用户名: 密码: 验证码:
土壤质地与供氮水平对小麦产量和品质的影响及其生理基础
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在3种不同质地土壤条件下,对优质强筋小麦品种山农12不同粒位籽粒淀粉积累、淀粉粒度分布、籽粒内源激素水平及淀粉合成相关酶活性变化进行了研究,明确了不同粒位籽粒淀粉粒度分布及淀粉形成的酶学特征。同时对小麦不同粒位籽粒在蛋白质形成、HMW-GS表达量、GMP含量及粒度分布等方面的差异进行了研究,分析了HMW-GS积累与GMP粒度分布的关系。研究了在3种质地土壤上施氮量对小麦产量和品质的影响及其生理基础。主要研究结果如下:
     1小麦不同粒位籽粒蛋白质积累差异
     小麦不同粒位籽粒蛋白质含量和积累量均表现为2位粒>1位粒>4位粒>3位粒。不同粒位籽粒蛋白质各组分含量亦存在显著差异,上位粒(3、4位籽粒)球蛋白含量显著高于下位粒(1、2位籽粒),而醇溶蛋白和谷蛋白含量均显著低于上位粒,清蛋白含量上位粒和下位粒之间无显著差异。
     本研究表明,小麦强势粒和弱势粒HMW-GS均在花后14 d开始形成,强势粒HMW-GS含量明显高于弱势粒,表明强势粒具有较强的HMW-GS积累能力。花后小麦HMW-GS各亚基含量变化与总亚基含量变化趋势一致。各亚基含量表现为5亚基>10亚基>14亚基>15亚基,强势粒各亚基含量在整个籽粒发育进程中亦明显高于弱势粒。在小麦籽粒发育进程中,GMP含量呈先上升后下降再上升的趋势,强势粒GMP含量均明显高于弱势粒。
     本研究表明,小麦强、弱势籽粒GMP粒度分布趋势类似,粒径范围0.37~245μm之间。小麦GMP数目主要由<10μm颗粒组成(约占99.8%以上),体积分布的47.57%~69%集中在10-100μm,而表面积分布大部分(66.92%~83.23%)由<10μm颗粒组成。强势粒10-100μm和>100μm颗粒数目比例均显著高于弱势粒;而强势粒>100μm颗粒所占体积比例亦显著高于弱势粒。说明强势粒含有较多的大粒径GMP颗粒。这可能是因为强势粒GMP发育时间早,更多的小粒径GMP颗粒发育成为大粒径GMP颗粒。HMW-GS积累和GMP粒度分布的差异可能是小麦强、弱势籽粒品质差异的重要原因。
     2小麦不同粒位籽粒淀粉积累差异
     成熟期小麦不同粒位籽粒直链淀粉含量随粒位升高而增加;支链淀粉含量和总淀粉含量亦表现为3、4位粒高于1、2位粒。但由于受粒重影响,直链淀粉积累量、支链淀粉积累量和总淀粉积累量均表现为2位粒>1位粒>3位粒>4位粒。不同粒位的直/支比表现为4位粒>3位粒>2位粒>1位粒,这可能与淀粉组分合成差异有关。本研究表明,花后7~21 d,弱势粒的蔗糖含量显著高于强势粒,而此时期恰与淀粉积累速率高峰出现时间相吻合。弱势粒之所以淀粉积累量低、积累速率慢,与淀粉合成能力低有关,而淀粉合成所需同化物的供给并不是主要限制因子。本研究表明,小麦籽粒淀粉合成的关键酶AGPase、UGPase、SSS和GBSS活性与强势粒淀粉积累速率均呈显著或极显著正相关,强势粒上述酶活性均高于弱势粒,进一步表明淀粉合成相关酶活性较高、淀粉合成能力强是强势粒淀粉积累量高的重要原因。Logistic方程模拟也表明,强势粒淀粉积累起始势(C0)高,活跃持续期长,平均积累速率(Rmean)高,最终淀粉积累量高。
     3土壤质地对小麦籽粒品质形成的影响
     本试验条件下,3种质地土壤上小麦HMW-GS含量和GMP含量均表现为粘壤土>中壤土>砂壤土,表明粘壤土有利于小麦HMW-GS积累,有利于改善小麦品质。3种质地土壤比较,粘壤土小麦具有较高的沉降值和湿面筋含量,面团形成时间和稳定时间均较高,表明粘壤土小麦具有较好的面团流变学特性,面团品质好。3种质地土壤上小麦GMP颗粒体积分布为双峰曲线。GMP<10μm和10-100μm颗粒所占体积比例均表现为砂壤土>中壤土>粘壤土,而>100μm颗粒对体积的贡献表现为粘壤土>中壤土>砂壤土。3种质地土壤上小麦GMP颗粒数目分布为单峰曲线,粘壤土小麦强势粒中GMP>100μm颗粒数目比例较高。3种质地土壤上小麦GMP颗粒表面积分布为双峰曲线,粘壤土小麦GMP<10μm颗粒所占表面积显著低于砂壤土和中壤土,而10-100μm和>100μm颗粒所占表面积均显著高于砂壤土和中壤土。可见,粘壤土有利于小麦GMP的发育,大体积GMP颗粒所占体积均高于中壤土和砂壤土,有利于改善小麦品质。此外,小麦强势粒与弱势粒HMW-GS积累在砂壤土上差异较大,而在中壤土和粘壤土上二者差异较小;与强势粒相比,弱势粒HMW-GS积累不同质地土壤上差异较大。表明弱势粒HMW-GS积累更易受土壤条件的影响,生产上应注重对弱势粒进行调控以改善籽粒品质。
     本研究结果表明,3种质地土壤上小麦粒重比较,中壤土最高,粘壤土次之,砂壤土最低。砂壤土小麦灌浆起始势较高,但最大积累积累速率和平均积累速率均较低,最终粒重低;中壤土小麦具有较高的灌浆起始势和积累速率,因而最终粒重较高。可见,中壤土水气热状况适宜,肥力相对较高,有利于维持小麦较高的灌浆速率和灌浆持续期,有利于获得高产。
     砂壤土上小麦支链淀粉含量最高,直/支最低,总淀粉含量最高,但因其粒重较小,总淀粉积累量要小于中壤土。粘壤土上小麦直链淀粉含量较高,直/支较高,总淀粉含量最低,总淀粉积累量也最低。表明砂壤土有利于小麦淀粉的积累,但产量较低。不同土壤质地间水气状况和通气性不同,造成籽粒内源激素水平和淀粉合成相关酶活性的差异可能是不同质地土壤上淀粉组分积累差异的重要原因。不同质地土壤小麦淀粉粒度分布特征存在明显差异。砂壤土小麦B型淀粉粒较多,而A型淀粉粒较少;粘壤土小麦恰好相反。表明粘壤土有利于小麦A型淀粉粒体积比例的增加。3种质地土壤上小麦淀粉数目各粒径范围内无显著差异。3种质地土壤比较,粘壤土小麦A型淀粉粒占总表面积的比例较高。可以看出,粘壤土有利于小麦A型淀粉粒体积和表面积比例的增加,这可能是因为粘壤土促进了小麦淀粉粒发育的缘故,这也与粘壤土小麦直链淀粉含量较高相吻合。
     4土壤质地影响小麦品质的生理基础
     3种质地土壤上施氮均不同程度提高了小麦穗数、穗粒数和粒重,进而提高了小麦产量。与N0相比,N1和N2处理分别增产15.77%和23.22%(砂壤土);10.98%和18.00%(中壤土);5.96%和19.34%(粘壤土)。3种质地土壤比较,砂壤土小麦产量最低,但施氮增产幅度最大。小麦穗粒数3种质地土壤无显著差异,而穗数和粒重均以中壤土最高。中壤土通气性较好,且保水性和保肥性较强,有利于小麦穗数的增加和粒重的提高,最终获得较高的籽粒产量。
     本研究发现,3种质地土壤上开花期植株营养器官氮素积累量和花前贮存氮素运转量均随施氮量增加而增加,3种质地土壤上都以N2处理最大。同时,施氮显著降低了花前贮存氮素运转率,施氮处理间无显著差异。3种质地土壤比较,砂壤土上施氮对小麦花前氮素运转量的影响较大(平均增加56.26%),而中壤土(平均增加27.43%)和粘壤土(平均增加3.58%)各处理间差异较小,说明砂壤土施氮对小麦氮素运转有更显著的调控效应。3种质地土壤上适量施氮均能提高旗叶内肽酶和羧肽酶活性,促进旗叶可溶性蛋白质的降解,但施氮量过多不利于内肽酶活性的提高。与砂壤土相比,中壤土和粘壤土小麦灌浆后期旗叶内肽酶和羧肽酶活性下降速率较慢。酶活性高且高值持续时间长,有利于保持较高的氮素转移效率,从而提高籽粒蛋白质含量。
     本研究表明,小麦开花期0-20cm土层根系鲜重砂壤土最低,粘壤土次之,中壤土最高;20-40cm土层砂壤土最高。这可能是因为砂壤土比较疏松,有利于根系的下扎,增大了下层根系的比例。开花10d后各土层根系鲜重均表现为粘壤土>中壤土>砂壤土。这可能是因为粘壤土有利于小麦根系生长并延缓其衰老的缘故。3种质地土壤比较,0-20cm土层小麦根系活力均表现为中壤土>粘壤土>砂壤土;20-40cm土层均表现为粘壤土>中壤土>砂壤土。表明中壤土和粘壤土有利于延缓小麦根系的衰老。
     3种质地土壤上施氮均明显提高了根系SOD活性,有利于及时清除活性氧。3种质地土壤比较,中壤土和粘壤土小麦根系生育后期仍能保持较高的SOD活性,根系MDA含量低,表明中壤土和粘壤土小麦根系膜脂过氧化程度低,根系衰老慢。3种质地土壤上施氮均能明显提高小麦旗叶SOD、POD、CAT活性,降低MDA含量,表明施氮有利于提高小麦旗叶活性氧清除能力,延缓衰老。3种质地土壤比较,砂壤土小麦旗叶SOD活性前期升高快,后期迅速下降,MDA含量增加快,小麦膜脂过氧化现象严重。砂壤土上施氮旗叶MDA含量降低幅度较大,表明砂壤土小麦旗叶活性氧代谢更易受到氮肥的调控。因此,在砂壤土上种植小麦可以通过合理施氮来延缓衰老,以获得优质高产。
The high quality wheat cultivar shannong 12 was used in this experiment under three different soil texture conditions, in order to study starch accumulation characteristics, starch particle size distribution, endogenous hormone levels and enzyme activities related to starch synthesis of different grain position. The protein formation, HMW-GS expression, GMP content and size distribution of GMP particle were studied at the same time, and the relationship between HMW-GS accumulation and GMP size distribution was analyzed. The effects of nitrogen rate on yield and quality under different soil textures and its physiological basis were studied in the experiment. Key findings are as follows:
     1 Protein accumulation differences at different grain positions
     The protein content and accumulation amount of wheat grain at different position both showed second position grain> first position grain> forth position grain> third position grain. The content of protein components of wheat at different grain positions were different significantly. The upper grains (3,4-Grains) have higher globulin content and lower gliadin content and glutenin content than lower grains (1,2-Grains).There are no significant difference of albumin content between upper grains and lower grains.
     This study shows that the HMW-GS appeared at 14 days after anthesis of wheat both in superior grain and inferior grain.The HMW-GS content of superior grain was higher than that in superior grain, which indicated that the accumulation ability of HMW-GS was stronger in superior grain. After anthesis, each HMW-GS content changed in the same trend as total HMW-GS content. The content of 5 subunits> 10 subunits> 14 subunits> 15 subunits, each subunits content in superior grain was also higher than inferior grain. The GMP content raised first and then fell down in the process of grain filling.The GMP content in superior gain was also higher than inferior grain. Lower HMW-GS accumulation amount and GMP content maybe one of the reasons for poor quality of inferior grain.
     This study showed that, the GMP size distribution of wheat was similar in superior grain and inferior grain, the particle diameter ranged for 0.37~245μm. The number of GMP particle mainly composed by <10μm particle (accounting for 99.8%), volume distribution percentage focus on 10-100μm (47.57%~69%), surface area mainly composed by <10μm particle (66.92%~83.23%). The number percentage of 10~100μm and >100μm particle of GMP in superior grain were higher than inferior grain.The volume percentage of >100μm particle of GMP in superior grain were also higher than inferior grain. So superior grain contains more large size GMP particles. This maybe because more small size particles became large size particles in superior grain. The difference of HMW-GS accumulation and GMP size distribution maybe one of the reasons of quality difference between superior grain and inferior grain.
     2 Starch accumulation differences at different grain positions
     The amylose content of wheat grain at mature increased with the moving up of grain positions,amylopectin content and total starch content of third position grain and forth position grain were higher than that of first position grain and second position grain. The accumulation of amylose and amylopectin and total starch showed second position grain>first position grain>third position grain>forth position grain because of the weight impact. The amylose/amylopectin ratio showed firth position >third position grain>second position grain>first position grain, which may be related to the difference of starch component synthesis.
     This study showed that, 7-21days after anthesis is the vigorous period of sucrose consumption, which matched with time of starch accumulation rate.The sucrose content in inferior grain was higher than that in superior grain in this period. It is indicated that the substrate of starch synthesis should not be the limiting factor for starch accumulation in inferior grain, which related to starch synthesis efficiency. This study showed that, the activities of SS, AGPase, UGPase, SSS, and GBSS changed in the pattern of a single-peak curve during grain filling. The related enzyme activities in superior grain, which had higher starch accumulation, were higher than those in inferior grain. The simulation with Logistic equation showed that the accumulation rate and initial potential were higher, the accumulation duration was longer, so the starch final amount was higher in superior grain.
     3 Effects of different soil textures on quality formation of wheat
     In this experiment, HMW-GS content and GMP content of wheat under different soil textures showed clay soil> loam soil > sandy soil, which indicated that clay soil was favorable for HMW-GS accumulation and will help to improve wheat quality. The sedimentation volume, wet gulten content and dough development time and dough stability time were highest of wheat from clay soil. That is to say, wheat in clay soil has good dough quality. The results showed that the volume distribution of GMP particle of wheat was two peak curve. The percentage of <10μm and 10~100μm GMP particle volume distribution in sandy soil was highest, while in clay soil was lowest. However, the percentage of >100μm GMP particle volume distribution in sandy soil was lowest, while in clay soil was highest. The number distribution of GMP particle of wheat was single peak curve. Clay soil wheat has higher number percentage of >100μm GMP particle. The surface area distribution of GMP particle of wheat was two peak curve. The surface area percentage of <10μm GMP particle was lower, while 10~100μm and >100μm GMP particle was higher in clay soil. So clay soil was favourble for GMP development and improving of wheat quality. In addition, the difference of HMW-GS content between superior grain and inferior grain was larger under sandy soil, while smaller under loam soil and clay soil. It indicated that the HMW-GS accumulation in inferior grain maybe easily affected by soil conditions. More attention should be paid to the regulation of inferior grain to improve grain quality in wheat production.
     The results showed that the grain weight of loam soil wheat was larger than sandy soil wheat and loam soil wheat. Sandy soil wheat has higher amylopectin content and higher starch content than loam soil wheat and clay soil wheat but lower starch accumulation amount because of lower grain weight. Clay soil wheat has higher amylose content and lower total starch content. Sandy soil is favorable for starch accumulation, but the starch yield was lower. The starch granule distribution were different among wheat under different texture soils. Wheat in sandy soil has more B-type starch granule and less A-type starch granule. There is no significant difference of starch granule number distribution of wheat among different soil textures. It indicated that clay soil was farvourble for the increase of volume and surface area percentage of A-type granule, because clay soil promoted the development of starch granule possibly, which also consistent with higher amylose of clay soil wheat.
     4 Physiological basis for effects of different soil texture on wheat quality
     Nitrogen application increased spike number, kernel number and grain weight under three soil textures, thus increased the yield of wheat. Compared with N0 treatment, the yield increased 15.77% in N1 treatment and 23.22% in N2 treatment respectively under sandy soil, and 10.98% and 18.00% respectively under loam soil, and 5.96% and 19.34% respectively under loam soil. The yield was lowest in sandy soil, but there were largest yield increase of nitrogen application among three soil textures. There was no significant difference of kernel number among three soil textures, but the spike number and grain weight were highest in loam soil. Loam soil has better conditions of air, water and fertilizer, was propitious to increase spike number and kernel weight.
     This study found that nitrogen accumulation and translocation increased with increasing of nitrogen rate. The nitrogen translation rate was decreased by nitrogen application, but there is no difference among nitrogen treatment. Effect of nitrogen application on nitrogen translocation was higher (an average increase of 56.26%) in sandy soil, while that was lower in loam soil (an average increase of 27.43%) and clay soil (an average increase of 3.58%). Appropriate nitrogen application increased endopeptidases activities and carboxypetidase activities and promoted the decomposition of soluble protein. The endopeptidases activities and carboxypetidase activities of wheat flag leaf in loam soil and clay soil were higher and could keep a long period, which help to keep higher nitrogen translation rate and increase protein content of wheat grain.
     This study showed that sandy soil wheat has highest root fresh weight in 0-20 cm soil layer while lowest in 20-40 cm soil layer at anthesis. This may be due to loose texture of sandy soil, which increased the proportion of the lower roots. The root fresh weight showed clay soil>loam soil >sandy soil 10 days after the flowering. Because clay soil promoted root growth and delayed the senescence of wheat. The root vigor in 0-20 cm layer soil showed loam soil >clay soil>sandy soil, and clay soil >loam soil>sandy soil in 20-40cm layer soil. It indicated that loam soil and clay soil could help to delay senescence of wheat root.
     Nitrogen application increased SOD activities of wheat root, and was conducive to remove reactive oxygen species timely. The SOD activities of wheat root in sandy soil were higher than that in loam soil and clay soil. Nitrogen application increased SOD, POD, CAT activities and decreased MDA content of wheat flag leaf, which showed that nitrogen application was conducive to raise wheat active oxygen scavenging ability. The effect of nitrogen application on MDA content of wheat flag leaf was larger in sandy soil. So the active oxygen metaboism of flag leaf in sandy soil wheat was easy to be regulated by nitrogen fertilizer. Therefore, the wheat cultivation in sandy soil can be regulated by reasonable nitrogen application to delay senescence, to obtain high quality and high yield.
引文
1曹宏鑫,王世敬,戴晓华.土壤基础肥力和肥水运筹对春小麦产量和品质与植株氮素状况的影响[J].麦类作物学报,2003,23(2):52-56
    2邓志英,田纪春,刘现鹏.不同高分子量谷蛋白亚基组合的小麦籽粒蛋白组分及其谷蛋白大聚合体的积累规律[J].作物学报,2004,30(5):481-486
    3邓志英,田纪春,张永祥,王延训,孙国兴,盛峰.冬小麦高低分子量谷蛋白亚基形成时间和积累强度及其与沉降值的关系.作物学报, 2005, 31 (3): 308-315
    4董明辉,赵步洪,吴翔宙,陈涛,杨建昌.水稻结实期不同粒位籽粒相关内源激素含量和关键酶活性的差异及其与品质的关系.中国农业科学,2008,41(2):370-380
    5杜春莲.强筋小麦在不同土壤类型上的钾肥效应研究[J].中国农学通报,2004, 6(3): 146-148
    6封超年,郭文善,施劲松,彭永欣,朱新开.小麦花后高温对胚乳细胞发育和粒重的影响.作物学报, 2000, (4): 399-405
    7傅兆麟,李洪琴.黄淮冬麦区小麦超高产的几个问题探讨.麦类作物学报,1998,18(6):48-51
    8高玲,叶茂炳,徐朗莱.小麦叶片衰老期间内肽酶活力上升的因素.中国农业科学, 1999, 32(3): 102-104
    9高松洁,郭天财,王文静等.不同穗型冬小麦品种灌浆期籽粒中与淀粉合成有关的酶活性变化.中国农业科学,2003,36(11):1373-1377
    10高松洁,郭天财,阎凌云等.不同土壤对不同筋力冬小麦品种籽粒灌浆过程中淀粉合成有关酶活性的影响.作物学报,2004,30(5):470-474
    11郭天财,高松洁,王晨阳,朱云集,阎耀礼.土壤质地对不同面筋含量冬小麦品种籽粒淀粉合成关键酶活性的影响.作物学报,2005,38(1):191-196
    12郭文善,方明奎,王蔚华等.小麦籽粒胚乳细胞发育的生理特性.扬州大学学报(自然科学版),1998,1(2):39-46
    13韩巧霞,郭天财,高松洁等.不同质地土壤冬小麦灌浆期籽粒蛋白质和淀粉含量变化动态.河南农业科学,2004,(6):11-14
    14何照范.粮油籽粒品质及其分析技术.北京:农业出版社,1985, 144 -150
    15何中虎,林作楫,王龙俊等.中国小麦品质区划的研究,中国农业科学,2002,35(4):359-364
    16黄东印,林作楫.冬小麦品质性状与面条品质性状关系的初步研究[J].华北农学报,1990,5(1):40-45
    17贾振华等.施氮量对产量与蛋白质同步形成的影响[J].河南职技师院学报,1990,(4):110-116
    18姜东,于振文,李永庚等.施氮水平对鲁麦22籽粒淀粉合成的影响.作物学报,2003,29(3):462-467
    19姜东,于振文,李永庚,等.高产小麦强势和弱势籽粒淀粉合成相关酶活性的变化.中国农业科学, 2002, 35(4): 378-383
    20姜东,于振文,李永庚.施氮水平对高产小麦蔗糖含量和光合产物分配及籽粒淀粉积累的影响.中国农业科学,2002,35(2):157-162
    21李潮海,李胜利,王群,侯松,荆棘.不同质地土壤对玉米根系生长动态的影响.中国农业科学,2004,37(9):1334-1340
    22李潮海,王小星,王群,郝四平.不同质地土壤玉米根际生物活性研究.中国农业科学,2007,40(2):412-418
    23李潮海,卢道文,荆棘,等.不同质地土壤的水热状况及其对冬小麦产量形成的影响.应用生态学报,1996,7(增刊):33-38.
    24李潮海,卢道文,侯松等.三种质地土壤冬小麦生长后期的生理特性[J].华北农学报,1996,11(4):74-79
    25李春燕,封超年,张容,张影,郭文善,朱新开,彭永欣.宁麦9号花后内源激素和蔗糖含量变化及其与籽粒淀粉合成的关系.麦类作物学报,2007,27,(1):138-142
    26李金才,魏凤珍,丁显萍.小麦穗轴和小穗轴维管束系统及与穗部生产力关系的研究.作物学报,1999,25(3):315-319
    27李永庚,山东省不同生态类型区小麦品质的差异及其生理基础.2001,山东农业大学博士论文
    28林素兰.环境条件及栽培技术对小麦品质的影响[J].辽宁农业科学,1997, (2):30-31
    29王旭东,于振文,王东.钾对小麦旗叶蛋白水解酶活性和籽粒品质的影响.作物学报,2003,29(2):285-289
    30何萍,李玉影,金继运.钾肥用量对面包强筋小麦产量和品质的影响.土壤肥料,2002, (1):20-22
    31梁建生,曹显祖,徐生.水稻籽粒库强与其淀粉积累之间的关系.作物学报, 1994, 20(6): 685-691
    32梁荣奇,张义荣,尤明山等.小麦谷蛋白聚合体的MS-SDS-PAGE及其与面包烘烤品质的关系.作物学报,2002,28(5):609-614
    33刘建军,何中虎,杨金等.小麦品种淀粉特性变异及其与面条品质关系的研究.中国农业科学,2003,36(1):7-12
    34刘霞,姜春明,郑泽荣,周筑南,贺明荣,王振林.藁城8901和山农1391淀粉合成酶活性和淀粉组分积累特征的比较.中国农业科学, 2005, 38(5): 897-903
    35刘振兴,杨振华,邱孝煊,林增泉.肥料增产贡献率及其对土壤有机质的影响.植物营养与肥料学报,1994,(1):19-26
    36马宗斌,何建国,王小纯,马新明.氮素形态对两个小麦品种籽粒内源激素含量的影响.中国农业科学,2008,41,(1):63-69
    37马元喜.不同土壤小麦根系生长动态研究.作物学报,1987,13(1):37-44
    38盛靖,郭文善,胡宏等.小麦淀粉合成关键酶活性及其与淀粉积累的关系.扬州大学学报(农业与生命科学版),2003,24(3):49-53
    39潘洁,姜东,曹卫星,孙传范.小麦穗籽粒数、单粒重及单粒蛋白质含量的小穗位和粒位效应作物学报, 2005, 31(4): 431-437
    40潘庆民,于振文,王月福等.追氮时期对小麦旗叶中蔗糖合成与籽粒中蔗糖降解的影响.中国农业科学,2002,35(7):771-776
    41潘庆民,于振文,王月福.小麦开花后旗叶中蔗糖合成与籽粒中蔗糖降解.植物生理与分子生物学学报. 2002b, 28(3):235-240.
    42裴雪霞,党建友,王娇爱.钾锌锰配施对冬小麦产量及品质的影响[J].麦类作物学报,2002,22(2): 60-64.
    43裴雪霞,王娇爱,党建友,王秀斌,张定一.小麦结实粒数、粒重和品质的小穗位和粒位效应.中国农业科学,2008,41(2):381-390
    44秦中庆,王美芳,薛英杰等.小麦淀粉品质的研究.粮食与饲料工业,2001,(11):6-8
    45茹振钢,李淦,胡铁柱,栗利波.强筋小麦不同穗位和花位籽粒粒重和品质的变化.麦类作物学报, 2006, 26(5): 134-136
    46宋建民,刘爱峰,刘建军等.环境与品种对小麦淀粉理化特性和面条品质的影响,作物学报,2005,31(6):796-799
    47宋建民,刘爱峰,吴祥云,刘建军,李豪圣.赵振东氮钾配合施肥对小麦济南17品质的影响.中国农业科学,2004,37(3): 344-350
    48宋海星,李生秀.玉米生长空间对根系吸收特性的影响.中国农业科学,2003,36(8):899-904
    49孙辉,姚大年,李宝云等.普通小麦谷蛋白大聚合体的含量与烘焙品质的相关关系.中国粮油学报,1998,13(6):13-16
    50王法宏,赵君实,荆叔民等.小麦不同类型品种的籽粒产量和品质在不同生态类型区的表现.莱阳农学院学报,1997,14(2):100-104
    51王凤成,朱金宝,陈万义.小麦谷蛋白亚基的组成及含量与谷蛋白聚合体大分子的关系及其对面包烘焙品质的影响.中国粮油学报, 2004, 19(3): 13-17
    52王瑞英,于振文,潘庆民,许玉敏.小麦籽粒发育过程中激素含量变化.作物学报, 1999, 25(2): 227-231
    53王群,李潮海,鸾丽敏,宋连启,高素玲,刘松涛,韩锦峰.不同质地土壤夏玉米生育后期光合特性比较研究.作物学报, 2005, 31(5): 628-633
    54王绍中,章练红,徐雪林等.环境生态条件对小麦品质的影响研究进展.华北农学报.1994.9(增刊):141-144
    55王绍中,季书勤,刘法魁等.小麦品质生态及品质区划研究:Ⅱ生态因子与小麦品质的关系.河南农业科学,1995(11):2-6
    56王绍中,季书勤,刘发魁等.小麦品质生态己品质区划研究.河南农业科学,1995,(11):3-6
    57王绍中,李春喜,罗艳蕊.基因型和地域分布对小麦籽粒氨基酸含量影响的研究[J].西北植物学报,2001,21(3):437-445.
    58王天铎.水稻籽粒灌浆过程中粒重分布的动态研究.植物学报,1962,10(2):113-119
    59王蔚华,郭文善,方明奎,封超年,朱新开,彭永欣.小麦胚乳细胞增殖及物质充实状态.作物学报, 2003, 29(5): 779-784
    60王旭东,于振文,石玉等.磷对小麦旗叶氮代谢有关酶活性和籽粒蛋白质含量的影响.作物学报,2006,32(3):339-344
    61王旭东,于振文,王东.钾对小麦茎和叶鞘碳水化合物含量及籽粒淀粉积累的影响.植物营养与肥料学报,2003,9(1):57-62
    62王文静,高桂立,罗毅,姜玉梅.不同品质类型冬小麦品质籽粒淀粉积累动态及其有关酶的活性变化.作物学报,2005,3(10):1305-1309
    63王晓曦,苏东民.小麦淀粉与小麦品质之间的关系.粮食与饲料工业,2000,(9):4-6
    64王旭清,王法宏.栽培措施和环境条件对小麦籽粒品质的影响[J].山东农业科学,1999,(1):52-55
    65王月福,姜东,于振文等.氮素水平对小麦籽粒产量和蛋白质含量的影响及其生理基础[J].中国农业科学,2003,36(5):513-520.
    66王月福,于振文,李尚霞等.土壤肥力对小麦籽粒蛋白质组分含量及加工品质的影响.西北植物学报,2002,22(6):743-748
    67王月福,于振文,李尚霞,余松烈.施氮量对小麦籽粒蛋白质组分含量及加工品质的影响.中国农业科学,2002,35(9):1071-1078
    68王燕,王芳,赵辉等.HMW-GS组成不同小麦品种各种亚基形成和积累规律研究[J].西北植物学报,2004,24(7):1233-1236.
    69王志琴,叶玉秀,杨建昌,袁莉民,王学明,朱庆森.水稻灌浆期籽粒蔗糖合成酶活性的变化与调节.作物学报, 2004, 30(7): 634-643
    70王振林,贺明荣,傅金民等.源库调节对灌溉与旱地小麦开花后光合产物和分配的影响.作物学报,1999,25(2):162-168
    71谢迎新,朱云集,郭天财.施用硫肥对两种穗型冬小麦品种群体生理、产量和品质的影响[J].麦类作物学报,2003,23(1):44-48.
    72杨建昌,王志琴,刘立军,郎有忠,朱庆森.旱种水稻生理特性与产量形成的研究.作物学报, 2002, 28(1): 11-17
    73杨建昌,彭少兵,顾世梁R. M. Vispera,朱庆森.水稻灌浆期籽粒中3个与淀粉合成有关的酶活性变化作物学报, 2001, 27(2): 157-164
    74杨建昌,王国忠,王志琴,刘立军,朱庆森.旱种水稻灌浆特性与灌浆期籽粒中激素含量的变化.作物学报,2002,28(5):615-621
    75杨学举,屈平,张彩英等.小麦A型淀粉粒大小对淀粉特性及面包品质的影响.河北农业大学学报,2004,9(5):1-5
    76杨学举.我国小麦品质改良的主攻目标及途径分析[J].国外农学-麦类作物,1995,(5):45-46
    77姚大年,刘广田.淀粉理化特性、遗传规律及小麦淀粉与品质的关系[J].粮食与饲料工业,1997(2):36-38
    78姚大年,朱金宝,梁荣奇,刘广田.小麦品种主要淀粉性状及面条品质预测指标的研究.中国农业科学,1999,32(6):84-88
    79姚大年等.小麦Wx蛋白亚基缺失类型组合后代糯小麦材料选择的研究.安徽农业大学学报,2002,29(4):363-365
    80姚大年,刘广田,朱金宝.基因型和环境对小麦品种籽粒性状及馒头品质的影响.中国粮油学报,2000,15(2):1-5
    81于振文,张炜,余松烈.钾营养对冬小麦养分吸收分配、产量形成和品质的影响.作物学报,1996,22(4):442-447
    82岳鸿伟,秦晓东,戴廷波,荆奇,曹卫星,姜东.施氮量对小麦籽粒HMW-GS及GMP含量动态的影响.作物学报, 2006, 32(10): 1678-1683
    83印莉萍,柴小清,李丹.不同小麦品种叶片衰老过程种谷胺酰胺合成酶和蛋白水解酶的活性变化.山西师范大学学报·自然科学版, 1997,11(1): 46-49
    84张宝军,蒋纪芸.小麦籽粒品质及其影响因素分析[J].国外农学一麦类作物,1995,(4): 12-15
    85张春庆,李晴祺.影响普通小麦加工馒头质量的主要品质性状的研究[J].中国农业科学,1993,26(2):39-46
    86张庆江,张立言,毕恒武.春小麦品种氮的吸收积累和运转及与籽粒蛋白质的关系.作物学报, 1997,26(6): 712-718
    87张庆江,张立言,毕桓武.普通小麦碳氮物质积累分配特征及与籽粒蛋白质的关系.华北农学报,1996,11(3):57-62
    88张秋英,刘娜,金剑,刘晓冰,杨恕平,王光华.春小麦籽粒淀粉和蛋白质积累与底物供应的关系.麦类作物学报, 2000, 20(1): 55-58
    89张景略,苗付山.黄泛平原不同质地土壤的持水特性[J].土壤报,1985,22(4):350-356
    90张翔,朱洪勋,孙春河,崔转玲.轮作制下长期施肥对小麦籽粒品质的影响.干旱地区农业研究,1997,15(4):26-29
    91赵惠贤,段惠,梁亮,郭蔼光.不同品质类型小麦谷蛋白聚合体含量及亚基组成的初步研究.西北植物学报,2003,23(5):755-758
    92赵世杰,史国安,董新纯植物生理学实验指导.北京:中国农业科技出版社,1988
    93赵广才,何中虎,田奇卓等.农艺措施对中优9507小麦蛋白组分和加工品质的调节效应.作物学报,2003,29(3):408-412
    94赵俊晔,于振文.小麦籽粒淀粉品质与蛋白质品质关系的初步研究[J].中国粮油学报,2004,19(4):17-20
    95赵淑章,季书勤,王绍中等.不同类型土壤与强筋小麦品质和产量的关系.河南农业科学,2004(7):52-53
    96赵虹.河南省小麦品种的品质概况和品质性状与生态环境关系的初步研究.河南农业大学、国家小麦工程技术研究中心2002年硕士学位论文.
    97仲跻秀,施岗陵.土壤学.1992,农业出版社
    98朱金宝,刘广田,张树榛,孙辉.小麦籽粒高低分子量谷蛋白亚基及其与品质关系的研究.中国农业科学,1996,29(1):34-39
    99朱新开,周君良,封超年等.不同类型专用小麦籽粒蛋白质及其组分含量变化动态差异分析.作物学报,2005,31(3):342-347
    100 Alessandro M, Laura E, Marco M. Post-anthesis accumulation and remobilization of dry matter, nitrogen and phosphorus in durum wheat as affected by soil type. Europ.J.Agronomy, 2007, 26:179-186
    101 Andersm E C. Corn root growth and distribution as influenced by tillage and nitrogen fertilizer. Agronomy Journal, 1987, 79:544-559
    102 Barber S A. Effect of tillage practice on corn root distribution and morphology. Agronomy Journal, 1971, 63:724-726
    103 Barneix A J, Guitman M R. Leaf regulation of the nitrogen concentration in the grain of wheat plants. Journal of Experimental Botany,1993,44(1):607-612
    104 Bengough A G, Young I M. Root elongation of seeding peas through layered soil of different penetration resistances. Plant and Soil, 1993,149:129-139
    105 Bernd Steingrobe, Harald Schmid, Reinhold Gutser, Norbert Claassen. Root production and root mortality of winter wheat grown on sandy and loamy soils in different farming systems. Biol Fertil Soils, 2001, 33:331-339
    106 BEhdaie A E, Hall G D. Farquhar Water-use efficiency and carbon Isotope Discrimination in Wheat. Crop Science, 1991, 31: 1282-1288.
    107 Cressey P J, Campbell W P, Wrigley C W. Statistical correlation between quality attributes and grain protein composition for advanced lines of crossbred wheat. Cereal Chemistry,1987,64(4):299-301
    108 Crosbie G B. The relationship between starch swelling properties, paste viscosity and boiled noodle quality in wheat flour. Journal of Cereal Science, 1991, 13:145-150
    109 Denyer K. Identification of multiple isoforms of soluble and granule-bound starch synthesis in developing wheat endosperm, Planta, 1995, 196: 256-265
    110 Don C, Lichtendonk W J, Plijter J J, Vliet T, Hamer R J. The effect of mixing on glutenin particle properties: aggregation factors that affect gluten function in dough. J Cereal Sci, 2005, 41: 69-83
    111 Don C, Lichtendonk W, Plijter J J, Hamer R J. Glutenin macropolymer: a gel formed by glutenin particles. J Cereal Sci, 2003, 37: 1-7
    112 Don C, Mann G, Bekes F, Hamer R J. HMW-GS affect the properties of glutenin particles in GMP and thus flour quality. J Cereal Sci, 2006, 44: 127-130
    113 Don C, Lookhart G, Naeem H, MacRitchie F, Hamer R J. Heat stress and genotype affect the glutenin particles of the glutenin macropolymer-gel fraction. J Cereal Sci, 2005, 42: 69-80
    114 Douglas C D, KuoT M, Felker F C. Enzymes of sucrose and hexose metabolism in developing kernels of two inbreds of maize. Plant Physiol, 1988, 86: 1013-1019
    115 Dreccer M F, Grashoff C, Rabbinge R. Source-sink ration in barley during grain filling: effects on senescence and grain protein concentration. Field crops research,1997,49:269-277
    116 Evers A D. Lindley J. The particle size distribution in the wheat en-dosperm starch. J.Sci. Food Sgric, 1977, 28: 98-102
    117 Eugenio L, Coelho, Dan D. Root distribtution and water uptake patterns of corn under surface and subsurface drip irrigation. Plant and soil,1999,206:123-126
    118 Eva Johansson, Maria Luisa prieto-Linde,et al.Effects of Wheat Cultivar and Nitrogen Application on Storage Protein Composition and Breadmaking Quality, Cereal Chemists, 2001, 78(1):19-25.
    119 Fernando D, Francisco J C. Characterization of the endoprotease appearing during wheat grain filling. Plant physiol, 1996, 112:1211-1217
    120 Fisher D B, Gifford R M. Accumulation and conversion of sugars by developing wheat grains.VI, Gradients along the transport pathway from the peduncle to the endosperm cavity during grain filling[J]. Plant Physiol, 1986, 82: 1024-1030
    121 Fu B X, Kovacs MIP, Wang C. A simple wheat flour swelling test. Cereal Chem, 1998, 75(4):566-567
    122 Gianibelli M C, Gupta R B, Lafiandra D, Margiotta B, Macritchie F. Polymorphism of high Mr glutenin subunits in Triticum tauschii: characterization by chromatography and electrophoretic methods. J Cereal Sci, 2001, 33(1): 39-52
    123 Gebbing T, and Schnyder H. Pre-anthesis reserve utilization for protein and carbohydrate synthesis in grains of wheat. Plant Physiology, 1999, 121: 871-878
    124 Goodman A M, Eends A P. The effects of soil bulk density on the morphology and anchorage mechanics of the root systems of sunflower and maize. Annals of Botany, 1999, 83:293-302
    125 Gupta R B, Khan K, MacRitchie F. Biochemical basis of flour properties in bread wheatsⅠ. Effects of variation in the quantity and size distribution of polymeric protein. J Cereal Sci, 1993, 18(1): 23-41
    126 Holm J, Bjorck I. Bioavailablity of starch in various wheat-based bread products: evaluation of metabolic responses in healthy subjects and rate and extent of in vitro starch digestion [J].American Journal of Clinical Nutrition,1992, 55(2):420-429
    127 Hurkman W. J, McCue K F, S. Altenbach B, Effect of temperature on expression of genes encoding enzymes for starch biosynthesis in developing wheat endosperm, Plant Science 2003,164: 873-881
    128 James M G, Robertson M G, Myers A M. Characterisation of the maize gene sugary, a determinant of starch composition in kernels. Plant Cell, 1995, 7: 417-429
    129 James M G, Denyer K, Myers A M. Starch synthesis in the cereal endosperm. Current Opinion in Plant Biology, 2003, 6: 215-222
    130 Jenner C F. Effects of exposure wheat ears to high temperature on dry matter accumulation and carbohydrate metabolism in the grain of two cultivars. Immediate responses. Aust.J.Pant Physiol,1991,18:165-177
    131 Johnson V V. Genetic advances in wheat protein quantity and composition, Pron.4th Intern.Wheat Genet.Symp.Columbia, 1973.
    132 Konik C M, Mikkelsen L M, Moss R, and Gore P J. Relationships between physical starch properties and yellow alkaline noodle quality, Starch / staerke, 1994, 46: 292-299
    133 Luo C, Branlard G, Griffin B, et al. The effect of nitrogen and sulphur fertilization and their interaction with genotype on wheat glutenins and quality parameters[J].Journal of Cereal cience,2000,31:185-194.
    134 Mackay A D, Barber S A. Effect of nitrogen on root growth of two corn genotypes in the field. Agronomy Journal, 1986, 78: 699-703
    135 Masc S, Egorov T A,Ronchi C,et al. Evidence for the presence of only one cysteine residue in theD-type low molecular weight subunits of wheat subunits of wheat glutenin[J].Journal of Cereal Science,1999, 29:17-25.
    136 Masoni A, Ercoli L, Mariotti M, Arduini I. Post-anthesis accumulation and remobilization of dry matter, nitrogen and phosphorus in durum wheat as affected by soil type. Eur J Agron, 2007, 26: 179-186
    137 Materechera S A. Penetration of very strong soil by seeding roots of different species. Plant and soil, 1991, 135:31-41
    138 Mouille G, Maddelein M L, Ball S. Preamylopectin processing: A mandatory step for starch biosynthesis in plants. Plant Cell, 1996, 8: 1353-1366
    139 Moonen C, Masoni A, Ercoli L, Mariotti M, Bonari E. Long-term changes in rainfall and temperature in Pisa, Italy. Agr. Med, 2001, 130: 11-22
    140 Mdiaz Zorita, Grosso G A.. Effect of soil texture, organic carbon and water retention on the compactability of soils from the Argentinean pampas.Soil & Tillage Research, 2000, (54): 121-126
    141 Nakamura Y. Some properties of the starch debranching enzymes and their possible role in amylopectin biosynthesis. Plant Sci, 1996, 121: 1-18
    142 Nakamura T, Vrinten P, Hayakawa K, Ikeda J. Characterization of a Granule-Bound starch synthase isoform found in the pericarp of wheat. Plant Physiol, 1998, 118:451-459
    143 Nakamura Y, Umemoto T, Takahata Y, Komae K, Amano E, Satoh H. Changes in structure of starch and enzyme activities affected by sugary mutations in developing rice endosperm: possible role of starch debranching enzyme(R-enzyme) in amylopectin biosynthesis.Physiol Plant,1996b,97:491-498
    144 Nakamura Y, Yuki K, Park S Y. Carbohydrate metabolism in the developing endosperm of rice grains. Plant Cell Physiol, 1989, 30: 833-839
    145 Nicolas, M E, Turner, M C. The use of chemical dessiccants and senescing agents to select wheat lines maintaining stable grain size during postanthesis drought. Field Crops Res, 1993.31, 155-171
    146 Pan D, Nelson O E A debranching enzyme deficiency in endosperm of the sugary-1mutants of maize.Plant Physiol,984, 74: 324-29
    147 Paul W U, Thomas C K. Soil compaction and root growth: A Review. Agronomy Journal, 1994, 86:759-766
    148 Papakosta, D K. Phosphorus accumulation and translocation in wheat as affected by cultivar and nitrogen fertilization. J. Agron. Crop Sci. 1994, 173: 260-270
    149 Peterson D G, Fulcher R G. Variation in Minnesota HRS wheats: starch granule size distribution. Food Research International, 2001, 34 (4): 357-363
    150 Peng, M, Gao M. Separation and characterization of A-and B-type starch granules in wheat endosperm. Cereal Chem, 1999, 76: 375-379
    151 Peterson D G, Fulcher R G. Variation in Minnesota HRS wheats: starch granule size distribution. Food Research International, 2001, 34(4):357-363
    152 P L de Fraitas, Zobel R W, Snyder V A. Corn root growth in soil columns with artificially constructed aggregates. Crop Science, 1999, 39: 735-730
    153 Pritchard P E. The glutenin fraction(gel-protein) of wheat protein-a new tool in the prediction of baking quality. Aspects of applied biology,1993,36:75-84
    154 Przulj N, Momcilovic V. Genetic variation for dry matter and nitrogen accumulation and translocation in two-rowed spring barley I. Dry matter translocation. Eur. J. Agron, 2001, 15: 241-254.
    155 Raun W R, John G V. Soil-plant buffering of inorganic nitrogen in continous winter wheat[J]. Agron.J.1995, 87: 827-834.
    156 Rogers W J, Payne, P I, Seekings J A, Sayers E J. Effect of bread-making quality of x-type high molecular weight subunits of glutenin. J.Cereal Sci,1991,14;209-221
    157 Shewry P R, Halford N G, Tatham A S. High molecular weight subunits of wheat glutenin. J.Cereal Sci,1992,15:105-120
    158 Singh H, MacRitchi F. Application of polymer scienceto properties of gluten. Journal of cereal science, 2001, 33:231-243
    159 Singh N K, Shepherd K W, Cornish G B. A simplified SDS-PAGE procedure for separating LMWsubunits of glutenin. J.Cereal Sci,1991,14:203-208
    160 Stephen P. Baenziger R. Clements L, McIntosh M S, et al. Effect of Cultivar,Environment, and Their Interaction and Stability Analyses on Milling and Baking Quality of Soft Red Winter Wheat[J]. Crop Sci, 1985, 25:5-8
    161 Santiveri F, Royo C, Romagosa I. Growth and yield responses of spring and winter triticale cultivated under Mediterranean conditions. Eur.J. Agron, 2004, 20: 281-292.
    162 Smith S M, Denyer K, Martin C. The synthesis of starch granule. Ann Rev Plant Physiol Plant Mol Biol, 1997, 48: 67-87
    163 Schnyder H. The role of carbohydrate storage and redistribution in the source-sink relations of wheat and barley during grain filling-a review.New Phytol. 1993, 123: 233-245.
    164 Shewry P R, Halford N G, Tatham A S, Popineau Y, Lafiandra D, Belton P S. The high molecular weight subunits of wheat glutenin and their role in d etermining wheat processing properties.Advances in Food and Nutrition Research, 2003, 45: 219-302.
    165 Skerrit J H, Hac L, Bekes F. Depolymerization of the glutenin macropolymer during dough mixing. I. Changes in levels, molecular weight distribution, and overall composition. Cereal Chemistry, 1999, 76, 395-401.
    166 Sutton K H, Larsen N G. Morgenstern M P, et al. Differing effects of mechanical dough development and sheeting development methods on aggregated glutenin proteins.Cereal Chemistry, 2003, 80: 707-711.
    167 Tatge H, Marshall J, Martin C, Edwarda E A, Smith A M. Evidence that amylase synthesis occurs within the matrix of the starch granule in potato tubers. Plant Cell Environ, 1999, 22(5):543-55
    168 Toyoka H. Japanese noodle qualities.ⅡStarch components. Cereal Chemistry, 1989, 66:387-391
    169 Thomas K, Bertrand H, Emmanuel H. In winter wheat (Triticum aestivum L.), post-anthesis nitrogen uptake and remobilization to the grain correlates with agronomic traits and nitrogen physiological markers. Field Crops research, 2007, 102:22-32
    170 Toyokama H. Japanese noodle qualities: Starch components. Cereal Chem. 1989, 66: 387-391.
    171 Ueno T, Stevenson S G, Preston K R, Nightingale M J, Marchylo B M. Simplified dilute acetic acid based extraction procedure for fractionation and analysis of wheat flour protein by size exclusion HPLC and flow field-flow fractionation. Cereal Chemistry, 2002, 79:155-161.
    172 Umemoto T, Nakamura Y, Ishikura N. Effect of grain location on the panicle on activities involved in starch synthesis in rice ecdosperm. Phytochemistry, 1994, 36:843-847
    173 Uthayakumaran S, Beasley H L, Stoddard F L, Keentok M, Phan-Thien N, Tanner R I, Bekes F. Synergistic and additive effects of three HMW glutenin subunit loci. I. Effects on wheat dough rheology. Cereal Chemistry, 2002, 79: 294-300.
    174 Van Herwaarden, Angus A F, Richards J F.‘Haying-off’,the negative grain yield response of dry-land wheat to nitrogenfertiliser. II. Carbohydrate and protein dynamics. Aust. J. Agric. Res, 1998, 49: 1083-1093.
    175 Vandeputte G E, Delcour J A. From sucrose to starch granule to starch physical behavior: a focus on rice starch. Carbohydrate Polymers, 2004, 58(3): 245-266
    176 Vernon A W. Ribulose bisphosphate carboxylase and protenlytic activity in wheat leafs from anthesis through senescence. Plant physiol, 1979, 64: 884-887
    177 Veraverbeke W S, Larroque O R, Bekes F, Delcour J A. In vitro polymerization of wheat glutenin subunits with inorganic oxidizing agents. II. Stepwise oxidation of low molecular weight glutenin subunits and a mixture of high and low molecular weight glutenin subunits. Cereal Chemistry, 2000, 77: 589-594.
    178 Veraverbeke W S, Larroque O R, Bekes F, Delcour J A. In vitro polymerization of wheat glutenin subunits with inorganic oxidizing agents.I. Comparison of single-step and stepwise oxidations of high molecular weight glutenin subunits. Cereal Chemistry, 2000, 77: 582-588
    179 Victor N, Bushamuka, Zobel R W. Differential genotypic and root type penetration of soil layers. Crop science,1998,38:776-781
    180 Wallwork M A B, Logue S J, Macleod L C. Effect of high temperature during grain filling on starch synthesis in the developing barley grain. Aust J Plant Physiol, 1998, 25:173-181
    181 Walsh D E, Hernandez H H, Bauer,et al. The realation of wheat reductase and soil nitrate to flour quality. Cereal Chem, 1976, 53(4): 469-477
    182 Wardlaw I F, Willenbrink J. Carbohydrate storage and mobilization by the culm of wheat between heading and grain maturity: the relation to sucrose synthase and sucrose-phosphate synthase. Aust J Plant Physiol, 1994, 21: 255-27
    183 Weegels P L, Hamer R J, Scholfield J D. Functional properties of wheat glutenin. J Cereal Sci, 1996, 23: 1-18
    184 Weegels P L, van de Pijpekamp A M, Graveland A, Hamer R J, Schofield J D. Depolymerisation and re-polymerisation of wheat glutenin during dough pro cessing:Ⅰ. Relationships between glutenin macropolymer content and quality parameters. J Cereal Sci, 1996, 23: 103-111
    185 Weegels P L, Hamer R J, Schofield J D. Depolymerisation and re-polymerisation of wheat glutenin during dough processing II.Changes in composition. Journal of Cereal Science 1997, 25: 155-163
    186 Wang S J, Liu L F, Chen C K, Chen W C. Regulations of granule-bound starch synthase I gene expression in rice leaves by temperature and drought stress. Biologia Plantarum, 2006, 50 (4): 537- 541
    187 Wang Z L, Yin Y P, He M R, Cao H M. Source-sink manipulation effects on postanthesis photosynthesis and grain setting on spike in winter wheat. Photosynthetica, 1998, 35: 453-459
    188 Wieser H, Zimmemann G. Importance of amount and proportions of high molecular weight subunits of glutenin for wheat quality.Journal of Cereal Science, 1994, 20: 253-264
    189 William J. Hurkman, Kent F. McCue, Effect of temperature on expression of genes encoding enzymes for starch biosynthesis in developing wheat endosperm, Plant Sci,2003, 164:873-881
    190 Xu G W, Zhang J H, Lam H M, Wang Z Q, Yang J C. Hormonal changes are related to the poor grain filling in the inferior spikelets of rice cultivated under non-flooded and mulched condition. Field Crops Research, 2007, 101: 53-61
    191 Yamamori M, Nakamura T, Kuroda A. Variations in the content of starch-granule bound protein among several Japanese cultivars of common wheat (Triticum aestivum L.). Euphytica, 1992, 64: 215-219
    192 Yang J C. Activities of key enzymes in sucrose-to-starch conversion in wheat grain subjected to water deficit during grain filling. Plant Physiol, 2004, 135: 1621-1629
    193 Yang J C. Remobilization of carbon reserves is improved by controlled soil-drying during grain filling of wheat. Crop Sci, 2000, 40:1645-1655
    194 Zeeman S C, Tiessen A, Pilling E, Kato K L, Donald A M, Simth A M. Starch synthesis in Arabidopsis. granule synthesis, composition and structure. Plant Physiology, 2002, 129: 516-529
    195 Zeng Z R, King R W. Regulation of grain number in wheat: changes in endogenous levels of abscisic acid. Aust. J. Plant Physiol, 1986,13:347-352
    196 Zhao X C, Shap P J. An improved 1D SDS-PAGE method for the identification of three bread wheat waxy protein. J, of Cereal Science,1996,23:191-193

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700