.Dry matter accumulation and leaf mineral contents as affected by excessive soil water in soybean[J].Korean J of Crop Science,1999,44(2):129-133.
    91 Setter T L,Ellis M,Lourance E V,et al.Physiology and genetics of submergence tolerance of rice[J].Ann Bot,London,1997,79(suppl.A):61-71.
    92 Shimamura S,Mochizuki T,Nada Y,et al.Formation and function of secondary aerenchyma in hypocotyl,roots and nodules of soybean(Glycine max) under flooded conditions[J].Plant and Soil,2003,251:351-359.
    93 Shoemaker R C.Soybean Genomics In H.Roger Boerma and James E.Specht(ed),Soybeans: Improvement,Production,and Uses[M].Third edition.USA.American Society of Agronomy Inc,2004:235-263.
    94 Shoemaker R C,Specht J E.Integration of the soybean molecular and classical genetic linkage groups[J].Crop Sci,1995,35:436-446.
    95 Singh B P,Tucker K L,Suffon J D,et al.Flooding reduces gas exchange and growth in snap bean[J].Hort Sci,1991,26:372-373.
    96 Smirnoff N,Craw-ford R M M.Variation in the structure and response to flooding of root aerenchyma in some wetland plants[J].Ann Bot,1983,51:237-249.
    97 Song Q J,Marek L F,Shoemaker R C,et al.A new integrated genetic linkage map of the soybean[J].Theor App Genet,2004,109:122-128.
    98 Spencer M,Pantalone V R,Meyer E J.Mapping the Fas locus controlling stearic acid content in soybean[J].Theor Appl Gent,2003,106:615-619.
    99 Steinmann F,Brandle R.Carbohydrate and protein metabolism in the rhizomes of the bulrush (Schoenoplectus lacustris L Palla)[J].Aguat Bot,1984,19:53-63.
    100 Swaminathan M S.From nature to crop production[M].In:Duxion DR.ed.International Crop Science,Madison:Grop Sci Soc Amer,1993:385-394.
    101 Tanaka F,Ono S,Hayasaka T.Identification and Evaluation of rice root elongation inhibitors in flooded soils with added wheat straw[J].Soil Sci Plant Nutrient,1990,36(1):97-103.
    102 VanToai T T,Beuerlein J E,Schmitthenner A F,et al.Genetic variability for flooding tolerance in soybeans[J].Crop Sci,1994,34:1112-1115.
    103 VanToai T T,Bolles C S.Postanoxic injury in soybean(Glycine max) seedlings[J].Plant Physiol,1991,97:588-592.
    104 VanToai T T,Zhang J,Martin S K St.RAPD markers of flooding tolerance Chinese soybean germplasm[J].Soybean Genetics Newsletter,1993,20:153-159.
    105 Vartapetian B B,Jackson M B.Plant adaptations to anaerobic stress[J].Ann Bot,1997,79(Supplement A):3-20.
    106 Wang S C,Basten C J,Zeng Z B.Windows QTL Cartographer Version 2.5.Department of Statistics,North Carolina State University,Raleigh,NC.2001-2006.Http://statgen.ncsu.edu/qtlcart/WQTLCart.htm.
    107 Webb J,Jackson M B.A transmission and cryo-scanning electron microscopy study of the formation of aerenchyma(cortical gas-filled space) in adventitious roots of rice(Oryza sativa)[J].J Exper Bot,1986,37(179):832-841.
    108 Went F W.Effect of root system on tomato stem growth[J].Plant Physiology,1943,18:51-65.
    109 Wu J Y.Molecular tagging of a new resistance gene to maize mosaic virus using microsatellite markers[J].Acta Bot Sin,2002,44(2):177-180.
    110 Xia J H,Saglio P H,Roberts J K M.Nucleotide levels does critically determine Survival of maize root tips acclimated to a lower oxygen environment[J].Plant Physiol,1995,108:589-595.
    111 Xia J H,Saglio P H.Lactic acid effiux as a mechanism hypoxic acclimation of maize root tips to anoxia[J].Plant Physiol,1992,100:40-46.
    112 Xu K,Mackill D J.A major locus for submergence tolerance mapped on rice chromosome 9[J].Mol Breed,1996,2:219-224.
    113 Youssef T,Saenger P.Anatomical adaptive Strategies to flooding and rhizosphere oxidation in mangrove seedlings[J].Aust J Bot,1996,44:297-313.
    114 Zeigler R S,Puckridge D W.Improving sustainable productivity in rice-based lowland systems of south and southeast Asia[J].Geo Journal,1995,35:307-324.
    115 Zeng Z B.Precision mapping of quantitative trait loci[J].Genetics,1994,136(4):1457-1468.
    116 Zhang W K,Wang Y J,Luo G Z,et al.QTL mapping of ten agronomic traits on the soybean(Glycine max L.Merr.) genetic map and their association with EST markers[J].Theor Appl Genet,2004,108:1131-1139.
    117 白克智.水稻等植物水培幼苗茎叶向根系运输氧气数量的测定[J].植物学报,1965,13(1):82-90.
    118 包和平,王晓丽,李春成,等.玉米抗螟性主基因—多基因混合遗传分析[J].吉林农业大学学报,2007,29(3):253-255.
    119 蔡长春,陈宝元,傅廷栋,等.甘蓝型油菜开花期和光周期敏感性的遗传分析[J].作物学报,2007,33(2):345-348.
    120 曹旸,蔡士宾,方先文.小麦品种间孕穗期耐湿性差异[J].江苏农业学报,1992,8(3):51-52.
    121 曹旸,蔡士宾,朱伟,等.小麦耐湿性的遗传研究[J].江苏农业学报,1995,11(2):11-15.
    122 陈和兴.芝麻渍涝灾害及减灾措施[J].中国油料,1993,(4):70-74.
    123 陈庆山,张忠臣,刘春燕,等.应用Charleston×东农594重组自交系群体构建SSR大豆遗传图谱[J].中国农业科学,2005,38:1312-1316.
    124 陈学军,陈劲枫,方荣,等.辣椒始花节位遗传研究[J].园艺学报,2006,33(1):152-154.
    125 崔世友.与产量有关的大豆株型、光合生理及耐低磷性状的基因定位[D].南京农业大学博士学位论文,2006.
    126 崔郁英.水稻及其它高等植物幼苗茎叶向根系运输氧气的途径[J].植物学报,1965,13(3):256-264.
    127 丁艳来.中国野生大豆的地理分化、聚类及遗传多样性分析[D].南京农业大学硕士学位论文,2005.
    128 东北师范大学生物系《大豆生理》 编写组.大豆生理[M].北京:科学出版社,1981:76-130.
    129 董钻.大豆产量生理[M].北京:中国农业出版社,2000:177-179.
    130 方先文,曹旸,蔡士宾.马卡小麦耐湿性遗传评价[J].江苏农业学报,1997,13(5):73-75.
    131 方宣钧,吴炎人,唐纪良.作物DNA标记辅助选择[M].北京:科学出版社,2002.
    132 盖钧镒,钱虎君,吉东风,等.大豆豆腐产量的遗传研究[J].遗传学报,2000,27(5):434-439.
    133 盖钧镒,汪越胜.中国大豆品种生态区域划分的研究[J].中国农业科学,2001,34(2):139-145.
    134 盖钧镒,章元明,王建康.QTL混合遗传模型扩展至2对主基因+多基因的多世代联合分析[J].作物学报,2000,26(4):385-391.
    135 盖钧镒,章元明,王建康.植物数量性状遗传体系[M].北京:科学出版社,2003.
    136 盖钧镒.试验统计方法[M].北京:中国农业出版社,2000.
    137 盖钧镒.植物数量性状QTL体系检测的遗传试验方法[J].科技前沿与学术评论,2005,21(1):34-40.
    138 盖钧镒.植物数量性状遗传体系的分离分析方法研究[J].遗传,2005,27(1):130-136.
    139 高文瑞,陈晨,王红铃,等.大豆籽粒大小的遗传及SSR标记分析[J].中国油料作物学报,2007,29(2):1-8.
    140 高用明,朱军.植物QTL定位方法的研究进展[J].遗传,2000,22(3):175-179.
    141 韩建明,侯喜林,史公军,等.不结球白菜叶子重量性状遗传模型分析[J].遗传,2007,29(9):1149-1153.
    142 何小红,盖钧镒.回交自交系群体数量性状遗传体系的分离分析方法[J].作物学报,2006,32(2):210-216.
    143 侯小改.芝麻不同抗性品种营养器官结构的比较研究[J].河北农业大学学报,1994,28(4):399-403.
    144 “华北平原作物水分胁迫与干旱研究”课题组编著.作物水分胁迫与干旱研究[M].郑州:河南科学技术出版社,1991.
    145 吉田美夫.水田种麦湿害的理论和实践[J].农业技术(日),1976a,32(11):1-6.
    146 吉田美夫.水田种麦湿害的理论和实践[J].农业技术(日),1976b,32(12):12-16.
    147 江建华,郭媛,陈献功,等.粳稻穗角与稻米品质的相关性及稻米品质遗传分析[J].遗传,2007,29(6):714-724.
    148 康小湖.大豆栽培与病虫害防治[N].北京:金盾出版社,1996:1-7.
    149 兰海,余月,王凤格,等.玉米种子休眠性数量遗传体系的判别[J].玉米科学,2007,15(2):5-8.
    150 李辰仁,张敬荣,郑慧琴,等.不同供水量与大豆形态生理及产量的关系[J].东北农学院学报,1986,17(1):11-17.
    151 李翠金.中国暴雨洪涝灾害的统计分析[J].灾害学,1996,11:59-63.
    152 李贵全.细胞学研究基础[M].北京:中国林业出版社,2001.
    153 李瑞秋,高小彦,吴敦肃.淹水对玉米苗某些生理和形态的影响[J].植物学报,1991,33:473-477.
    154 李阳生,彭风英,李达模,等.杂交水稻苗期耐淹涝特性及其与亲本的关系[J].杂交水稻,2001,16(2):50-53.
    155 刘峰,陈受宜.大豆的基因组研究[J].生物工程进展,2000,20(5):16-20.
    156 刘峰,庄炳昌,张劲松,等.大豆遗传图谱的构建和分析[J].遗传学报,2000,27(11):1018-1026.
    157 刘莹,盖钧镒.大豆耐铝毒的鉴定和相关根系性状的遗传分析[J].大豆科学,2004,23(3):164-168.
    158 刘友良.植物水分逆境生理[M].北京:农业出版社,1992:144-163.
    159 刘祖祺,张石城.植物抗性生理学[M].北京:中国农业出版社,1994:160-192.
    160 柳家荣,屠礼传,徐如强,等.芝麻的耐涝性与基因型及根系活力的关系[J].华北农学报,1993,8(3):82-86.
    161 娄成后.植物生理学[M].北京:农业出版社,1980:405.
    162 卢为国,盖钧镒,李卫东.大豆对胞囊线虫(Heterodera glycines Ichinohe)1号和4号生理小种抗性的遗传分析[J].作物学报,2006,32(5):650-655.
    163 卢为国,盖钧镒,郑永战,等.大豆遗传图谱的构建和抗胞囊线虫(Heterodera glycines Ichinohe)的QTL分析[J].作物学报,2006,32(9):1272-1279.
    164 马焕普,刘志民,朱海旺,等.几种桃砧木的耐涝性及其解剖结构的观察比较[J].北京农学院学报,2006,21(2):1-4.
    165 倪君蒂,李振国.淹水对大豆生长的影响[J].大豆科学,2000,19(1):42-48.
    166 戚存扣,盖钧镒,章元明.甘蓝型油菜芥酸含量的主基因+多基因遗传[J].遗传学报,2001,28(2):182-187.
    167 气候变化与作物产量编写组.气候变化与作物产量[M].北京:中国农业科学技术出版社,1992:264.
    168 秦大河.洪涝[M].北京:气象出版社,2003:1-49.
    169 时政文雄.麦类的湿害研究(第1报)[J].日本作物学会纪事,1951,20:171-173.
    170 宋英淑,杜智琴,徐永华,等.大豆萌动种子及株体对渍水环境的反应[J].大豆科学,1989,8(2):159-166.
    171 宋英淑,杜智琴,徐永华,等.低位渍水对大豆生长发育的影响与其耐涝性的研究[J].黑龙江农业科学,1990,(2):16-20.
    172 宋英淑,李学湛,杜智琴,等.大豆种子耐渍水性与子叶细胞超微结构的变化[J].大豆科学,1990,9(4):317-322.
    173 孙小镭,王永强,王冰,等.黄瓜嫩果果皮叶绿素含量的遗传[J].园艺学报,2004,31(3):327-331.
    174 汤章成.植物对水分胁迫的反应和适应性[J].植物生理学通讯,1983,(3):21-29.
    175 唐亮,徐正进.水稻苗期干物重和叶绿素含量的遗传分析[J].安徽农业科学,2007,35(6):1633-1635.
    176 万怀春.夏大豆的涝害及防治措施[J].农业科技通讯,1983,(7):16.
    177 汪越胜,盖钧镒.中国大豆品种生态区划的修正Ⅱ.各区范围及主要品种类型[J].应用生态学报,2002,13(1):71-75.
    178 汪越胜,盖钧镒.中国大豆栽培区划的修正 Ⅰ.修正方案与修正理由[J].大豆科学,2000,19(3):203-209.
    179 王春娥,付三雄,盖钧镒,等.大豆豆腐和豆乳得率的遗传分析与QTL定位[J].中国农业科学,2007,待刊.
    180 王芳,赵团结,盖钧镒.大豆野生与栽培资源苗期耐淹性的鉴定、生态区特征和优异种质发掘[J].大豆科学,2007,待刊.
    181 王国法.淹水大豆的生长与固氮研究[J].大豆科学,1992,1:74-78.
    182 王建康,盖钧镒.利用杂种F2世代鉴定数量性状主基因-多基因混合遗传模型并估计其遗传效应[J].遗传学报,1997,24(5):432-440.
    183 王建康,盖钧镒.数量性状主.多基因混合遗传的P_1、P_2、F_1、F_2和F_(2∶3)联合分析方法[J].作物学报,1998,24(6):651-659.
    184 王金陵,杨庆凯,吴宗璞.中国东北大豆[M].哈尔滨:黑龙江科技出版社,1999.
    185 王淑芳,石玉真,刘爱英,等。陆地棉纤维品质性状主基因与多基因混合遗传分析[J].中国农学通报,2006,22(2):157-161.
    186 王文泉,郑永战,梅鸿献,等.不同耐渍基因型芝麻在厌氧胁迫下根系得生理与结构变化[J].植物遗传资源学报,2003,4(3):214-219.
    187 王文泉,郑永战,梅鸿献,等.芝麻对涝害的反应及适应性变异:Ⅰ模拟涝害胁迫下芝麻基因型间的形态、生物量及产量变化[J].中国油料作物学报,1999,21(4):29-32.
    188 王勋陵,王静.植物形态结构与环境[M].兰州:兰州大学出版社,1989:99-110.
    189 王永军,吴晓雷,贺超英,等.大豆作图群体检验与调整后构建的遗传图谱[J].中国农业科学,2003,36(11):1254-1260.
    190 王永军.大豆重组自交系群体的构建与调整及其在遗传作图、抗花叶病毒基因定位和农艺及品质性状QTL分析中的应用[D].南京农业大学博士学位论文,2001.
    191 王灶安.植物显微技术[M].北京:农业出版社,1993.
    192 魏一鸣,金菊良.洪水灾害风险管理理论[M].北京:科学出版社,2002:1-145.
    193 吴晓雷,贺超英,王永军,等.大豆遗传图谱的构建和分析[J].遗传学报,2001,28(11):1051-1061.
    194 吴晓雷,王永军,贺超英,等.大豆重要农艺性状的QTL分析[J].遗传学报,2001,28(10):947-955.
    195 徐祥德,王馥棠,萧永生,等.农业气象防灾调控工程与技术系统[M].北京:气象出版社,2002:126-131.
    196 许如根,黄志仁,黄友圣,等.大麦品种(系)间耐湿性的比较研究[J].大麦科学,1997,51:16-18.
    197 殷宏章译.高等植物的呼吸作用[M].北京:科学出版社,1984.
    198 尹建华,刘宜柏,曾红权,等.水稻光温敏核不育系的育性遗传分析[J].生物数学学报,2007,22(1):107-112.
    199 尹天水,王树会,石磊.烤烟烟叶钾含量的遗传分析[J].烟草科技,2005,5:34-38.
    200 余炳生.生物学显微技术[M].北京:北京农业大学出版社,1989.
    201 张德水,董伟,惠东威,等.用栽培大豆与野生大豆间的杂种F_2群体构建基因组分子标记连锁框架图[J].科学通报,1997,42(12):1326-1330.
    202 张福锁.环境胁迫与植物营养[M].北京:北京农业大学出版社,1993.
    203 张国荣,余立云,毛美新.大麦湿害的研究进展[J].大麦科学,2000,(4):7-9.
    204 张洁夫,戚存扣,浦惠明,等.甘蓝型油菜含油量的遗传与QTL定位[J].作物学报,2007,33(9):1495-1501.
    205 张立平,赵昌平,单福华,等.小麦光温敏雄性不育系BS210育性的主基因+多基因混合遗传分析[J].作物学报,2007,33(9):1553-1557.
    206 张增翠,侯喜林,曹寿椿.不结球白菜维生素C和可溶性糖含量的遗传分析[J].园艺学报,1999,26(3):170-174.
    207 章元明,盖钧镒,戚存扣.利用家系群体鉴定数量性状多基因的存在[J].生物数学学报,2001,16(1):96-102.
    208 章元明,盖钧镒,戚存扣.数量性状分离分析的精确度及其改善途径[J].作物学报,2001,27(6):787-793.
    209 章元明,盖钧镒,王永军.利用P_1、P_2和DH或RIL群体联合分离分析的拓展[J].遗传,2001,23(5):467-470.
    210 章元明,盖钧镒,张孟臣.利用P_1 F_1 P_2和F_2或F_(2∶3)世代联合的数量性状分离分析[J].西南农业大学学报,2000,22(1):6-9.
    211 章元明,盖钧镒.利用DH或RIL群体检测QTL体系并估计其遗传效应[J].遗传学报,2000,27(7):634-640.
    212 章元明,盖钧镒.王建康.利用回交B_1和B_2及F_2群体鉴定数量性状两对主基因+多基因混合遗传模型[J].生物数学学报,2000,15(3):358-366.
    213 赵可夫,王韶唐.作物抗性生理[M].北京:农业出版社,1990:227.
    214 赵可夫,张万钧,范海,等.改良和开发利用盐渍化土壤的生物学措施[J].土壤通报,2001,32(专辑):115-119.
    215 周宝良,朱协飞,郭旺珍,等.异常棉渐渗的陆地棉高品质种质系纤维特性遗传[J].棉花学报,2006,18(1):60-62.
    216 周广生,朱旭彤.湿害后小麦生理变化与品种耐湿性的关系[J].中国农业科学,2002,35(7):777-783.
    217 周桂元,梁炫强.花生种子抗黄曲霉侵染性状遗传控制的研究[J].花生学报,2001,30(3):13-16.
    218 朱建强,欧光华,张文英,等.涝渍对大豆、棉花产量的影响研究[J].湖北农业科学,2000,(4):25-27.
    219 朱军,季道藩,徐馥华.作物品种间杂种优势遗传分析的新方法[J].遗传学报,1993,20(3):266-271.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700