用户名: 密码: 验证码:
白三叶对干旱胁迫的适应性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
当前,环境恶化严重威胁人类的生存与发展,干旱是世界危害最为严重的灾害之一。近几年来由于园林绿化事业被日益重视,白三叶在园林绿化和水土保持方面起到越来越大的作用。白三叶根系不发达,对干旱胁迫很敏感。本项目以不同品种白三叶为供试植物,采用植物生态、生理及生物化学方法,研究白三叶对干旱胁迫的反应及反应的品种间差异,研究成果可为我国干旱半干旱地区人工草场建造、城市园林绿化以及恢复与重建退化生态系统提供理论依据和科学指导,也可为将来抗旱植物的培育与筛选提供理论参考。主要研究结果如下:
     1品比试验
     收集原产地不同的白三叶12个品种进行盆栽对比试验,观察其生长状况和耐旱情况。结果表明,不同品种白三叶的农艺性状有较大差异,其耐旱能力也各不相同,其中,‘碧盛’、‘草地胡以阿’、‘纳努克’、‘考拉’、‘海发’、‘拉丁诺’、‘百霸’的耐旱能力较强,‘缪克罗文’、‘盖达尔夫’、‘萨克雷门特’、‘泰坦’、‘瑞文德’的耐旱能力较差。从农艺性状方面来看,‘海发’、‘百霸’、‘考拉’、‘拉丁诺’、‘纳努克’、‘瑞文德’较适合于园林栽培。
     2不同强度干旱胁迫对白三叶叶片光合作用和叶绿素荧光参数日变化的影响
     以品种‘海发’为试材,研究了不同强度干旱胁迫对白三叶叶片光合作用和叶绿素荧光参数日变化的影响。结果表明,土壤相对含水量为75%和50%时,白三叶的光合参数日变化呈双峰趋势,叶绿素荧光参数受到的影响不大,说明白三叶在这两种水分条件下能够正常生长;土壤相对含水量为25%时,PSⅡ反应中心遭到破坏,原初光能转化效率(Fv/Fm)、PSⅡ电子传递量子产量(φPSⅡ)和光化学猝灭系数降低;净光合速率、蒸腾速率下降明显,日变化曲线表现为单峰特征;气孔导度显著降低,而胞间CO2浓度升高,非气孔限制成为Pn下降的主要原因;说明白三叶在重度干旱(HD)条件下,生理机能遭到破坏,不能正常生长。
     3白三叶光合特性和根系空间分布对土壤水分梯度的动态响应
     通过对两个品种白三叶‘海发’和‘瑞文德’盆栽试验,模拟3种不同的土壤水分状况(无水分胁迫:保持植株良好的水分供应;轻度胁迫:表层0cm~20cm土壤处于干旱状态;重度胁迫:表层0cm~20cm土壤处于极干旱状态,20cm~40cm土壤处于干旱状态)对白三叶光合作用和根系生长的影响。结果表明,当植株未遭受水分胁迫时,两个品种白三叶的光合作用和根系生长状况没有明显差异;当表层0cm~20cm处于干旱状态时,‘海发’在处理后期的净光合速率和水分利用效率高于对照,根系生长量增大,表现出适宜性调节作用,‘瑞文德’受到的影响不显著;当表层0cm~20cm处于极干旱、20cm~40cm处于干旱状态时,‘海发’在处理前期受到轻微影响,随后恢复正常状态,‘瑞文德’则受到较严重的影响。随着干旱程度的加深和时间的延长,白三叶的根冠比逐渐增大。与‘瑞文德’相比,在相同时期相同胁迫程度下,‘海发’的根冠比没有显著差异,但深根数量大大超过‘瑞文德’,因而,‘海发’的耐旱能力强于‘瑞文德’。
     4持续干旱对白三叶渗调物质积累和水分利用的影响
     土壤水分变化首先影响到生物量在植物不同器官的分配,即累积性的CO2净同化产物的分配,白三叶能够通过提高匍匐茎、根系的干物质分配比例来规避干旱。同时,在干旱胁迫发生时,植株内可溶性糖含量、脯氨酸含量都大幅度增加。抗旱品种通过增加可溶性糖、脯氨酸含量提高渗透势的能力显著大于不抗旱品种。在水分胁迫发生时,白三叶叶片相对含水量不断下降,甚至干枯或死亡;土壤水分变化还影响到白三叶根系在土壤中的生长状况,使不同层次土壤中的根量和根活力发生改变,从而改变了白三叶的吸水状况,抗旱性较强的品种通过增加深根数量提高对深层土壤水分的吸收能力显著大于抗旱性较差的品种。
     5白三叶抗氧化清除系统对干旱胁迫的响应
     在轻度水分胁迫下,白三叶幼苗可以通过提高酶活性来清除因胁迫产生的过量活性氧,减少氧化胁迫伤害,使MDA含量、膜透性降低。耐旱性不同的品种间差异不显著;在重度胁迫下,抗旱性差的品种酶活性在胁迫初期有一定程度的提高,但提高的幅度不足以维持活性氧产生与清除之间的平衡,使植株产生氧化伤害,最终导致酶活性下降。而抗旱性强的品种酶活性提高的幅度能够维持这种平衡,使植株在一定程度上避免了伤害。在干旱胁迫下,抗旱品种利用ASC、MDHAR、ASPX、SOD等的调节能力较不抗旱品种强,这表明在不同干旱时期白三叶体内起主要作用的抗氧化物质不同。
     6干旱胁迫下白三叶的激素调节
     在轻度干旱胁迫下,白三叶叶片、根系中的ABA含量都显著升高。在重度胁迫下,‘海发’和‘瑞文德’根系中的ABA含量都迅速升高,而在叶片中,‘瑞文德’的ABA含量升高后有迅速下降。干旱条件下,两种白三叶叶片内的CTK含量均下降,根系中CTK的表现则相反。轻度干旱胁迫条件下,‘海发’叶片和根系中的IAA含量均呈上升的趋势,而根系上升的幅度更大。‘瑞文德’根系中的IAA含量也上升,但上升幅度较小。在重度胁迫下,‘海发’叶片中的IAA含量前期上升,随后开始下降,而根系中的IAA含量始终保持上升趋势。‘瑞文德’叶片中IAA含量迅速上升,但很快即开始下降,根系中的IAA含量始终保持上升趋势。在轻度胁迫下,白三叶‘海发’叶片内的GA含量在胁迫期间变化不明显;在重度胁迫下,仅在胁迫后期有小幅升高。‘瑞文德’叶片中GA含量在轻度胁迫时缓慢升高,在重度胁迫时小幅升高后又表现为缓慢下降的趋势。在根系中,‘海发’GA含量随着胁迫时间的延长小幅上升,而‘瑞文德’在轻度胁迫时变化不明显,在重度胁迫时表现为下降的特征。干旱胁迫下四种激素之间协调的总趋势是向着气孔关闭,促进根系发展的方向进行,但不同抗旱强度的白三叶其内源激素的调节机制有区别。
     7渗透胁迫对白三叶幼苗根系离子分泌和质膜ATP酶活性的影响
     用PEG-6000渗透胁迫处理,白三叶根系质膜透性升高,抗旱品种‘海发’增幅小于不抗旱品种‘瑞文德’。根系分泌物中K+、Ca2+、H+的含量变化与根系质膜透性的变化呈显著正相关。水分胁迫早期,白三叶根系PM H+-ATPase活性升高,胁迫时间延长,不抗旱品种‘瑞文德’的PM H+-ATPase酶活性下降,但抗旱品种‘海发’的酶活性一直较高。PM Ca2+-ATPase酶的活性与PM H+-ATPase酶表现一致。说明PM Ca2+-ATPase酶和PM H+-ATPase酶活性与白三叶的抗旱性有关。
Currently, drought is one of the most serious environmental problems. And in arid andsemi-arid regions, drought is a major constraint imposed on plant survival and growth. In China, White clover (Trifolium repens L) has been planting as the pasture all along and plays more and more important role in city landscape and soil and water conservation in recently years. The shallow root system of white clover is sensitive to drought. Under dry condition,The root system of white clover is small, it is sensitive to aridity. Under the circumstance of aridity, the changes of growth and physiology and biochemistry character were more evident. The different varieties of White clover were used as the mode plants in the item, to study the reaction to the aridity of white clover and the discrepancy among different varieties by the methods of ecology, physiology and biochemistry. To provide the theory basis and scientific guidance for building the artificial pasture in the arid and semiarid zone, garden virescence in cities, and resume and reconstruction the degenerating ecology system. To provide the theory references for culturing and selecting the anti-aridity plants.
     1. Comparing among different varieties of white clover
     12 varieties of white clover were planted in the pots. To observe the growth status and drought endurance. It showed that the agricultural characters played clearly discrepancy among different varieties of white clover. Their capacities of drought endurance were also difference. Among which,‘Zapican’,‘Grasslands Huia’,‘Nanouk’,‘Korla’,‘Haifa’,‘Ladino’,‘Beber’showed stronger capacity of drought endurance than‘Milkanova’,‘Gandalf’,‘Sacremento’,‘Titan’,‘Rivendel’played a poor capacity of drought endurance. From the agricultural characters,‘Haifa’,‘Beber’,‘Korla’,‘Ladino’,‘Nanouk’,‘Rivendel’were capable of garden planting.
     2. Effect of daily dynamics of photosynthesis and chlorophyll fluorescence parameters
     in Trifolium repens leaves on the different drought stresses Daily dynamics of photosynthesis and chlorophyll fluorescence parameters in Trifolium repens cv. Haifa leaves under drought stress were studied. The results showed that under stress for 7 days, the curves of diurnal variation in Pn, Tr and Gs of Trifolium repens leaves were observed, and the chlorophyll fluorescence parameters such as conversion efficiency of primary light energy (Fv/Fm) of PSⅡ, the photochemical quenching coefficient (qP) and the quantum yield of PSⅡelectron transport (φPSⅡ) were decreased respectively when the relative soil moisture content was 25%. Nonstomatal limitation was the main reason responsible for Pn declined.
     3. Effects of soil water gradient on photosynthesis and root spatial distribution in two Trifolium repens cultivars
     The plant drought tolerance is one of the important parameters for selecting sustainable landscape plants. Trifolium repens Cultivars,‘Haifa’and‘Rivendel’, were studied for their photosynthesis and root spatial distribution under different drought stresses. The results showed that there were no differences in plant photosynthesis or root growth between the two cultivars under adequate water supply. Net photosynthetic rates and water use efficiency increased, and the root growth was enhanced for‘Haifa’with moderate drought stress in the 0 cm– 20 cm soil layer, but there was no significant change for‘Rivendel’. Under extreme drought condition in 0 cm– 20 cm soil, and drought condition in 20 cm– 40 cm soil, the cultivar‘Haifa’was affected only slightly at the first stage of the experiment and later recovered to a normal state, while‘Rivendel’was much more adversely effected. Degree and time of the moisture stress increased the root/shoot ratios gradually for plants of‘Rivendel’. Compared to‘Rivendel’, the root/shoot ratio for‘Haifa’did not increase significantly given the same experiment conditions as‘Haifa’, but there were more deeper roots for‘Haifa’than for‘Rivendel’. Therefore, it is believed that‘Haifa’was more drought resistant than‘Rivendel’.
     4. Effects of continuous drought stress on osmotic adjustment substance and water metabolism of white clover
     The effects of continuous drought stress on osmotic adjustment substance and water metabolism of white clover (Trifolium repens‘Haifa’) were studied. The result proved, leaf dry matter was lower in water - stressed plants than in irrigated plants, but stolon and root dry matter were higher. During drought time, the water - stress plants had higher soluble sugar and proline content than irrigated plants. Relative water content in leaves of white clovers declined gradually during drought stress compared with controls(with water supply during treatment), the leaves wilted and died at last. Root distribution changed with soil water decreased, but the response varied with different varieties, the droght resistant variety had higher root lenghth densities in deeper soil, so it had higher ability to absorb soil water.
     5.Effects of drought stress on lipid peroxidation and clearing mechanism in white clovers leaves
     The effects of drought stress on RPMP, MDA contents and the activities of MDHAR, DHAR, ASPX, GST, SOD, POD in white clovers leaves were studied. After submerging white clovers roots with PEG-6000 solution, drought stress increased MDA content and permeability of membrane in white clovers leaves. In slight drought stress, the white clovers could keep the balance of production and scavenging of active oxygen by heightening activities of the enzymes, and reduced the oxidic stress resulting from drought stress, At the same time reduced the content of MDA and permeability of cell membrane. In severe stress, activities of the enzymes in variety which was not resistant to drought increased at first, but they could not keep the balance of production and scavenging of active oxygen, white clovers were damaged. but the variety which was resistant to drought could keep the balance by increasing activities of the enzymes, then white clovers were not damaged.
     6. The change endogenesis hormones in white clover under drought stress
     The content of ABA and IAA in the leaves of two white clover increased at different extent and the content CTK and GA were all down trend under drought strss. The general trend of coordinatiion among four endogenesis hormones was closeing the stoma and promoting the growth of root. Whereas the coordinatin mechanism of different white clover germplasm resources was different. Under serious drought strss, drought-resistance white clover had higher coordination ability in reducing grow rate to ensure surviving to avoid the damage of lack of water effectively.
     7. Effects of PEG stress on nutrient contents in root exudates and plasma membrane ATPase activity of white clovers
     The plasma membrane (PM) permeability increased in white clover roots under PEG-6000 osmotic stress, and the amplitude of changes in drought-resistant cultivar was more sensitive than that in the drought-sensetive one. the contents of K+, Ca2+ and H+ in root exudates changed with the plasma membrane permeability. PM H+-ATPase activity increased at early stage under stress, but dropped at late stage under serious stress in drought-resistant cultivar. PM Ca2+-ATPase activity changed like PM H+-ATPase activity. These results show considerable correlation between the activities of PM H+-ATPase or PM Ca2+-ATPase and the drought tolerance of white clover.
引文
鲍健寅,杨特武,马蕊华等.不同强度干旱胁迫后复水白三叶生长和生理特性恢复的研究[J].中国草地,1995,3:30-33
    催风芝,张运涛.多胺与园艺植物生长发育的关系[J] .河北农业大学学报,1996,19(3):94-98
    程瑞平,束怀瑞等.水分胁迫对苹果树生长和叶片中矿质含量的影响闭[J] .植物生理学通讯,1992,28(1):32-34
    陈晓远,高志红,刘晓英等.水分胁迫对冬小麦根、冠生长关系及产量的影响[J] .作物学报,2004,30(7):723-728
    陈志辉,张良诚,吴光林等.水分胁迫对柑桔光合作用的影响[J].园艺学报,1992,19(2):60-66
    陈由强.油茶种子老化进程中质膜伤害的研究[J].福建师范大学学报,1992,8(2):78-82
    胡章立,李琳,荆家海.水分胁迫对玉米幼叶生长区细胞质膜H+ -ATPase活性的影响[J ] .植物生理学报,1993,19 (2) :124-130.
    高俊凤.植物生理学实验技术[M]。西安:世界图书出版社,2000:199-201
    龚向群,荆家海,王旭.渗透胁迫下玉米幼叶延伸生长与PM H+ -ATPase的关系[J ] .西北植物学报,1994,14 (5):67-72.
    谷瑞升,郗荣庭,刘万生.水分胁迫对早实核桃生长和结果的影响[J].林业科学,1994,30:79-82
    谷瑞升,郗荣庭,童本群.早实核桃水分指标的研究[J.]林业科学,1991,27:461-464 郭卫华,李波,黄永梅等.不同程度的水分胁迫对中间锦鸡儿幼苗气体交换特征的影响
    [J] .生态学报,2004,24(12):2716-2723
    关义新,戴俊英,林艳.水分胁迫下植物叶片光合的气孔和非气孔限制[J].植物生理学通讯,1995,31(4):293-297
    何军贤.种子LEA蛋白的研究进展[J] .植物生理学通讯,1996,32(4):241-246
    李柏林,梅慧生.燕麦叶片衰老与活性氧代谢的关系.植物生理学报,1989,15:6-12
    李嘉瑞,任小林,王民柱等.干旱对果树光合的影响及水分胁迫信息传递[J].干旱地区农业研究,1996,14(3):69-72
    李树华,许兴,米海莉.水分胁迫对牛心朴子植株生长及渗透调节物质积累的影响[J] .西北植物学报,2003,23:592-596
    李晓燕,李连国,刘志华等.葡萄叶片组织结构与抗旱性关系的研究[J].内蒙农牧学院学报,1994,15(3):30-32
    李杨瑞.不同基因型甘蔗组织中ATP酶活性的研究[J ] .作物学报,1992,18 (6):453-457
    李永清.云南野生龙眼的调查研究[J].园艺学报,1985,12:223-227
    李永华,邹琪.植物体内甜菜碱合成相关酶的基因工程[J] .植物生理学通讯,2002,38(5):500-505
    刘崇怀.水分胁迫对葡萄几个生化指标的影响[J].葡萄栽培与酿酒,1991,(3):12-16
    林植芳,李双顺,林桂珠,孙谷畴,郭俊彦.水稻叶片的衰老与超氧化物活性及脂脂过氧化作用的关系.植物学报,1984,26(6):605-615
    刘庆,钟章成.斑苦竹无性系生长与水分供应及其适应对策的研究[J] .植物生态学报,1996, 20:245-254
    吕金印,高俊凤.渗透胁迫下对小麦根质膜Ca2+-ATPase活性及动力学[J ] .西北植物学报,1997,25 (3):41-45
    刘友良编著.植物水分逆境生理[M] .农业出版社,1992
    梁银丽.不同水分条件下小麦生长特性及氮磷营养的调节作用[J].干旱地区农业研究。1999,17(4):133-145.
    刘祖祺,张石城主编.植物抗性生理学[M] .北京:中国农业出版社,1994,369-386
    梁峥,骆爱铃.甜菜碱和甜菜碱生物合成酶[J] .植物生理学通讯,1995,31(1): 1-8 梁文裕.植物胚胎发育时期特异蛋白的研究进展[J] .福建农林科技大学学报,2003,32(1):98-103
    吕军.土壤水分平衡与作物生长动态耦合模型研究[J] .生命科学研究与应用,浙江:浙江大学出版社,1996,47-56
    江香梅,黄敏仁.植物抗盐碱、耐干旱基因工程研究进展[J] .南京林业大学学报,2001,25(5):51-62
    蒋明义,荆家海,王韶唐.渗透胁迫对水稻膜脂过氧化及体内保护酶系统的影响[J].植物生理学报,1991,17(1):80-84
    蒋明义.水分胁迫下植物体内′H的产生与细胞的氧化损伤.植物学报,1999,41(3):229-234
    揭雨成.干旱胁迫下蓖麻的生理生化变化与抗旱性的关系[J] .中国农业科学,2000,33(6):33-39
    彭祚登,荆家海,王韶唐.渗透胁迫对水稻幼苗膜脂过氧化及体内保护酶系统的影响.植物生理学报,1991,17(1):80-84
    曲桂敏,李兴国,赵飞等.水分胁迫对苹果叶片和新根显微结构的影响[J].园艺学报,1999,26(3):147-151
    曲泽洲.果树栽培总论(第二版)[M].北京:农业出版社,1985,120-142
    任安芝,高玉葆,梁宇等.白草和赖草无性系生长对干旱胁迫的反应[J] .中国沙漠,1999,19(1):30-34
    山仑,徐萌.节水农业及其生理生态基础[J] .应用生态学报,1991,2(1):70-76
    孙谷畴.叶片水势降低对荔枝光合作用的影响[J].植物学报,1988,30(1):99-102
    孙昌祖.渗透胁迫对青杨叶片氧自由基伤害及膜脂过氧化的影响[J].林业科学,1993,29(2):104-109
    汤佩松.高等植物呼吸代谢途径的调节控制和代谢与生理功能的相互制约[J] .植物学报,1979,21(2):93-96
    滕文元,周湘红.植物气孔反应及其对叶水势的调控[J].干旱地区农业研究,1993,11(4):61-64
    汤章城.植物对水分胁迫的反应和适应性.植物生理学通讯,1983,19(3):24-29
    汤章城.水分胁迫和植物和气孔运动[A].北京植物生理学会编辑。植物生理生化进展[C]。1986,4:43-50
    汤章城.逆境条件下植物脯氨酸积累及可能的意义[J] .植物生理学通讯,1984,(1):15-21
    汤章城,王育启,吴亚华.不同抗旱品种高梁苗中脯氨酸积累的差异.植物生理学报,1986,12:154-162
    吴海卿.冬小麦对不同土壤水分的生理和形态响应[J].华北植物学报,2000,15(3):92-96
    吴忠义,张大鹏,贾文锁.蚕豆叶片下表皮ABA结合蛋白的分离纯化.植物学报,1999,41(8):842-845
    王洪春.植物抗性生理[J ] .植物生理学通讯,1981 ,(6) :72-81.
    王俊儒,李生秀.不同生育时期水分有限亏缺对冬小麦产量及其构成因素的影响[J].西北植物学报,2000,20(2):193-200
    王沛洪.植物多胺代谢的酶类与胁迫反应[J] .植物生理学通讯,1990,(1):1-7
    王伟.植物对水分亏缺的某些生第反应[J].植物生理学通讯,1998,34(5):388-393
    王伟小.麦根质膜的分离及渗透胁迫对小麦ATPase和质膜透性的影响[D] .陕西杨陵:西北农业大学,1992
    王艳青.植物抗逆中的参透调节物质以及转基因工程进展[J] .北京农业大学学报,1996,19(3):94-98
    肖冬梅,王水,姬兰柱.水分胁迫对长白山阔叶红松林主要树种生长及生物量分配的影响[J] .生态学杂志,2004,23(5):93-97
    许振柱,周广胜.陆生植物对全球变化的适应性研究进展[J] .自然科学进展,2003,13:113-120
    耀大勇,沈黎明.脱水蛋白研究进展[J] .生物化学与生物物理进展,1998,25(2):119-123
    杨洪强,黄天栋.水分胁迫对苹果新根多胺和脯氨酸含量的影响[J].园艺学报,1994,21(3):295-296
    杨洪强,接玉玲.多胺与果树生长发育的关系[J] .山东农业大学学报,1996,27(4):514-520
    杨贵羽.土壤水分变动条件下冬小麦根、冠生长动态模型的建立及根、冠动态性分析[A] .北京:中国农业大学博士论文2003。
    杨特武,何光明,鲍键寅.白三叶超氧化物歧化酶性质初步研究[J] .湖北农业科学1996,5:41-45
    于秋菊,林忠平.植物水孔蛋白研究进展[J] .北京大学学报(自然科学版),2002,38(6):855-866
    闫敏,张英俊,韩建国.水分胁迫对白三叶生长发育及种子产量的影响[J]草.地学报,2005,13(1):16-22
    于同泉,秦岭,王有年.渗透胁迫板栗苗可溶性糖的积累及组分变化的研究[J].北京农学院学报,1996,11(1):43-47
    殷小军.甜菜碱的生物合成以及其相关基因的遗传工程[J] .植物生理学通讯,2002,38(3):299-304
    袁嘉祖,董晓燕.中国荒漠化的形成原因和分布特征[J] .中国水土保持科学,2003,4:203-214
    袁朝兴,丁静.水分胁迫对玉米叶片IAA含量及其活性的影响.植物生理学报,1990,16(2):179-184
    赵福康.盐胁迫下大麦幼苗多胺与脯氨酸合成竞争前提L-Arg[J] .作物学报,2001,27(5):622-625
    赵福康,刘友良.大麦多胺合成比脯氨酸合成对盐胁更敏感[J] .植物生理学报,2000,26(4)343-349
    张林生,赵文明.LEA蛋白与植物的抗旱性[J] .植物生理学通迅,2003,39(1):61-66
    张殿忠,汪沛洪,席连喜.干物质累积和脯氨酸累积的水势阀值与小麦抗旱蛋白之初探.北京农学院学报,1995,10(1):26-30
    赵世杰,史国安,董新纯.植物生理学实验指导,中国农业科学技术出版社,2002,83-88
    朱学艺,张承烈.植物响应水分胁迫的主要功能蛋白[J] .西北植物学报,2003,23(3):503-508
    Ames B N. Assay of inorganic phosphate ,total phosphate ,and phosphatases[J ] . Methods Ezymol ,1966 , (8) :115-118
    Aparicio-Fejo, P M, M F Sanchez- Diaz, and J I Pena. Nitrogen fixation, Stomatal respone and transpiration in Medicago sativa, Trifolium repens, and Trifolium subterraneum under drought stress and recovery[J] .Physiol Plant, 1980, 48: 1-4
    Anderson B E, Ward J M, Schroeder J I. Evidence for an extracellular reception site for abscisic acid in Commelina guard cells[J]. Plant Physiol, 1994, 104:1177-1183
    Anderberg R J, Walker Simmons M K. Isolation of a wheat CDNA clone for an abscisic acid-inducible transcript with homology to protein kinase[J]. Proc Natl Acad Sci USA, 1992, 89: 10183-10187
    Armstrong F, Leung J, Grabov A etal. Sensitivity to abscisic acid of guard cell K+channels is suppressed by abil-1, a mutantarabidopsis gene encoding a putative protein phosphates[J]. Proc Natl Acad Sci USA, 1995, 92: 9520-9524
    Bates L S, Waldren R P, Teare I D. Rapid determination of free proline for water-stress studies. Plant Soil, 1973, 39: 205-207
    Bogre L, Ligternk W, Boes E B etal. Mechanosensors in plants[J]. Nature, 1996, 383: 489-490 Bradford M M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding[J]. Analytical Biochemistry, 1976 ,72 :248-254
    Booz M L, Travis R L. Two2dimensional elect rophoresis of soybean root plasma membraneproteins solubilized by SDS and other detergents[J ]. Phytochemistry, 1981, 20(8): 1773-1779
    Burch, G J and G G Johns. Root absorption of water and physiological responses to water deficits by Festuca arundinacea Schreb. And Trifolium repens L[J]. Aust. J . Plant Physiol, 1978, 5: 859-871
    Bush D S. Calcium regulation in plant cells and its role in signaling[J]. Ann Rev Plant Physiol Plant Mol Boil, 1995, 46: 95-122
    Caray Arroyo A, Colmenero Flores J M, Caroiarrubio A, etal. Highly hydrophilic proteins in prokaryates and eukaryates are common during conditions of water deficit [J]. J. Biolchem, 2000, 275(8): 5668-5674
    Carrow, R N. Drought resistance aspects of turfgrasses in the southeast: Root-shoot responses. Crop Science, 1996, 36: 687-694
    Carrow R N. Drought avoidance characteristics of diverse tall fescue cultivars. Crop Science, 1996, 36, 371-377
    Cazale A C, Mayer MAR, Brygoo H B etal. Oxidative burst and hypoosmotic stress in tobacco cell suspensions. Plant Physiol, 1998, 116: 659-669
    Chitlaru E, Seger R, Pick U. Activation of a 74kDa plasma membrane protein kinase by hyperosmotic shocks in the halotolerant alga Dunaliella salina. J Plant Physiol, 1997, 151: 429-436
    Christine B B, Alexander A C, Athole H M, etal. Reproductive development of white clover( Trifolium repens L.) is not impaired by a moderate water deficit that reduces vegetative grouth: I. inflorescence, floret, and ovule production[J]. Crop Science, 2002a, 42: 406-414
    Christine B B, Alexander A C, Athole H M, etal, Reproductive development of white clover (Trifolium repens L.) is not impaired by a moderate water deficit that reduces vegetative growth:Ⅱ.fertilization efficiency and seed set[J]. Crop Science, 2002b, 42: 414-422
    Chris B, Marc V M, Dirk I, 1992.Superoxide dismutase and stress tolerance. Annual Review Plant Physiol and Plant Molecular Biology, 43: 83-116
    Clifford P T P. Interaction between leaf and seed production in white clover (Trifolium repens L.)[J]. Journal of Applied Seed Production, 1986, 4: 37-43
    Cohen S, Cohen Y. Field studies of leaf conductance response to environmental variables incitrus[J]. Journal of Applied Ecology, 1983, 20: 561-570
    Collen J Perdersen M. A stress induced oxidative burst in Eucheuma platycladum[J]. Physiol Plant, 1994, 92: 417-422
    Conley T R, Sharp R E, Walker J C.Water deficit rapidly stimulates the activity of a protein kinase in the elongation zone of the maize primary root[J]. Plant Physiol, 1997, 113: 219-226
    Crane F L, Sun I L, Sun E E etal. Plasma membrane rdox and regulation of cell growth[J]. Protoplasma, 1995, 184: 3-7
    Daniels M J, etal. The plasmamembrane of Arabidopsis thaliana contains a mercury-insensitive a quaporin that is a homdogy of the tonoplan twater channel protein T I P [J]. Plant Physid, 1994, 106: 1325-1333
    Davies W J, Zhang J. Root signals and the regulation of growth and development of plants in drying soil[J]. Annu Rev Physoil Plant Mol Boil, 1991, 42: 55-76
    Delauney A J, Verma D P S. Proline biosynthesis and Osmo regulation in Plant [J]. Plant J, 1993, 4: 215-233
    During H. Osmotic adjustment in grape vines[J]. Acta Horticulturae, 1985, 171: 315-322
    Ecker J R. The ethylene signal transduction pathway in plants[J]. Sci, 1995, 268: 667-674 Flexas J, Escalona J M, Medranoh H. Down-gregulation of photosynthesis by drought under
    field conditions in grapevine leaves[J]. Aust J Plant Physiol, 1998, 25: 893-900
    Frandsene G, Frieder N U, Nielsen M etal. Novel plant Ca2+ Cabinding protein expressed in response to abscisic acid and osmotic stress[J]. J Bio Chem 1996, 271: 343 -345
    Gilroy S, Trewavas T. Adecade of plant signals[J]. Bio Essays, 1994, 16: 677-681
    Grabov A, Leung J, Giraudat J etal. Alteration of a nion channel kinetics in wild-type and abil-1 trancgenic Nicotiana benthamiana guard cells by abscisic acid[J]. Plant J, 1997, 12: 203-213
    Guobin L, and D R Kemp. Drought stress affects the productivity, growth components, competitiveness and water relations of phalaris and white clover growing in a mixed pasture[J]. Aust. J. Agric. Res. 1992, 43: 659-672
    Hand J M, Young E, Vasconcelos C. Leaf water potential, stomatal resistance and photosynthetic response to drought stress in peach seedling[J]. Plant Physiol, 1982, 69: 1051-1054
    Hanson A D, Grumet R. Betain accumulation: metabolic pathway and genetics [A]. In: Key J L (ed). Cellular and Molecular Biology of Plant Stress [M]. New York: Alan R Liss Inc., 1985. 71
    Hays K L, Barber J F, Kenna M P, et al. Drought avoidance mechanisms of selected bermudagrass genotypes[J]. Houtscience, 1991, 26: 180-182
    Heimovaara-Dijkstra S, Nieland T J F, Nieland RM etal. Abscisic acid induced gene expression requires the activity of protein sensitive to the protein-tyosine phosphatase inhibitor phenylarsine oxide[J]. Plant Growth Regul, 1996, 18: 115-123
    Herppich W B, Peckmann K. Influence of drought on mitochondrial activity, photosynthesis, nocturnal acid accumulation and water relations in the CAM plants Prenia sladeniana and Crassula lycopodioides[J]. Annals of Botany, 2000, 86: 611-620
    Hey S J, Bacon A, Burnett E etal. Abscisic acid signal transduction in epidermal cells of Pisumsativum L. Argenteum: Bothdehydration mRNA accumulalation and stomatal responses require protein phosphirylation and phosphorylation[J]. Planta, 1997, 202: 85-92
    Hirayama T, Ohto C, Mizoguchi T, etal. Geneencodingaphosphatidylinositol specific phospholipase Cis induced bydehydration and salt stress in Arabidopsisthaliana[J]. Proc Natl Acad Sci USA, 1995, 92: 3903-3907
    Hong S W, Jon J H, Kwak J M etal. Identification of a receptor like protein kinases gene rapidly induced by abscisic acid, dehy dration, high salt, and cold treatments in Arabidopsis thaliana[J]. Plant Physiol, 1997, 113: 219-226
    [18] Holmgren M. Combined effects of shade and drought on tulip poplar seedlings: trade-off in tolerance or facilitation[J]? Oikose, 2000, 90: 67-78.
    Hulze E D, Langeo L, Buschbom U, et al. Stomatal responses to changes in humidity in plants growing in the desert[J]. Planta(berl), 1972, 108: 259-270
    Imamura A, Hanaki N, Umeda H etal. Response regulato simplicated in His-to-Asp phosphotransfer signaling in Arabidopsis[J]. Proc Natl Acad Sci USA, 1998, 95: 2691-2696
    Ingram J, Bartels D. The molecula rbasis of dehydration tolerance in plants [J]. Annu Rev Plant Physiol Plant Mol Biol, 1996, 47: 377-383
    Jabs T, Tschope M, Colling C etal.Elicitor stimulatedion fluxes and O2- from the oxidative burst are essential components in triggering defense gene activation and phytoalexin synthesisin parsley[J]. Proc Natl Acad Sci USA, 1997,94: 4800-4805
    Jones H G, Lakso A N, Syvertsen J P. Physiological control of water status in temperate and subtropical fruit trees[J]. Horticultural Review, 1985, 7: 301-344
    Johnson K D, Herman E M, Chrispeels M J. An Aboundant Highly Conserd Tonoplast Protein Seeds [J]. Plant Physiol, 1989, 91: 1006-1013
    Jonak C, Kiegerl S, Ligerink W etal. Stress signaling in plants:Amitogen activated protein kinase pathway is activated by cold and drought[J]. Proc Natl Acad Sci USA, 1996, 93: 11274-11279
    Johns G G. Transpirational, leaf area, stomatal and photosynthetic responses to gradually induced water stress in four temperate herbage species [J]. Aust. J. Plant. Physiol. 1978, 5: 113-125
    Joslin J D and Henderson G S, The determination of percentages of living tissue in woody fine root samples using Triphenyltetra-Zolium Chloride[J]. Forest Science, 1984, 30: 965-970
    Kaldenhoff R Eckert M. Featuresand Functions of Plant Aquaporins [J]. J Photochem Photobiol B, 1999, 52: 1-6
    Kaur-sawheny R, Shih L M , Flores H E, etal. Relation of polyamine synthesis and titer to aging and senescence in oat leaves [J]. Plant Physiol, 1982, 69: 405-409
    Kishor. Overexpression of - plyrroline-5-carboxylate synthetase increase praline production and osmotolerance intransgenic plant [J]. Plant Physiol., 1995, 108: 1387-1394
    Knetsch M L M, Wang M, Snaar jagalska B E etal. Abscisic acid induced mitogen activated protein in kinase activation in barley aleurone protoplasts[J]. Plant Cell, 1996, 8: 1062-1067
    Komatsu S, Karibe H, Masuda T. Effect of abscisic acid on phosphatidyserine - sensitive calcium - independent protein kinase activity and protein phosphorylation in rice[J]. Biosci Biotech Biochem, 1997, 61(3): 418-423
    Lakso A N. Seasonal changes in stomatal response to leaf water potential in apple[J]. J Amer Soc Hort Sci, 1979, 104: 58-60
    Lamb C, Dixon R A. The oxidative burst in plant disease resistance[J]. Annu Rev Plant Physiol Plant Mol Boil, 1997, 48: 251-275
    Lange O L, L Kappen E, D Schulze. Water and plant life:problems and modern approaches[A]. Berlin - Heidelberg: Spring Verlag, 1976
    Lee Y, Choi Y B, Sub C S etal. Abscisic-acid induced phosphoinositide turnover in guard cell protoplasts of Viciafaba[J]. Plant Physiol, 1996, 110: 987-996
    Leckie C P, McAinsh M R, Allen G J etal. Abscisic acid induced stomatal closure mediated by cyclic ADP ribose[J]. Proc Natl Acad Sci USA, 1998, 95: 15837-15842
    Liu J, Zhu J K.A calcium sensor homolog required for plant salt tolerance[J]. Sci, 1998, 280: 1943-1945
    Legendre L, Rueter S, Heinstein P F etal. Characterization of the oligoalacturonide induced oxidtive burst in cultured soybean (glycinemax) cells[J]. Plant Physiol, 1993, 102: 233-240
    Leung J, Michelle BD, Morris PC etal. Arabidopsis ABA response gene ABI1: features of a calcium modulated protein phosphatase[J]. Sci, 1994, 264: 1448-1451
    Leung J, Mrflot S, Giraudat J. The Arabidopsis ABSCISIC ACID - INSENSITIVE2(ABI2) and ABI1 genes encode redundant protein phosphatase 2C involved in abscisic acid signal transduction[J]. Plant Cell, 1997, 759-771
    Maeda T, Takehara M, Saito H. Activation of yeast PBS2 MAPKK by MAPKKKs or by binding of an SH3 containing osmosensor[J]. Sci, 1995, 269: 554-558
    Marcum K B, Engelke M C, Morton S J, et al. Rooting characteristics and associated drought resistance of zoysiagrass [J]. Agronomy Journal, 1995, 87: 543-538
    Maurel C, Reizer J, Schroeder J, etal. The Vacuolaar Menbrane Protein C1TIP Creates water Specific Channels in Xenopus Oocytes [J]. EMBOJ, 1993, 12(6): 2241-2247
    McCue K F, Hanson A D. Drought and salt derance: towards under standing and application[J]. Trends Biote chnol, 1990, 8: 358-362
    Mehdy M, Sharma Y K, Sathasivan L etal. The role of activited oxygen species in plant disease resistance[J]. Physiol Plant, 1996, 8: 365-374
    Menzel C M, Simpson D R. Plant water relations in lychee: diurnal variations in leaf conductance and leaf water potential. Agricultural and Forest Meteorology, 1986, 37: 267-277
    Meyer K, Leube MP, Grill E. A protein phosphatase 2C involved in ABA transduction in Arabidopsis thaliana[J]. Sci, 1994, 264: 1452-1455
    Mizoguchi T, Ichimura K, Shinozaki K. Environmental stress response in plants: the role of mitogen activated protein kinases[J]. Trends Biotechnol, 1997, 15: 15-19
    Mizoguchi T, Hayashida N etal. A gene encoding a mitogen activated protein kinase inducedsimultaneously with genes for amitogen activated protein kinase and an danS6 ribosomal protein in kinase by touch, cold and water stress in Arabidopsisthaliana[J]. Proc Natl Acad Sci USA, 1996, 93: 765-769
    Morgan J A, D R Legain, A R Mosier, D G Milchunas. Elevated CO2 enhances water relations and productivity and affects gas exchange in C3 and C4 grasses of the Colorado shortgrass steppe[J]. Global Change Biology, 2001, 7: 451-466
    Morgan J M. Osmoregulation and water stress in higher plants [J]. Ann Rev Plant Physiol, 1984, 35: 299-319
    Mori I C, Mori I C, Muto S. Abscisic acid activates a 48-kilodalton protein kinase in guard cells protoplasts[J]. Plant Physiol, 1997, 113: 833-839
    Oliva R N, Steiner J J, Young W C. White clover seed production:. Crop water requirements and irrigation timing[J]. crop Science, 1994a, 34: 762-767
    Oliva R N, Steiner J J, Young W C. White clover seed production :Ⅱ; soil and plant water status on yield and yield components[J]. Crop Science, 1994b, 34: 768-774
    Pardo J M, Reddy Mp, Yang Setal. Streess signaling through Ca 2+/calmodulin dependent protein phosphase calcinerin mediates salt adaptation in plants[J]. Proc Natl Acad Sci USA, 1998, 95: 9681-9686
    Pasternak D, Wilson G L. Differing effects of water deficit on net photosyn thesis, respiration and transpiration of apple leaves[J]. Plant Physiol., 1974; 16: 565-583
    Pennisi E. Plants decode a universal signal[J]. Sci, 1997, 278: 2054-2055
    Pestenaacz A, Erdei L. Calcium dependendent protein kinase in maize and sorghum induced by polyethyleneglycol[J]. Physiol Plant, 1996, 97: 360-364
    Pistocchi R, Bagin N, Creus J A. Polyamine uptake in carro tcell cultures [J]. Plant Physiol, 1987, 84: 374-380
    Preston G M, Carroll T P, etal. Appearance of Water Channels in Xenopus Oocytes Expressing Red Cell CHIP28 Protein [J]. Science, 1992, 256(5055): 385-387
    Price A , Knight M, Knight H etal. Cytosolic calcum and oxidative plant stress[J]. Biochem Soc Trans, 1996, 24: 470-483
    Psas F, Wurgler Murphy S M, Maeda T etal. Yeast HOG1MAP kinase cascade is regulated by a multistep phosphorelay mechanism in SLN1YPD1SSK1“two component”osmosensor[J].Cell, 1996, 86: 865-875
    Ranney T G, Bassuk N L. Whitlow T H. Osmotic adjustment and solute const-iuents in leaves and roots of water-stressed cherry trees[J]. J. Amer. Soc. Hort. Sci., 1991, 116: 684-688
    Roger R L, Pressure regulation of the electrical proper ties of growing Arabidopsis thaliana root hairs.Plant Physiol, 1996, 112: 1089-1100
    Roosens N H C J, Thu T T, Iskandar H M. Isolation of the ornithiine- &- am inotransfe rase cDNA and effect of salt stress on it's expression in Arabidopsis thaliana [J]. Plant Physiol. 1998, 117: 263-271
    Russel B L, Rathinasabpathi B, Hanson A D. Osmotic stress induces expression of choline momo oxygenase in sugar beet and amaranth [J]. Plant Physiol, 1998, 116: 859-865
    Sanchez-blanco M J, Ruiz-Sanchez M C, Planes J, et al. Water relations of two almond cuRivars under anomalousrainfall in non-irrigated cultrue[J]. J, Hort Sci, 1991, 66 (4) : 403-408
    Santoni V, Gerbeau P, Javot H, etal. The High Diversity of A quaporins Reveals Novel Facets of Plant Membrane Functions [J]. CurrOpin Plant Biol, 2000, 3(6): 476-481
    Schlze E D, Lange O L, Buschbom U et al. Stomatal responses to changes in humidity in plants growing in the dessert[J]. Planta, 1972, 108: 259-270
    Schwartz A, Wu W H, Tucker E B etal. Inhibition of inward K+ channels and stomatal response by abscisic acid: an intracellularlocus of phytohormone action[J]. Proc Natl Acad SciUSA, 1994, 91: 4019-4023
    Seger R, Krebs E G. The MAPK signaling cascade. FASEB J, 1995, 9: 726-735
    Slade A J et al. The effects of nutrient availability on foraging in the clonal herb Glechoma hederacea[J]. J Eco l, 1987, 75: 95-112
    Shinozaki K, Yamaguchi-Shinozaki K. Gene expression of and signal transducion in water-stress response [J]. Plant Physiol, 1997, 115-327
    Shinozaki K, Shinozaki K Y. Gene expression and signal transduction in water stress response[J]. Plant Physiol, 1997, 115: 327-334
    Sheen J. Ca2+ dependendent protein kinasess and stress signal transduction in plants[J]. Sci, 1996, 274: 1089-1092
    Smart R E. Water deficits and plant growth[M]. New York:Academic Press, 1983, 137-196
    Smirnoff C, Thonke B, Popp M. The capatibility of D- pinitol and ID- 1– 0– methyl– mucoinositol with malate dehydrogenase acticity [J]. BotActa, 1990, 103: 270-273
    Smucker A J M and Ritchie J T. Plant physiological responses to the soil-discussion [J]. International Joural of Crop Science, 1993, 1: 747-748
    Solanga arachchi S M et al. The effects of canopy filtered light on the growth of white clover[J]. Oecologia, 1987, 72: 372-376
    Stewart C R, Lee J A. The role of praline accumulation in halophytes [J]. Plant, 1974, 53(1): 120-129
    Stone J M, Walker J C, Plant protein kinase families and signal transduction[J]. Plant Physiol, 1995, 108: 451-457
    Suther land W J et al. The foraging tactics of plants[J]. Oikos, 1988, 52: 239-244
    Surowy T K, Sussman M R. Immunological cross2reactivity and inhibitor sensitivities of the plasma membrane H+-ATPase from plants and fungi[J ]. Biochi Biophys Actamica ,1986 ,848 : 24-34
    Syvertsen T R. Minimum leaf water poptential and stomatal closure in citrus of different ages[J]. Ann Bot, 1982, 49(6): 827-834 Syvertsen J P. Minimum leaf water potential and stomatal closure in citrus leaves of different ages[J]. Ann. Bot., 1982, 49: 827-843
    Thomas H. Effects of drought on growth and competitive ability of perennial ryegrass and white clover[J].J. Appl. Ecol. 1984, 21: 591-602
    Torrecillas A, Ruiz-Sanchen M C, Del Amor F, et al. Seasonal variations in water relaion of Amygdalus cormunis L. under drip irrigated and non-irrigated conditions[J].Plant and soil, 1988, 106(2): 215-220
    Turkington R et al. Influence of neighbors on node production, stolon growth, and branching of Trifolium repens transplants in a pasture. Can J Bo t, 1993, 71: 1266- 1269
    Turner L B. Water relations of white clover(Trifolium repens L.) water potential gradients and plant morphology [J]. Ann. Bot. (London). 1990, 65: 285-290
    Uemura M, Yoshida S. Isolation and identification of plasma membrane f rom light 2grown winter rye seedlings ( Secalecereale L. cv. Puma) [J ]. Plant Physiol, 1983,73: 586-597
    Vu J C V, Yelenosky G. Water deficit and associated changes in some photosyntheticparameters in leaves of Valencia' orange [Citrus sinensis (L.) Osbeck]. Plant Physiol., 1988, 88: 375-378
    Wang Z C, Stutte G W. The role of carbohydrates in active osmotic adjustment in apple under water stress[J]. J. Amer. Soc. Hort. Sci., 1992, 117: 816-823
    Weretilnyk E A, Hanson A D. Molecular cloning of a plant betaine- aldehyde dehygrogenase, an enzyme implicated in adaptation to salinity and drought [J]. Proc. Natl. Acad. Sci. USA, 1990, 87: 2475-2479
    Whitehead D C. The influence of frequent defoliation and of drought on nitrogen and sulphur in the roots of perennial ryegrass and white clover. Ann. Bot. 1983, 52: 931-934
    White R H, Engelke M C, Morton S J et al. Irrigation water requirement of zoysiagrass[J]. International Turfgrass Society Research Journal, 1993, 7, 587-593
    Wilkinson S, A L Clephan, W J Davies. Rapid low temperature-induced stomatal closure occurs in cold-tolerant Commelina communis leaves but not in cold-sensitive tobacco leaves, via a mechanism that involves apoplastic calcium but not abscisic acid[J].Plant Physiology, 2001, 126: 1566-1578
    Wurgler Murphy S M, Saito H. Two component signal transducers and MAPK cascades[J]. Trend Biochem Sci, 1997, 22: 172-176
    Wu Y, Kuzma J, Marechal E etal. Abscisicacid signaling through cyclic ADP Ribosein plants[J]. Sci, 1997, 278: 2126-2130
    Xu D P, Duan X L, Wang B Y. Express of a late embryogenesis abundant protein gene, H N A 1, from barley confers tolerance to water deficit and salt stress in transgenic rice [J]. Plant Physiol, 1996, 110: 249-257
    Xu Q, Fu H, Gupta R etal. Molecular characterization of a protion tyrosine phosphatase encoded by a stress-responsive gene in Arabidopsis[J]. Plant Cell, 1998, 10: 849-858
    Yahraus T, Chandra L,Legendre L etal. Evidence for a mechanically induce oxidative burst[J]. Plant Physiol, 1995, 109: 1259-1266
    Yuasa T, Okazaki Y, Iwasali N etal. Involvement of acalcium-dependent protein kinase in hyposmotic turgor regulation in a brackish water characeae Lamprotha mntium succinctum[J]. Plant Cell Physiol, 1997, 38(5): 585-594
    Zekri M R Parsons L R. Water relations Of grapefruit trees to drip microsprinkler and over head sprinkler irrigation[J]. J Amer Soc Hort Sci, 1988, 113(6): 819-823

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700