用户名: 密码: 验证码:
洞穴滴水地球化学变化特征及其与土壤过程的联系
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
石笋作为高分率气候指标的记录体,因其自身的诸多优势,在古气候、古环境重建研究中发挥着重要作用。但其形成机制及其与土壤过程之间的联系研究相对薄弱。本论文通过对石花洞洞穴滴水温度、电导率、pH、主要离子、可溶性有机碳(DOC)等物理化学指标,以及上覆土壤环境和洞穴空气指标近3年的观测分析,对洞穴滴水水化学变化及其沉积过程与上覆土壤的关系进行了研究,获得如下主要结论:
     1.土壤温度、湿度和CO_2浓度在雨季(7-8月)均达到最高,旱季12-1月最低;土壤CO_2浓度与土壤温度呈指数正相关,而与土壤湿度呈线性正相关;随着土壤深度的增加,土壤温度逐渐降低且趋于平缓,而土壤湿度和CO_2浓度则明显升高;受土壤温湿度条件以及土壤有机质含量的影响,山谷耕地土壤CO_2浓度高于阴坡灌丛土壤。
     2.土壤DOC在雨季前期最高,经降雨淋滤后,雨季后期出现降低;受土壤微生物活性和植物根系分布影响,土层10-30cm的DOC最高;3个土壤样本DOC含量与其总有机碳(TOC)含量空间变化一致,耕地土壤>灌丛土壤>阳坡土壤。
     3.洞穴滴水主要来自于地表降水,滴率变化对降雨存在3种响应关系:快速响应、滞后响应和稳定响应。快速响应型滴水主要以与地表连通性较好的裂隙或管道补给;滞后型滴水为管道和大面积裂隙双重补给;稳定型滴水仅响应高频低强的降雨事件,主要以基质流或渗流水补给。
     4.观测点滴水水化学均表现出明显的季节性变化。雨季,随滴率的增加,水流溶解土壤CO_2以及SO_4~(2-)量增加,滴水pH出现明显降低,稀释作用使快速响应降水的滴水HCO_3~-略有降低;而滴水Ca~(2+)、Mg~(2+)和Si浓度及EC均出现不同程度的升高,响应降雨越快的滴水点,变化幅度越明显;滴水Mg/Ca和Si/Ca均旱季高于雨季,二者随Ca~(2+)浓度的变化趋势符合CaCO_3沉积模拟曲线,表明滴水在旱季存在明显的CaCO_3优先沉积过程。
     5.滴水方解石饱和指数(Saturation indice for calcite,简称SIc)和沉积量的观测均表明,滴水旱季沉积速率高于雨季,且观测点滴水SIc与滴率呈显著的指数负相关;另外,洞穴温度、湿度和CO_2浓度也可对沉积速率产生影响。
     6.滴水中DOC含量与土壤DOC变化特点较为一致,雨季出现明显的脉冲峰;降雨强度是滴水DOC脉冲的开关之一,而不同年份降雨的频率和强度差异是DOC年际变化的主要原因,雨季初期高频低强度的降雨易于滴水DOC浓度峰的形成;不同滴水点洞穴顶板厚度、水动力差异引起滴水DOC浓度变化明显不同,顶板较厚且响应降雨慢的滴水DOC浓度可能出现多年一峰,而顶板薄响应降雨快的滴水点表现出一年一个主峰、并伴有多个亚峰的DOC变化特点。
     本研究表明石花洞土壤CO_2及其地球化学过程对滴水水化学性质变化起着重要的控制作用,进而影响到石笋微层亮、暗层的形成时间及变化特征,初步阐明石笋年层的亮层(方解石层)形成于旱季,暗层(有机质界面层)形成于雨季;石笋微层有机质含量的变化可反映土壤DOC变化及输出特点。
In recent years there has been increasing interest in the study of cave stalagmites because of its some unique advantages of being archives of palaeoclimate and palaeoenvionment.In this study,parameters of drip water geochemistry(including temperature,electrical conductance(EC),pH,main ions and dissolved organic carbon (DOC)),soil environment overlying cave(including temperature,humidity and CO_2 concentration of soil air) and cave air(including temperature,relative humidity and CO_2 concentration) have been monitored over the past 3 years to understand the mechanisms of formation of stalagmites and the relationship of stalagmites growth with soil processes in Shihua Cave.A number of conclusions have been achieved as shown below.
     1) The temperature,humidity and CO_2 concentration of soil air are highest in July or August(rainy season) and lowest in December or January(dry season).It has been observed that CO_2 concentration is exponentially correlated with temperature and linearly correlated with humidity.With the increase of the depth of soil section, temperature of soil air decreases,but humidity increases.The CO_2 concentration of cultivated soil in valley is higher than shrub-covered soil on the slope of hill.
     2) The highest value of soil DOC occurred at the beginning of rainy season. Afterwards,it shows a decresing trend due to the rain leaching.The higher value of DOC is distributed in the soil profile between 10cm and 30cm from the surface associated with the microbial activities and plant roots.The valley has the maximal concentration of soil DOC,followed by shrub-covered soil,and the discontinuous soil between bedrocks has the lowest one.
     3) Dripwater in Shihua Cave comes from surface flow.Drip discharges show three types of response to surface flow variations:1) rapid response,2) time-lag response and 3) stable response,which are related to different flow routes of recharge.For rapid reponse,the drip discharge is recharged through the flow routes with intensive fractures and interconnectivities;for time-lag response,the drip discharge is recharged by double-porosity system composed of a high conductivity,low storage capability conduit network and a low-conductivity high-storage capability rock matrix under variable boundary conditions;for stable response,the drip discharge is mainly recharged by seepage flow and base flow.
     4) Dripwater in all studied sites shows clearly seasonal variations in hydrochemical parameters.During the rainy period,pH is lower because the rain water dissolves more CO_2 and SO_4~(2-) than dry period.On the contrary,concentrations of Ca~(2+),Mg~(2+), Si and EC increase in rainy season and the more rapid response of the drip water to the recharge,the higher degree of the increase.In addition,Mg/Ca and Si/Ca in drip sites are higher during dry period than rainy season.The trends of Mg/Ca and Si/Ca with Ca~(2+) concentration are consistent with the results of the prior calcite precipitation model,suggesting that there is a process of prior calcite precipitation in the recharge of drip sites during dry period.
     5) The saturation index of cacite(Sic) of dripwater in all drip sites shows some degree of seasonality.Drip water is more saturated with respect to Ca during the dry period and lower during the rainy period,in agreement with the results of situ calcite growth experiments.It is negatively exponential correlated between the value of SIc and drip rate.In addition,variation in temperature,humidity and CO_2 concentration of interior air within Shihua Cave could affect the calcite growth.
     6) The content of DOC in drip waters varies inter- and intra-annually and has a significant correlation with discharge of dripwater for the rapid response sites.High DOC was detected in July or August in the three observed years.The flushing of soil organic matter is dominated by the intensity of rain events.The content of DOC was lower and less variable during the dry period than the rainy period.The shape of DOC peak also varies annually as it is influenced by the intensity and frequency of rainfall. Different drip sites show marked differences in DOC response that are dominated by hydrological behaviour linked to the recharge of the soil and karst micro-fissure/porosity network.
     It has been demonstrated in this study that the sharp peak of DOC in drip water during the rain period corresponds with the formation of the thin and dark layers of the stalagmites,while high Sic in the dripwater during the dry period corresponds with the formation of calcite layer.The variation of DOC content in drip waters,in the mean time,reflects the changes of the origination and transport of DOC in soil.
引文
1. Adrian A F, Paul A S, Karin H, et al. Corroborated rainfall records from aragonitic stalagmites. Earth and Planetary Science Letters, 2003,215: 265-273.
    2. Aiken G R, McKnight D M, Wershaw R L, et al. Humic substances in soil, sediment, and water, 1985, New York, NY: Wiley.
    3. Aitkenhead J A and McDowell W H. Soil C: N ratio as a predictor of annual riverine DOC flux at local and global scales, Global Biogeochemical Cycle, 2000.14(1): 403-408.
    4. Atkinson T C. Diffuse flow and conduit flow in limestone terrain in the Mendip Hills, Somerset (Great Britain). Journal of Hydrology, 1977, 35: 93- 110.
    5. Atkinson, T.C. Growth mechanisms of speleothems in Castleguard Cave, Columbian Icefields, Alberta, Canada. Arctic Alpine Res., 1983,15:523-536.
    6. Baker A, Smart P L, Edwards R L, et al. Annual growth banding in a cave stalagmite. Nature, 1993, 364: 518-520.
    7. Baker A and Smart P L. Recent flowstone growth rates: field measurements in comparison to theoretical predictions. Chemical Geology, 1995,122:121-128.
    8. Baker, A., Barnes, W. L., and Smart, P. L. Speleothem luminescence intensity and spectral characteristics: Signal calibration and a record of palaeovegetation change. Chemical Geology, 1996,130, 65-76.
    9. Baker A, Barnes W L, Smart P L. Stalagmite drip discharge and organic matter fluxes in Lower Cave, Bristol. Hydrological Processes, 1997,11:1541-1555.
    10. Baker, A., Genty D. and Smart P. High-resolution records of soil humification and paleoclimate change from variations in speleothem luminescence excitation and emission wavelengths. Geology, 1998,26: 903-906.
    11. Baker A, Caseldine C J, Gilmour M A, et al. Stalagmite luminescence and peat humification records of palaeomoisture for the last 2500 years. Earth and Planetary Science Letters, 1999a, 165:157-162.
    12. Baker A, Christopher J. Proctor et al. Variations in stalagmite luminescence laminae structure at Poole's Cavern, England, AD 1910-1996: calibration of a palaeoprecipitation proxy The Holocene, 1999b, 9-6: 683-688.
    13. Baker A, Genty D. Fluorescence wavelength and intensity variations of cave waters, Journal of Hydrology, 1999c, 217:19-34
    14. Baker A., Genty G., Fairchild I J., Hydrological characterization of stalagmite dripwaters at Grotte de Villars, Dordogne, by the analysis of inorganic species and luminescent organic matter. Hydrology and Earth System Sciences, 2000, 4(3), 439-449
    15. Baker A, Brunsdon C. Non-linearities in drip water hydrology: An example from Stump Cross Caverns Yorkshire. Journal of Hydrology, 2003, 277,151-163.
    16. Baldini J U L, McDermott F, Fairchild I J, Structure of the 8200-Year Cold Event Revealed by a Speleothem Trace Element Record Science, 2002, 296: 2203-2206.
    17. Baldini J.U.L., McDermott F., Fairchild I.J. Spatial variability in cave drip water hydrochemistry: Implications for stalagmite paleoclimate records Chemical Geology, 2006, 235:390-404.
    18. Berner R. A. Weathering, plants and long-term carbon cycle. Geochim. Cosmochim. Acta, 1992, 56, 3225-3232.
    19. Bo Elberling. Seasonal trends of soil CO2 dynamics in a soil subject to freezing. Journal of Hydrology, 2003, 276:159-175.
    20. Boone R D, Nadelhoffer K J, Canary J D, et al. Roots exert a strong influence on the temperature sensitivity of soil respiration, Nature, 1998, 396: 570~572.
    21. Borsato, A., Dripwater monitoring at Grotta di Ernesto (NE Italy): a contribution to the understanding of karst hydrology and the kinetics of carbonate dissolution. In: Union International de Speleology (Ed.), 6th Conference on Limestone Hydrology and Fissured Media, Proceedings of the 12th International Congress of Speleology, Speleo Projects, Basel, Switzerland, 1997: 57-60.
    22. Bottrell, S.H., Atkinson, T.C. Tracer study of flow and storage in the unsaturated zone of a karstic limestone aquifer. In: Hozl H., Werner A. (Eds.), Tracer Hydrology. Balkema, Rotterdam, 1992: 207-211.
    23. Brook G A, Rafter M A, Railsback L B, et al. A high-resolution proxy record of rainfall and ENSO since AD 1550 from layering in stalagmites from Anjohible Cave, Masagascar. The Holocene, 1999, 9: 695-705.
    
    24. Brown C A, Compton R G and Narramore C A. The kinetics of calcite dissolution / precipitation. Journal of Colloid Interface Science, 1993,160: 372-379.
    25. Buhmann D. and Dreybrodt W. (1985a) The kinetics of calcite dissolution and precipitation in geologically relevant situations ofkarst areas: 1. Open system. Chem. Geol. 48,189-211.
    26. Buhmann D. and Dreybrodt W. (1985b) The kinetics of calcite dissolution and precipitation in geologically relevant situations of karst areas: 2. Closed system. Chem. Geol. 53,109-124.
    27. Busenberg, E., Plummer, L.N., 1982. The kinetics of dissolution of dolomite in CO -H_2O systems at 1.5 to 65℃ and 0 to 1 atm PCO_2 . Am. J. Sci. 282, 45-78.
    28. Buyanovsky G A and Wagner G H. Annual cycles of carbon dioxide level in soil air. Soil Sci. soc. AM. J., 1983, 47:1139-1145.
    29. Charman DJ, Caseldine C, Baker A, Gearey B, Hatton J, Proctor C. 2001. Paleohydrological records from peat profiles and speleothems in Sutherland, Northwest Scotland. Quaternary Research 55: 223-234.
    30. Chou, K., Garrels, R.M., Wollast, R., 1989. Comparative study of the kinetics and mechanisms of dissolution of carbonate minerals. Chem. Geol. 78, 269-282.
    31. Cowell, D.W., Ford, D.C., 1980. Hydrochemistry of a dolomite karst: the Bruce Peninsula of Ontario. Can. J. Earth Sci. 17, 520-526.
    32. Cronaton F, Perrochet P. Analytical 1D dual-porosity equivalent solutions to 3D discrete single-continuum models. Application to karstic spring hydrograph modelling. Journal of Hydrology, 2002, 262:165-176.
    33. Crowther J. Ecological observations in tropical karst terrain, West Malaysia, III: Dynamics of the vegetation-soil-bedrock system, Journal of Biogeography, 1987, 14:157-164.
    34. Cruz Jr F W, Karmann I, Magdaleno G B, Coichev N O Viana Jr. Influence of hydrological and climatic parameters on spatial-temporal variability of fluorescence intensity and DOC of karst percolation waters in the Santana Cave System, Southeastern Brazil. Journal of Hydrology,2005,302: 1-12.
    35. Dail D B, Fitzgerald J W. S Cycling in soil and stream sediment: Influence of season and in situ concentrations of carbon, nitrogen and sulfur. Soil Biology and Biochemistry, 1999, 31: 1395-1404.
    36. Davidson E A, Belk E, Boone R D. Soil water content and temperature as independ or confounded factors controlling soil respiration in a temperate mixed hardwood forest. Global Change Biology, 1998,4(2): 217-227.
    37. Donald RG, Anderson DW, Stewart JWB. 1993. Potential role of dissolved organic carbon in phosphorus transport in forested soils. Soil Science Society of America Journal 57: 1611-1618.
    38. Dorale, J.A., Gonzalez, L.A., Reagan, MX, Pickett, D.A., Murell, M.T., Baker, R.G., 1992. A high resolution record of Holocene climate change in speleothem calcite from Cold Water Cave, northeastern Iowa. Science 258,1626-1630.
    39. Dreybrodt W and Buhmann D. A mass transfer model for dissolution and precipitation of calcite from solutions in turbulent motion. Chemical Geology, 1991, 90: 639- 655.
    40. Dreybrodt W. Kinetics of dissolution of calcite and its application to kartification. Chemical Geology, 1980, 32, 245-269.
    41. Dreybrodt W. the kinetics of calcite precipitation from thin films of calcareous solutions and the growth of speleothems: revisited. Chemical Geology, 1981, 32, 237-245.
    42. Dreybrodt W. Processes in karst systems - physics, chemistry and geology. Springer, Berlin, New York, 1988,288pp.
    43. Edwards N T. Effects of temperature and moisture on carbon dioxide evolution in a mixed deciduous forest floor. Soil Sci. Soc. Am. Proa, 1975, 39: 361-365.
    44. Fairchild I J, Smith C L, Baker A, et al. Modification and preservation of environmental signals in speleothems. Earth-Science Reviews, 2006, 75:105- 153.
    45. Fairchild I J, Borsato A, Tooth A F, et al. Controls on trace element (Sr-Mg) compositions of carbonate cave waters: Implications for speleothem climatic records. Chemical Geology, 2000,166 (3-4): 255-269.
    46. Fairchild 1 J, Tuckwell G W, Baker A, et al. Modelling of dripwater hydrology and hydrogeochemistry in a weakly karstified aquifer (Bath, UK): Implications for climate change studies. Journal of Hydrology, 2006, 321: 213-231.
    47. Fairchild, I.J., Tooth, A.F., Huang, Y M., et al. 1996. Spatial and temporal variations in water and stalactite chemistry in currently active caves: a precursor to interpretations of past climate. In: Bottrell, S. Ed., Proceedings of the Fourth International Symposium on the Geochemistry of the Earth's surface. Ilkley, Yorkshire, pp. 229-233.
    48. Fang C and Moncrieff J B. The dependence of soil CO_2 efflux on temperature. Soil Biology and Biochemistry, 2001,33(2): 155-165.
    49. Ford D C, Williams P W. Karst Geomorphology and Hydrology. Unwin Hyman, 1989, London, 601.
    50. Friederich, H. and Smart P L. The classification of autogenic percolation waters in Karst Aquifers: A study in G.B Cave, Mendip Hills, England. Proceedings of the University of Bristol Spelaeological Society, 1982, 16(2): 143-159.
    51. Frisia S, Borsato A, Fairchild I J et al. Calcite fabrics, growth mechanisms, and environments of formation in speleothems from the Italian Alps and Southwestern Ireland, J. Sediment. Res., 2000, 70: 1183-1196.
    52. Frisia S, Borsato A, Preto N, et al. Late Holocene annual growth in three Alpine stalagmites records the influence of solar activity and the North Atlantic Oscillation on winter climate. Earth and Planetary Science Letters, 2003, 216, 411 -424.
    53. Frisia S, Borsato A, Fairchild I J, et al. Variations in atmospheric sulphate recorded in stalagmites by synchrotron micro-XRF and XANES analyses Earth and Planetary Science Letters, 2005,235:729- 740.
    54. Fritz P, Mozeto A A, Reardon E J. Practical consideration on carbon isotope studies on soil carbon dioxide. Chemical Geology (Isotope GEOSCIENCE SECTION), 1985,58: 89-95.
    55. Gascoyne M. Trace element partition coefficients in the calcite-water system and their paleoclimatic significance in cave studies, J. Hydrol. 1983, 61: 213-222.
    56. Gascoyne M. Trace elements in calcite : The only cause of Speleothem color ? [J]. National Speleological Society Bulletin, 1978,40: 90.
    57. Gascoyne M. Palaeoclimate determination from cave deposits. Quaternary Science Reviews, 1992,11:609-632.
    58. Genty D, Bastin B, Ek c. Nouvel exemple d'aternances de lamines annuelles dans une stalagmite (Gtotte de Dinant la Merveilleuse, Belgique). Speleochronos, 1995, 6: 3-8.
    59. Genty D, Vokal B, Obelic B, Massault M. Bomb 14C time history recorded in two modern stalagmites— importance for soil organic matter dynamics and bomb 14C distribution over continents, Earth and Planetary Science Letters, 1998a, 160: 795-809
    60. Genty D, Deflandre G. Drip flow variations under a stalactite of the Pere Noel cave (Belgium). Evidence of seasonal variations and air pressure constraints. Journal of Hydrology, 1998b, 211, 208-232.
    61. Genty D, Quinif Y. Annually laminated sequences in the internal structure of some Belgian stalagmites: Importance for paleoclimatology. Journal of sedimentary Research, 1996, 66: 275-288
    62. Genty D. Les speleothems du tunnel de godarville (Belgique) - un example exceptionnel de eoncretionnement modernne-interet pour l'etude de la cinetique de precipitation de la calcite et de sa relation avec les variations d'environments. Speleochronos, 1992, 4, 3-29.
    63. Genty D. Mise en evidence d'alternances saisonnierres dans la structure internedes stalagmites. Interet pour la reconstitution des paleoenvironments continentaux. Comptes Rendus de l' Academie des Sciences de Paris, 1993, 317,1229-1236.
    64. Geode A, Vogel J C, Trace element variations and dating of a Late Pleistocene Tasmanian speleothems. Palaeogeography, Palaeoclimatology, Palaeoecology, 1991, 88 (1-2): 121-131.
    65. Gerard F, Ranger J, Menetrier C P. Silicate weathering mechanisms determined using soil solutions held at high matric potential. Chemical Geology, 2003,202: 443- 460.
    66. Gerard F, Francois F M, Ranger J. Processes controlling silica concentration in leaching and capillary soil solutions of an acidic brown forest soil (Rhone, France), Geoderma, 2002, 107: 197-226.
    67. Gilson J R, Macarthney E. Luminescence of Speleothems from Devon U. K.: The presence of organic activators [J]. Ashford Speleological Society Journal, 1954, 6: 8 -11.
    68. Goede A, Continuous early last glacial palaeoenvironmental record from a Tasmanian speleothem based on stable isotope and minor element variations, Quat. Sci. Rev. 13 1994 283-291.
    69. Goede A, Vogel J C, Trace element variations and dating of a late Pleistocene Tasmanian speleothem, Palaeogeog. Palaeoclim. Palaeoecol, 1991, 88:121-131.
    70. Guggenberger G, Kaiser K. Significance of DOM in the translocation of cations and acidity in acid forest soils. Z. Pflanzenernahr. Bodenkd, 1998,161: 95-99.
    71. Hayes MHB, MacCarthy P, Malcolm RL, et al. 1989. Humic substances II. In search of structure. Chichester, U.K.: Wiley.
    72. Hellstrom J C, Mcculloch M T. Multi-Proxy Constraints on the Climatic Significance of Trace Element Records from a New-Zealand Speleothem [J]. Earth and Planetary Science Letters, 2000,179:287-297.
    73. Hendry M J, Lawrence J R, Zanyk B N. Microbial production of CO2 in the unsaturated geologic media in a mesoscale model. Water Resour. Res., 1993,29: 973-984.
    74. Heyes A, Moore T R. The influence of dissolved organic carbon and anaerobic conditions on mineral weathering. Soil Science, 1992, 3: 226-236.
    75. Hillel, D. environmental soil physics. Academic Press, San Diego, 1998, USA, 291-293.
    76. Hongve D. 1999. Production of dissolved organic carbon in forested catchments. Journal of Hydrology 224: 91-99.
    77. Hou J Z, Tan M and Liu T S. Layer chronology of young stalagmites. Transactions, Japanese Geomorphological Union. Special issue of the Fifth International Conference on Geomorphology, (published in Japan), 2001, 22(4), 90-98.
    78. Hou J Z, Tan M and Liu T S. 2002: Counting chronology and climate records with about 1000 annual layers of a Holocene stalagmite from the Water Cave in Liaoning Province, China. Science in China (series D), 45(5), 385-391.
    79. Hou J, Ming Tan, Hai Cheng et al., Stable isotope records of plant cover change and monsoon variation in the past 2200 years: evidence from laminated stalagmites in Beijing, China, 2003, Boreas, 32: 304-313.
    80. House W A. Kinetics of crystallization of calcite from calcium bicarbonate solutions. Journal of Chemical Society Faraday Transaction(1), 1981, 77,341-359.
    81. Howard D M, Howard P J A. Relationships between CO2 evolution, moisture content and temperature for a range of soil types. Soil Biology and Biochemistry, 1993, 25:1537-1546.
    82. Hu C, Huang J, Fang N, et al.Adsorbed silica in stalagmite carbonate and its relationship to past rainfall, Geochimica et Cosmochimica Acta, 2005, 69(9): 2285-2292.
    83. Huang Y M, Fairchild I J., Borsato A et al., Seasonal variations in Sr, Mg and P in modern speleothems (Grotta di Ernesto, Italy). Chemical Geology, 2001,175 (3~4):429-448.
    84. Huang Y M, Fairchild I J., Partitioning of Sr2+ and Mg2+ into calcite under karst-analogue experimental conditions. Geochimica et Cosmochimica Acta, 2001, 65 (1): 47-62.
    85. Huang Y, Fairchild I J, Borsato A, et al. Seasonal variations in Sr, Mg and P in modern speleothems (Grotta di Ernesto, Italy). Chemical Geology, 175, 429-448.
    86. Her R K. The Chemistry of Silica: Solubility, Polymerization, Colloid and Surface Properties and Biochemistry, 1979, Wiley & Sons, New York.
    87. Johnson D W, Cole D W, Gessel S P, et al. Carbonic acid leaching in a tropical, temperate, subalpine and northern forest soil. Arc. Alp. Res., 1977, 9: 329-343.
    88. Johnson K R, Hu C, Belshaw N S, et al. Seasonal trace-element and stable-isotope variations in a Chinese speleothem: The potential for high-resolution paleomonsoon reconstruction. Earth and Planetary Science Letters, 2006, 244: 394-407.
    89. Kaiser K, Guggenberger G, Haumaier L, et al. Seasonal variations in the chemical composition of dissolved organic matter in organic forest floor layer leachates of oldgrowth Scots pine (Pinus sylvestris L.) and European beech (Fagus sylvatica L.) stands in northeastern Bavaria, Germany. Biogeochemistry, 2001, 55:103-143.
    90. Kaiser K, Guggenberger G, Zech W. Sorption of DOM and DOM fractions to forest soils. Geoderma, 1996, 74: 281-304.
    91. Kaiser K, Guggenberger G. The role of DOM sorption to mineral surfaces in the preservation of organic matter in soils. Organic Geochemistry, 2000, 31: 711-725.
    92. Kaiser K, Guggenberger G. Storm flow flushing in a structured soil changes the composition of dissolved organic matter leached into the subsoil. Geoderma , 2005,127:177-187.
    93. Kalbits K, Solinger S, Park J H et al. Controls on the dynamics of dissolved organic mater in soils: a review [J]. Soil Science, 2000,165(4): 277-304.
    94. Keller C K. Hydrogeochemistry of a Clayey till, 2. Sources of CO2. Water Resour. Res., 1991,27(10), 2555-2564.
    95. Khomutova T. E, Shirshova L T, Tinz S et al. Mobilization of DOC from sandy loamy soils under different land use (Lower Saxony, Germany), Plant and Soil, 2000, 219:13-19.
    96. Kirschbaum M U F. The temperature dependence of soil organic matter decomposition and the effect of global warming on soil organic C storage. Soil Biology and Biochemistry, 1995, 27: 753-760
    97. Klinkhammer G P, Mcmanus J, Colbert D. Behavior of terrestrial dissolved organic matter at the continent-ocean boundary from high-resolution distributions [J]. Geochimica et Cosmochemica Acta, 2000, 64(16): 2765-2774.
    98. Lasaga A. C. Chemical kinetics of water-rock interactions. J. Geophys. Res., 1984, 89, 4009-4025.
    99. Lauritzen S E, Ford D C, Schwarcz H O. Humic substances in a speleothem matrix—palaeoclimatic significance, Proceedings 9th of the International Conference of speleology, 1986, 77-79.
    100. Leiros M C, Trasar-Cepeda C, Seoane S, et al. Dependence of mineralization of soil organic matter on temperature and moisture. Soil Biology and Biochemistry, 1999,31: 327-335.
    101. Lerman J C. Soil-CO2 and ground water: Carbon isotope composition. Proc. Int. Conf. Radiocarbon Dating, 1972, 8, 93-106.
    102. Liedl R, Sauter M, Huckinghaus D, Clemens T, Teutsch G. Simulation of the development of karst aquifers using a coupled continuum pipe flow model. Water Resources Research, 2003, 39 (3): 1057-1062.
    103. Linn D M, Doran J W. Effect of water-filler pore space on carbon dioxide and nitrous oxide production in tilled and non-tilled soils. Soil Sci. Soc. Am. J., 1984, 48:1267-1272.
    104. Liu Z, Li Q, Sun H, et al. Seasonal, diurnal and storm-scale hydrochemical variations of typical epikarst springs in subtropical karst areas of SW China: Soil CO2 and dilution effects. Journal of Hydrology, 2007, xxx, 1-17 (in print)
    105. Lomander A, Katterer T, Andren O. Carbon dioxide evolution from top- and sub-soil as affected by moisture and constant and fluctuating temperature. Soil Biology and Biochemistry, 1998,14: 2017-2022.
    106. Martin, G.N. Characterization of simple exponential base- flow recessions. Journal of Hydrology (NZ), 1973,1291,57-62.
    107. McBride M B. Environmental chemistry of soils [M]. Oxford University Press, New York, 1994. 406.
    108. McCarthy JF, Zachara JM. 1989. Subsurface transport of contaminants. Environmental Science and Technology 23: 496-502.
    109. McDermott F, Mattey D P, Hawkesworth C. Centennial-scale Holocene climate variability revealed by a high-resolution speleothem d18O record from SW Ireland. Science, 2001, 294: 1328-1331
    
    110. McDowell W H, Likens G E. 1988. Origin, composition, and flux of dissolved organic carbon in the Hubbard Brook valley. Ecological Monographs 58:177-195.
    111. McGarry S F., Baker A. Organic acid fluorescence: applications to speleothem palaeoenvironmental reconstruction. Quaternary Science Reviews, 2000,19:1087-1101
    112. McKeague JA, Cheshire MV, Andreux F, Berthelin J. Organo-mineral complexes in relation to pedogenesis. In: Huang P.M., Schnitzer M., eds. Interactions of soil minerals with natural organics and microbes. Madison, WI: Soil Science Society of America Journal, 1986: 549-592.
    113. McKnight D, Thurman EM, Wershaw RL, Hemond H. Biochemistry of aquatic humic substances in Thoreau's Bog, Concord, Massachusetts. Ecology, 1985.66(4): 1339-1352.
    114. McMillan E, Fairchild I J, Frisia S, et al. Annual trace element cycles in calcite-aragonite speleothems: evidence of drought in the western Mediterranean 1200-1100 yr BP. Journal of Quaternary Science, 2005, 20, 423- 433.
    115. More G W. Speleothem: A new cave term [J ]. National Speleological Society News , 1952, 10 (6): 2.
    116. Morse J W, Bender M L. Partition coefficients in calcite: examination of factors influencing the validity of experimental results and their application to natural systems. Chem. Geol., 1990, 82, 265-277.
    117. Murphy E M, Zachara J M, Smith S C. Influence of mineral-bound humic substances on the sorption of hydrophobic organic compounds. Environmental Science and Technology, 1990, 24:1507-1516.
    118. Musgrove M, Banner J L. Controls on the spatial and temporal variability of vadose dripwater geochemistry: Edwards Aquifer, central Texas. Geochimica et Cosmochimica Acta, 2004, 68,1007-1020.
    119. Nancollas G H and Reddy M M. The crystallization of calcium carbonate. II. Calcite growth mechanism. Journal of Colloid Interface Science, 1971, 37, 824-830.
    120. Neal C, Watts C, Williams R J, et al. Diurnal and longer term patterns in carbon dioxide and calcite saturation for the River Kennet, south-eastern England. The Science of the Total Environment, 2002, 282-283: 205-231.
    121. Nfiagu J O, Coker R D, Barrie L A. Origin of sulphur in Canadian Arctic haze from isotope measurements [J]. Nature, 1991, 349: 142-145.
    122. Nriagu J O, Holdway D A, Coker R D. Biogenic sulfur and the acidity of rainfall in remote areas of Canada.Science, 1987, 237:1189-1192
    123. Ohizumi T, Fukuzaki N, Kusakabe M. Sulfur isotopic view on the sources of sulfur in atmospheric fallout a long the coast of the sea of Japan. Atmospheric Environment, 1997, 31(9): 1339-1348.
    124. Pan Genxing, Tao Yuxiang, Shun Yuhua et al. Some features of carbon cycles in karst system and the implication for epikarstification. Journal of Chinese Geography. 1997. 7(3): 48-57.
    125. Pan Genxing, Tao Yuxiang, Teng Yongzhong, et al. Influence of pedo-chemical field on epikarstification in subtropical humid region. Acta Carsologica, 1998, 27(11): 175-186.
    126. Piao H C, Hong Y T, Yuan Z Y. Seasonal changes of microbass carbon related to climatic factors in soils from karst areas of southwest China[J]. Biological Fertilization Soils, 2000, 30: 294—297
    127. Picknett R G, Bray L G and Stenner R D. The Chemistry of Cave Water. In Ford T D and Cullingford C H D (eds), The Science of Speleology. Academic Press, London-New York-San Francisco, 1976, 213-266.
    128. Plummer L N, Parkhurst D L and Wigley T L M. Critical review of calcite dissolution and precipitation. In: Jenne E A (eds), Chemically modeling in Aqueous systems. American Chemical Society Symphony series, 1979, 93,537-573
    129. Pohlman AA, McColl JG. Soluble organics from forest litter and their role in metal dissolution. Soil Science Society of America Journal, 1988, 52: 265-271.
    130. Polyak V J, Asmerom Y. Late Holocene climate and cultural changes in the Southwestern UnitedStates. Science, 2001, 294:148—151.
    131. Proctor C, Baker W L, Barnes W L, et al. A thousand year speleothem proxy record of North Atlantic climate from Scotland. Climate Dynamic, 2000,16: 815-820.
    132. Qualls R G, Haines B L, Stein C, et al. Flux of dissolved organic nutrients and humic substances in a deciduous forest [J]. Ecology, 1991,72: 254—266.
    133. Railsback L B, Brook G A, Chen J, Kalin R and Fleisher C J. Environmental controls on the petrology of a late Holocene speleothem from Botswama with annual layers of aragonite and calcite. Journal of Sedimentary Research, 1994, 64,147-155.
    134. Ramseyer K, Miano T M, D'Orazio V, et al. Nature and origin of organic matter in carbonates from speleothems, marine cements and coral skeletons. Organic Geochemistry, 1997, 26: 361-378.
    135. Raulund-Rasmussen K, Borggaard OK, Hansen HCB, Olsson M. Effect of natural organic soil solutes on the weathering rates of soil minerals. European Journal of Soil Science, 1998, 49: 397-406.
    136. Reardon E J, Allison G B, Fritz P. Seasonal chemical and isotopic variations of soil CO2 at Trout Creek, Ontario. J.Hydrol., 1979, 43: 255-371.
    137. Reddy M M, Plummer L N and Buesenberg E. Crystal growth of calcite from bicarbonate solutions at constant P and 25C: a test of calcite dissolution model[J]. Geochimica et Cosmochimica Acta, 1981, 45,1281-1289.
    138. Rightmire C T, Hanshaw B B. Relationship between the carbon isotope and composition of soil CO2 and dissolved carbonate species in groundwater[J], Water Resour. Res., 1973, 9: 958-967.
    139. Risk D, Kellman L, Beltrami H. Soil CO2 production and surface flux at four climate observatories in eastern Canada[J]. Global Biogeochemical Cycles, 2002,16(4): 691-6912.
    140. Rivadeneyra M A, Delgado R, Delgado G. Precipitation of carbonates by Bacillus sp. isolated from saline soils [J]. Geomicrobiololgy Journal, 1992, 11:175-184.
    141. Roberts M S, Smart P L, Baker A. Annual trace element variations in a Holocene speleothem [J]. Earth and Planetary Science Letters, 1998,154: 2372246.
    142. Schuβler W, Neubert R, Levin I, et al. Determination of microbial versus root-produced CO2 in an agricultural ecosystem by means of 13CO2 measurements in soil air[J]. Tellus, 2000, 52B: 909-918.
    143. Scott M J, Jones M N. Concentrations and fluxes of dissolved organic carbon in drainage water from an upland peat system[J]. Environment International, 1998,24, 5/6: 537-546.
    144. Senesi N, Miano T, Provenzano M. Characterization, differentiation, and classification of humic substance by fluorescence spectroscopy[J]. Soil Science, 1991,152: 259-271.
    145. Shopov Y Y, Ford D C and Schwarcz H P. Luminescent microbanding in speleothems: High resolution chronology and paleoclimate[J]. Geology, 1994, 22, 407-410.
    146. Shopov Y Y. Laser luminescent microzonal analysis: A new method for investigation of the alterations of climate and solar activity during the Quaternary [A]. Kiknadze T ed. Problems of karst study in mountainous countries [C]. Tbilisi: Georgia, Metsniereba, 1987,1228 - 232.
    147. Smart P L, Friedrich H. 'Water movement and storage in the unsaturated zone of a maturely karstified aquifer, Mendip Hills, England', Proceedings, Conference on Environmental Problems in Karst Terrains and Their Solution, Bowling Green, Kentucky [J]. National Water Well Association, 1987,57-87.
    148. Smart P L, Atkinson T C, Laidlaw I M S, et al. Comparison of the results of quantitative and non-quantitative tracer tests for determination of karst conduit networks: An example from the Traligill Basin, Scotland[J]. Earth Surface Processes and Landforms, 1986,11: 249-261.
    149. Solomon D K, Cerling T E. The annual carbon dioxide cycle in a Montane soil: observations, Modeling and Implications for weathering [J]. Water Resourse Reseach. 1987, 23(2): 2257-2265.
    150. Spotl Christoph, Fairchild I J, Tooth A F. Cave air control on dripwater geochemistry, Obir Caves (Austria): Implications for speleothem deposition in dynamically ventilated caves[J], Geochimica et Cosmochimica Acta, 2005, 69 (10): 2451-2468.
    151. Stumper R D. La Cinetique et la catalyse de la decompostion du bicarbonate de calcium en solution aqueuse[J]. Bulletin of Society Chimique de Belgique, 1935, 44:176-209.
    152. Tan M, Liu T S, Qin X G et al. Microbanding of stalagmite and its significance [J]. PAGES newsletter, 1997,5: 6-7.
    153. Tan M, Liu T, Han J, Qin X, Zhang H, Li T. Cyclic rapid warming on centennial-scale revealed by a 2650-year stalagmite record of warm season temperature[J]. Geophysical Research Letter, 2003, 30(12): 1617-1620.
    154. Tan M, Qin X G, Shen L M, et al. Bioptical microcycles of laminated speleothems from China and their chronological significance. Chinese Science Bulletin, 1999, 44:1604-1607.
    155. Tan Ming, Liu Tungsheng, Qin Xiaoguang et al. Signification chrono-climatiquede speleothemes lamines de Chine du Nord [J]. Karstologia, 1998, 32(2):1-6.
    156. Tatar E, Mihucz VG, Zambo L et al. Seasonal changes of fulvic acid, Ca and Mg concentrations of water samples collected above and in the Beke Cave of the Aggtelek karst system (Hungary)[J]. Applied Geochemistry, 2004,19(11): 1727-1733.
    157. Tegen I, Dorr H. Mobilization of cesium in organic rich soils: Correlation with production of dissolved organic carbon[J]. Water Air Soil Pollution , 1996, 88:133-144.
    158. Thode H G, Monster J and Dunford H B. Sulphur isotope geochemistry[J]. Geochim. Cosmochim. Acta, 1961, 25:150-174
    159. Tipping E, Woof C, Rigg E, et al. Climatic influences on the leaching of dissolved organic matter from upland UK moorland soils, investigated by a field manipulation experiment [J]. Environment International, 1999, 25: 83-95.
    160. Tooth A F, Fairchild I J. Soil and karst aquifer hydrological controls on the geochemical evolution of speleothem-forming drip waters, Crag Cave, southwest Ireland[J]. Journal of Hydrology,2003,273:51-68.
    161.Toth V A.Spatial and Temporal Variations in the Dissolved Organic Carbon Concentrations in the Vadose Karst Waters of Marengo Cave,Indiana[J].Journal of Cave and Karst Studies,1998,60(3):167-171.
    162.Trudgill S T,Pickles A M,Smettem K R J,et al.Soil-water residence time and solute uptake.1.Dye tracing and rainfall events[J].Journal of Hydrology,1983,60:257-279.
    163.van Beynen P,Ford D,Schwarcz H.Seasonal variability in organic substances in surface and cave waters at Marengo Cave,Indiana[J].Hydrological Processes,2000,14:1177-1197.
    164.Wagner G H.Microbial growth and carbon turnover.In:E.A.Paul and A.D.McLaren(ed.)Soil biochemistry,1975,Ⅲ:269-301.Marcel Dekker,New York.
    165.Wallace S B,Abhijit S.Does atmospheric CO2 police the rate of chemical weathering[J].Global Biogeochemical Cycle.12(3):403-408.
    166.Wang Y J,Cheng H,Edwards R L et al.A High-Resolution Absolute-Dated Late Pleistocene Monsoon Record from Hulu Cave,China[J].Science,2001,294:2345-2348
    167.Wang Y J,Cheng H,Edwards R L et al.The Holocene Asian Monsoon:Links to Solar Changes and Noah Atlantic Climate[J].Science,2005,308:854-857
    168.Wassenaar L T,Aravena R,Hendry M J,et al.Radiocarbon in dissolved organic carbon,A possible groundwater dating method:Case studies from western Cannda[J].Water Resour.Res.,1991,27(8):1975-1986.
    169.White W and Brennan E.Luminescence of speleothems due to fulvic acid and other activators[J].Proceedings of the International Conference of Speleology,1989,10,212-214.
    170.White W B.Karst hydrology:recent developments and open questions[J].Engineering Geology,2002,65:85-105.
    171.White,W.B.Geomorphology and Hydrology of Karst Terrains[M].Oxford Universty Press,1988,Oxford,464.
    172.Wigley,T.M.L.WATSPEC:a computer program for determining equilibrium speciation of aqueous solutions.British Geomorphological Research Group Technical Bulletin,1977,20:1-48.
    173.Williams,P.W.The role of the subcutaneous zone in karst hydrology[J].Journal of Hydrology,1983,61,45-67.
    174.Witkamp M,Frank M L.Evolution of CO2 from litter,humus,and subsoil of a pine stand[J].Pedobiologia,1969,9:358-365.
    175.Xie S,Yi Y,Huang J,et al.Lipid distribution in a subtropical southern China stalagmite:a record of soil ecosystem response to paleo-climate change[J].Quaternary Research,2003,60:340-347
    176.Yuan D,Cheng H,Edwards R.L,et al.Timing,Duration,and Transitions of the Last Interglacial Asian Monsoon[J].Science,2004,304:575-578
    177.Yuan Daoxian.Contribution of IGBP 379 "karst processes and carbon cycle" to global change.Episodes.1998.21(3):198
    178.Guckert A.土-根界面中根的分泌物和微生物活动及施钾的影响[A].见:谢建昌,范钦帧,郑文钦编译.土壤与植物营养研究新动态[C].北京:北京农业大学出版社,1992:64-72.
    179.D.希勒尔,华孟,叶和材等译.土壤和水-物理原理和过程[J].农业出版社,1981
    180.波尔,克拉克.顾宗濂,李振高,林先贵等译.土壤微生物学与生物化学[M].北京:科 学技术文献出版社,1993:13-36
    181.曹建华,潘根兴,袁道先等,岩溶地区土壤溶解有机碳的季节动态及环境效应[J].生态环境2005,14(2):224-229.
    182.曹建华,潘根兴,袁道先不同植物凋落物对土壤有机碳淋失的影响及岩溶意义[J].第四纪研究,2000,20(4):359-366
    183.曹建华,潘根兴,袁道先,等.桂林岩溶洼地生态系统中大气C02动态及环境意义[J].地质论评,1999,45(1):105-112.
    184.曹建华,袁道先,潘根兴.1999.岩溶动力系统中的生物作用机理初探[J].地学前缘,2001,8(1):203-209.
    185.曹建华,潘根兴,袁道先.柠檬酸对碳酸盐岩溶蚀动力模拟及岩溶意义[J].中国岩溶,2001,20(1):1-4
    186.曹建华,袁道先,潘根兴.2003.生态系统中的土壤[J].地球科学进展,12(1):37-44.
    187.曹军,陶澍.土壤与沉积物中天然有机物释放过程动力学研究[J].环境科学学报,1999,19(3):297-302.
    188.储雪蕾 北京地区地表水的硫同位素组成与环境地球化学[J].第四纪研究,2000,20(1):87-97.
    189.洪业汤,张鸿斌,朱永煊等.中国大气降水的硫同位素组成特征[J].自然科学进展-国家重点实验室通讯,1994,4(6):741-745
    190.侯居峙,谭明,程海等.本溪水洞石笋微层年代学初步研究[J].中国科学(D辑),31(5),387-392.
    191.黄泽春,陈同斌,雷梅.陆地生态系统中水溶性有机质的环境效应[J].生态学报,2002,22(2):259-269.
    192.李淑芬,余元春,何晟土壤溶解有机碳的研究进展[J].土壤与环境,2002,11(4)422-420.
    193.刘东生,谭明,秦小光等.洞穴碳酸钙微层理在中国的首次发现及其对全球变化研究的意义[J].第四纪研究,1997,1:41-51.
    194.刘再华,李 强,汪进良等.桂林岩溶试验场钻孔水化学暴雨动态和垂向变化解译[J].中国岩溶,2004,23(3):169-176.
    195.刘再华,Chris Groves,袁道先等.水-岩-气相互作用引起的水化学动态变化研究-以桂林岩溶试验场为例[J].水文地质工程地质,2003,4:13-18.
    196.刘再华,碳酸盐岩岩溶作用对大气C02沉降的贡献[J].中国岩溶,2000,19(4):293-300.
    197.吕金波,李铁英,孙永华等,北京石花洞的岩溶地质特征[J].中国区域地质.1999,18(4):373-378.
    198.倪建宇,洪业汤.贵州晚二叠世煤中硫同位素的组成特征[J].地质地球化学,1999,27(2):63-69.
    199.潘根兴,曹建华,何师意等,土壤碳作为湿润亚热带表层岩溶作用的动力机制:系统碳库及碳转移特征[J].南京农业大学学报 1999,22(3):49-52.
    200.潘根兴,腾永忠土壤-灰岩岩溶系统中水文地球化学动力学过程模拟及其意义[J].地球化学,2000a,29(3):272-276.
    201.潘根兴,腾永忠,陶玉祥等,土壤化学场对桂林地区表层岩溶的影响--野外监测与实验室模拟[J].土壤,2000b,4:173-177.
    202.潘根兴,曹建华,周运超.土壤碳及其在地球表层系统碳循环的意义[J].第四纪研究,2000c,20(4):325-334.
    203.潘根兴,曹建华,何师意等,岩溶土壤系统对空气C02的吸收及其对陆地系统碳汇的意义-以桂林丫吉村岩溶试验场的野外观测和模拟实验为例[J].地学前缘,2000d,7(4): 580-587.
    204.秦小光,刘东生,谭明,等.北京石花洞石笋微层灰度变化特征及其气候意义--Ⅱ.灰度的年际变化[J].中国科学(D辑),2000,30(3):239-248
    205.戎秋涛,翁焕新.环境地球化学[M].北京:地质出版社,1990.78-815
    206.谭 明,程海,Edwards R L等.甚年轻石笋的TIMS-230Th定年及其年层的确定[J].第四纪研究,2000,20(4):391.
    207.谭明,侯居峙,程海.定量重建气候历史的石笋年层方法[J].第四纪研究,2002,22(3):209-219.
    208.谭明,潘根兴,王先锋等,石笋与环境-石笋纹层形成的环境机理初探[J].中国岩溶,1999,18(3):197-206.
    209.谭明,秦小光,刘东生,石笋记录的年际、十年、百年尺度气候变化[J].中国科学(D 辑),1998,21(3):272-277.
    210.谭明.石笋微层气候学的几个重要问题[J].第四纪研究,2005,25(2):164-169.
    211.张甲坤,陶澍,曹军等,土壤中水溶性有机碳测定中的样品保存和处理方法[J].土壤通报,2000,31(4):174-176.
    212.汪永进,吴江滢,刘殿兵,吴金全,蔡演军,Cheng H.2002:石笋记录的东亚季风气候H1事件突变性特征[J].中国科学(D辑),32(3),227-233.
    213.王大纯,张人权,史毅虹,水文地质学基础[M],1980,地质出版社.
    214.王新中,班凤梅,潘根兴.洞穴滴水地球化学的空间和时间变化及其控制因素--以北京石花洞为例[J].第四纪研究,2005,25(2):258-264.
    215.韦启藩,陈鸿昭,吴志东.广西弄岗自然保护区石灰土的地球化学特征[J].土壤学报,1983,20(1):30-41.
    216.谢树成,黄俊华,王红梅等.湖北清江和尚洞石笋脂肪酸的古气候意义[J],中国科学(D辑),2005,35(3):246-251.
    217.张明,张风海.茂兰喀斯特森林下的土壤[A].见:周正贤主编.茂兰喀斯特森林考察集[C].贵阳:贵州人民出版社,1987.111-123.
    218.赵斌军,文启孝.石灰性母质对土壤腐殖质组成和性质的影响[J].土壤学报,1988,25(3):243-250.
    219.赵劲松,张旭东,袁星,等土壤溶解性有机质的特征与环境意义[J].应用生态学报,2003,14(1):126-130
    220.赵其国.土壤圈在全球变化中的意义与研究内容[J].地学前缘,1997,4(1-2):153-162.
    221.周运超,王世杰,谢兴能等.贵州4个洞穴滴水对大气降雨响应的动力学及其意义[J].科学通报,2004,49(21):2220-2227.
    222.周运超,王世杰.洞穴滴水的水文地球化学过程:贵州犀牛洞的研究[J].地球与环境,2005,33(2):23-30
    223.周运超,王世杰.贵州七星洞滴水的水文水化学特征及其意义[J].水文地质工程地质,2006.1:52-57

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700