用户名: 密码: 验证码:
基于复阻抗特性和电子鼻的淡水鱼新鲜度快速检测方法的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
新鲜度是鱼类或鱼类制品质量的一个重要指标,对产品最终质量十分重要。鱼类是一种不耐保藏的食品,极易发生腐败变质,食用不当易发生食物中毒,因此在卫生和食品安全检验中,鱼肉新鲜度的快速、准确检测,将对鱼类的保鲜、储臧和深加工有着重要的科学意义和应用价值。
     论文以生物阻抗技术和电子鼻嗅觉技术来研究淡水鱼新鲜度的快速检测方法。采用生物阻抗技术和虚拟仪器技术,以四电极测量方法和扫频激励方式,构建了淡水鱼鱼体复阻抗测量系统,以鲫鱼和鲢鱼为研究对象,研究了鱼体复阻抗谱的测量方法和技术,研究了储藏过程中鱼体复阻抗特性(阻抗和相位)的变化规律,确定了最优的测量参数和条件,建立了基于复阻抗特性的鱼体新鲜度评价指标,在此基础上用BP-ANN(后向反馈神经网络)建立了淡水鱼新鲜度的预测模型。以仿生嗅觉技术和虚拟仪器技术,构建了淡水鱼电子鼻测量系统,测量了不同新鲜度的鲢鱼鱼肉,采用PCA(主成分分析)优化了电子鼻试验参数,确定了电子鼻的最优测量条件,采用PCR(主成分回归)、PLS(偏最小二乘法)和ANN(人工神经网络)等方法进行了建模分析,确定了最优的模型识别方法,并优化了电子鼻传感器阵列。
     主要研究结果如下:
     1.采用生物阻抗技术在100Hz~100kHz内测量了储藏过程中鲫鱼和鲢鱼的复阻抗谱,试验结果表明,不同储藏时间的复阻抗谱呈现cole圆弧特性并区分明显,为采用鱼体复阻抗特性评价淡水鱼新鲜度提供了理论依据。
     2.首次提出和建立了淡水鱼鱼体复阻抗特性的测量方法和测量系统,测量系统包括自行研制的四电极探头、压控恒流源电路、信号调理滤波电路等硬件部分和基于虚拟仪器的信号发生器、信号采集模块、信号处理和文件保存模块等软件部分。试验结果表明,该系统智能化程度高,能自动实现扫频测量和结果分析,并具有较高的测量精度,在100Hz~100kHz范围内阻抗幅值的最大误差为0.58%,频率在50kHz~100kHz相位最大误差为0.31°,而在频率小于50kHz的范围内,系统的相位的最大误差仅为0.07°;在100Hz~100kHz范围内,每倍频扫描10点,测量系统可在30~50s内获得被测鱼体组织阻抗幅值、相位随激励频率的变化而发生的变化,为进一步研究其它生物组织复阻抗特性奠定了良好的理论基础和提供了必备的技术支撑。
     3.针对生物阻抗测量中恒流源性能直接关系到测量精度,构建了基于AD844和AD620两种方案的压控恒流源,试验研究了两种方案的VCCS恒流源内阻和频率特性。试验结果表明,AD844构成的恒流源性能更好,其输出内阻为1155kΩ,大于AD620构成的VCCS输出阻抗500kΩ,确定了基于AD844构建的压控电流源性能最优,在此基础上增加了直流反馈电路,以保证电流源的稳定性。针对生物组织复阻抗特性相位角难以准确提取的特点,设计了5种相位差算法,通过对含有白噪声的信号进行试验分析,试验结果表明,数字解调法(加标准正余弦方法)的精度最高,相位最大误差小于0.03°。
     4.以鲫鱼和鲢鱼为研究对象,首次采用生物阻抗技术系统地研究了鱼体储藏过程中激励电流、测量电极、激励频率、测量方向和测量部位对鱼体复阻抗特性的影响,确定了淡水鱼鱼体复阻抗特性的最优测量条件是激励电流为0.3mA,测量电极为混合式电极,激励频率范围为1kHz~5kHz,测量部位为沿鳃部平行侧线方向。试验结果表明,不同部位的鱼体阻抗幅值大小不同,其大小顺序是尾部、腹部以及鳃部,其差异随储藏时间的增加而逐渐减小;在同一储藏时间下,鱼体阻抗幅值随激励频率的增加而减小,相位随激励频率的增加而增加,符合生物组织的频散特性;沿侧线平行方向测量的鱼体阻抗幅值比沿侧线方垂直向测量的结果要大,符合生物组织各向异性的特点,各向异性随储藏时间和激励频率的增加而逐渐减小,但不影响采用复阻抗特性评价淡水鱼新鲜度的指标,当沿侧线平行方向测量阻抗幅值与沿侧线垂直方向测量阻抗幅值的比值小于1.05时,均可认为鲫鱼或鲢鱼已经腐败。
     5.以TVB-N(挥发性盐基氮)作为新鲜度评价对照指标,在1kHz激励频率下确定了鲫鱼和鲢鱼新鲜度的复阻抗特性判定指标,并采用人工神经网络建立了最优预测模型。当鲫鱼鱼体阻抗幅值达到129.79Ω或相位达到5.43°,鲢鱼鱼体阻抗幅值达到91.26Ω或相位达到1.48°,均可判定鲫鱼或鲢鱼腐败。以阻抗幅值和相位为输入,TVB-N为输出,确定鲫鱼最优神经网络结构为2-11-1型,预测TVB-N与实测TVB-N的相关系数为0.95621,模型检验的准确率为94.44%;确定鲢鱼最优神经网络结构为2-10-1型,预测TVB-N与实测TVB-N的相关系数为0.99282,模型检验的准确率为97.44%。
     6.首次提出和构建了基于仿生嗅觉技术和虚拟仪器技术的淡水鱼电子鼻测量系统,测量系统包括电子鼻容器、4气体传感器阵列(TGS822乙醇类及有机溶剂气体型、TGS825硫化氢型、TGS826氨气及氨类型和TGS832卤烃型气体传感器)、调理电路等硬件部分与基于虚拟仪器的数据采集、信号分析和文件保存模块等软件部分。试验结果表明,电子鼻的响应随鱼肉新鲜度的变化而变化。采样方法将传统的静态顶空生成法改进成了自由扩散的顶空方法,简化了取样设备,为进一步研究便携式淡水鱼电子鼻测量系统奠定了理论基础和提供了技术支撑
     7.以鲢鱼为研究对象,采用PCA(主成分)分析方法,确定了顶空时间为5min、样品重量为60g为电子鼻评价鲢鱼新鲜度的最优测量条件。
     8.通过试验研究,确定了人工神经网络为电子鼻模型识别的最优建模方法,确定了TGS822,TGS826和TGS832为最优淡水鱼电子鼻传感器阵列组合。采用PCR(主成分回归)、PLS(偏最小二乘法)和BP-ANN(后向反馈人工神经网络)进行建模分析,各模型预测结果与实测TVB-N的最优相关系数为分别为0.89778,0.92250和0.97613,试验结果表明,采用BP-ANN建模精度最高,其最优网络结构为4-11-1型;在此基础上进一步采用ANN建模方法对传感器阵列进行优化,试验结果表明采用3传感器(TGS822,TGS826和TGS832)和原有4传感器测量结果的BP-ANN建模预测结果与实测TVB-N的相关系数均为0.976。
     9.最优3气体传感器阵列所建立的淡水鱼新鲜度等级预测模型中,人工神经网络网络模型结构为3-11-2时,模型对新鲜、次新鲜、半腐败以及腐败的预测准确率为97.32%,当采用复阻抗特性对电子鼻误判结果进行辅助判断,可将电子鼻的准确率提高到100%。
     论文创新之处在于:
     1.论文提出采用医学领域的生物阻抗技术进行淡水鱼新鲜度的检测,并验证了生物阻抗技术用于检测淡水鱼新鲜的的可行性,在此基础上开发了基于虚拟仪器的淡水鱼复阻抗测量系统,测量系统在100Hz~100kHz范围内阻抗幅值的最大误差为0.58%,在50kHz~100kHz相位最大误差为0.31°,而在频率小于50kHz的范围内,系统的相位的最大误差仅为0.07°,具有较高的测量精度。
     2.采用自行研制的淡水鱼鱼体复阻抗测量系统进行了大量的试验研究,确定了激励电流、测量电极、激励频率、测量部位和测量方向对鱼体复阻抗特性的影响,确定了混合电极电极、鱼体鳃部位和0.3mA的激励电流为最优测量条件,建立了评价淡水鱼新鲜度的复阻抗特性指标,在此基础上采用BP-ANN(后向反馈人工神经网络)建立了预测模型,对鲫鱼和鲢鱼新鲜度的预测准确率分别是94.44%和97.44%,提高了识别准确率。该研究建立了用复阻抗特性评价淡水鱼新鲜度的技术和方法,为评价淡水鱼新鲜度提供了一新的快速无损检测方法。
     3.将电子鼻的采样方法由传统的顶空法改进为自由扩散法,简化了取样设备,以虚拟仪器技术和仿生嗅觉技术为基础,首次提出和建立了4气体传感器阵列的淡水鱼电子鼻测量系统,并试验验证了电子鼻测量系统的可行性。系统地试验研究了影响电子鼻评价鱼体新鲜度的测量因素,确定了顶空5min和样品重量为60g为最优测量条件。采用BP-ANN(后向反馈人工神经网络)建立的淡水鱼新鲜度等级预测模型对新鲜、次新鲜、腐败以及半腐败的预测准确率为97.32%,当采用复阻抗特性进行辅助判断,可将电子鼻的准确率提高到100%,该项研究建立了用气体传感器评价淡水鱼新鲜度的技术和方法,为评价淡水鱼新鲜度提供了一新的快速检测方法。
     4.通过试验研究,将PCR(主成分回归)、PLS(偏最小二乘法)和BP-ANN(后向反馈人工神经网络)等方法用于电子鼻模式识别和建模分析,系统地探讨了不同建模方法对预测结果的影响,确定BP-ANN为最优建模方法。在此基础上,采用以上建模方法对气体传感器阵列进行优化,确定了TGS822,TGS826和TGS832为最优电子鼻气体传感器阵列,为电子鼻的传感器阵列优化提供了一种新方法。
Freshness makes a major contribution to the quality of fish and fishery products. While,fish is a product of preservation intolerance and is easily deteriorated,the spoilage fish would lead to food poisoning.It is important to enhance hygienic examination to ensure the safety of fish products.Therefore,fast and accurate evaluation of fish freshness has a scientific and practical value to preservation,deposit and further processing of fish.
     Bioimpedance and electronic nose measurement technology was employed to research on fast evaluation freshness of freshwater fish.Based on bioimpedance and virtual instrument measurement technology,based on four-electrode and sweep frequency method,a freshwater fish bioimpedance measurement system was established.Crucian and silver carp was taken as study object,measurement method of bioimpedance spectrum and change rule of bioimepdance of freshwater fish during storage was investigated,the optimal measurement parameters and condition for the bioimpedance measurement of freshwater fish was ascertained.Futhermore,freshness index was constructed based on freshwater fish bioimpedance characteristics and BP-ANN (back-propagation artificial neural networks) method was used to improve the evaluation accuracy.A freshwater fish electronic nose measurement system was constructed based on artificial olfactory system and virtual instrument technology.Then,silver carp meat during storage was investigated by electronic nose measurement system.Experiment parameters of the system was optimized by PCA(Principal Component Analysis) method, and the optimal measurement condition was ascertained,finally,PCR(Principal Component Regression),PLS(Partial Least Square) and ANN(Artificial Neural Network) methods were employed and compared to build mathematic model,the most optimal method of model identification was ascertained,furthermore,the gas sensor array was optimized by model comparison.The main conclusions are as follows.
     1.The bioimpedance spectrum of crucian and silver carp during storage presents as cole circle and the cole-cole plots measured at different post-mortem time differentiated obviously,the result provides a theoretical foundation for using bioimpedance technology and bioimpedance characteristics to evaluate freshness of freshwater fish.
     2.Measurement method and measurement system of bioimpedance characteristics of freshwater fish was firstly brought forward and constructed.The system consists of two parts,one is the hardware which includes self-design four-electrode,voltage control current source(VCCS),signal processed circuit,and the other is software which includes signal generator,data acquisition and file auto-save model based on LabVIEW development environment.The result indicated that the system has high intelligence and accuracy,at the range of 100Hz~100 kHz,the maximum error of impedance is 0.58%,at the range of 50kHz~100kHz,the maximum error of phase is 0.31°;While at the frequency range lower than 50 kHz,the maximum error of phase is 0.07°.At the range of 100Hz~100kHz for 10 points every decade,it cost only 30s~50s for the system to calculate the impedance and phase changing with frequency,which establishes a theoretical foundation and technical parameters for other bio-tissue research on bioimpedance characteristics.
     3.Two VCCS based on AD844 and AD620 were designed to solve the problem of measurement accuracy of bioimpedance;the result indicated that the performance of VCCS based on AD844 is better,which has 1155 kΩfor inner impedance,while the inner impedance of VCCS based on AD620 is only 500 kΩ,in additional,a DCFB(Directed Current Feed Back) circuit was added to the VCCS to ensure the stability of current source.Aimed at solving the problem of phase accuracy of bio-tissue bioimpedance measurement,five different phase measurement methods was designed and then compared at the condition of white noise,the result indicated that the digital demodulation method(add standard sine and cosine method) has the highest accuracy,the maximum error is lower than 0.03°.
     4.The effect of excitation current,measurement electrode,excitation frequency, measured direction and measured position of crucian and silver carp during fish storage was first systematically investigated based on bioimpedance technology,the optimal measurement condition for freshwater fish bioimpedance measurement are as follows: 0.3mA for excitation current,composite electrode for measurement electrode,1kHz~5kH for excitation frequency and measured parallel to the lateral line of gill for measured direction and position.The result indicated that different measured positions lead to different impedance,the biggest impedance of measured position is tail,and then is belly and gill,however,the difference of impedance of measured position decreases with post-mortem time.At the same post-mortem time,the impedance decreases with the increase of frequency,while phase increases with frequency.The impedance changing rule conforms to the frequency dispersion of bio-tissue.At the same post-mortem time, the impedance measured paralleled to the lateral line is bigger than the impedance measured vertical to the lateral line of fish,which conforms to the anisotropy characteristics of bio-tissue,however,the anisotropy decreases with post-mortem time, when the ration of impedance measured parallel and vertical to the lateral line fish is lower than 1.05,it can indicate the deterioration of freshwater fish.
     5.Taking the TVB-N(Total Volatile Basic Nitrogen) as the compared index of freshwater fish freshness,the freshness index of bioimpedance characteristics of crucian and silver carp was constructed at 1 kHz and ANN method was used to build predicted model.When the impedance of crucian is less than 129.79Ωand phase of crucian is less than 5.43°,and when the impedance of silver carp is less than 91.26Ωand phase of silver carp is less than 1.48°,it can indicate the deterioration of freshwater fish.Taking the impedance and phase as input parameters and the TVB-N value as the output parameter for building the ANN predicted model,the result indicated that the optimal net layer structure for crucian ANN is 2-11-1,the model's correlation coefficient of predicted and measured TVB-N is 0.95621,the test accuracy of the modle is 94.44%;while for silver carp,the optimal net layer structure is 2-10-1,the model's correlation coefficient of predicted and measured TVB-N is 0.99282,the test accuracy of the model is 97.44%.
     6.A freshwater fish electronic nose was firstly brought forward and constructed based on artificial olfactory system and virtual instrument method,the measurement system includes electronic nose gas collection container,four-gas sensor array(TGS822 for ethanol;TGS825 for H_2S;TGGS826 for NH_3 and aime,TGS832 for halocarbon) and its signal processed circuit for hardware,and data acquisition,data analysis and file saving model based on LabVIEW for software.The result indicated that the response of electronic nose correlated with freshness loss of fish.A new air sample method(free air diffused method) was improved on the basis of traditional static headspace air analysis, which can simplify the sample equipment and provide theoretical foundation and technical parameters for constructing easy-carried electronic nose.
     7.Taking silver carp as the research object and PCA as the analysis method,the optimal measurement condition for electronic nose are as follows:headspace for 5min, 60g for sample weight.
     8.ANN was the most optimal model identification method for electronic nose,the three gas sensors,TGS822,TGS826 and TGS832,were the optimal gas sensor array for electronic nose.PCR,PLS and BP-ANN was used to build the predicted model,the result indicated their correlation coefficient of predicted and measured-N value are 0.89778, 0.92250 and 0.97613,which indicated that the ANN method has higher accuracy and is the optimal method,the optimal net layer of ANN structure is 4-11-1.On this basis,gas sensor array response were analyzed,the result showed that the three gas sensor(TGS822,TGS826 and TGS832) has the same correlation coefficient of predicted and measured-N value with the four gas sensor array(TGS822,TGS 825,TGS826 and TGS832),the correlation coefficient is 0.976.The three gas sensors were ascertained as the optimal gas sensor array.
     9.The optimal net layer structure is 3-11-2,the accuracy of ANN model of optimal three gas sensor array is 97.32%to identify fresh,semi-fresh,semi-deteriorated and deteriorated fish samples.When using the bioimpedance index for assistant judgement of the freshness of fish,the accuracy can be improved to 100%.
     Innovations:
     1.Bioimpedance measurement technology was firstly brought forward to evaluate the freshness of freshwater fish and was proved to be able to evaluate the freshness of freshwater fish.On this basis,biomimpedance measurement system was constructed based on LabVIEW environment and has high accuracy.The maximum error of impedance of the system is 0.58%;the maximum error of phase is 0.31°and 0.07°during 50 kHz~100 kHz and 100 Hz~50 kHz.
     2.A large numbers of crucian and silver carp was used to investigate the factors affecting on bioimpedance characteristics,and the optimum measurement conditions were ascertained as follows:0.3mA for excitation current,composite electrode for measurement electrode,1 kHz~5 kHz for excitation frequency and measured parallel to the lateral line of gill for measured direction and position.Freshness index was constructed based on bioimpedance characteristics and BP-ANN method was used to construct evaluation freshness model to improve the accuracy,the model accuracy for crucian and silver carp is 94.44%and 97.44%.
     3.A new air sample method(free air diffused method) was improved on the basis of traditional static headspace air analysis,which simplified the sample equipment.Based on artificial olfactory technology and virtual instrument technology,electronic nose of freshwater fish was firstly brought forward and constructed with four gas sensor array and was proved validity.Experiment factors for electronic nose system was investigated, headspace for 5min and 60g for sample weight were ascertained as the optimum measurement conditions.On this basis,BP-ANN method was employed to build predicted model for freshness level,the accuracy is 97.32%to identify fresh,semi-fresh, semi-deteriorated and deteriorated fish samples.And when using the bioimpedance index for assistant judgement of the freshness of fish,the accuracy can be improved to 100%.
     4.PCR,PLS and BP-ANN was employed to build the predicted model and their model accuracy was compared,the result indicated that BP-ANN method was the optimum method for electronic nose system.On this basis,the gas sensor array was optimized by comparing the predicted accuracy,finally the three gas sensor(TGS822, TGS826 and TGS832) was ascertained as the optimum gas sensor array,which provides a ness method for optimizing gas sensor array.
引文
1.柴春祥,杜利农.气体传感器在猪肉新鲜度检测中的应用研究.食品科技,2002,5:59-61
    2.崔海英,曾名勇.鱼肉新鲜度快速检测技术新进展.水产科学,2004,23(7):37-39
    3.董玉娟,李寓英,王秀美.梭梭、柠条抗逆性的比较分析.内蒙古民族大学学报,2003,18(5):425-428
    4.董彩文.鱼肉新鲜度测定方法研究进展.食品工业,2004,30(4):99-103
    5.董彩文.生物传感器在鱼肉新鲜度测定中的应用.品质分析,2005,1:48-50
    6.邓德文.淡水鱼死后肌肉生化变化及其对鱼肉品质的影响.[硕士学位论文].上海:上海水产大学图书馆,2001
    7.董国亚.高上凯.生物阻抗的测量方法.国外医学生物医学工程分册,2000,5:285-290
    8.范华锋,刘振林.半微量定氮法测定挥发性盐基氮的改进.中国卫生检验杂志,2002,12(1):83
    9.高晓伟,张泰林,郑明光.黄嘌呤氧化酶传感器的研制及其对鱼鲜度的检测.中国兽医学报,1997,17(4):367-370
    10.关志苗.K值——判定鱼品鲜度的新指标.水产学报.,2004,14(1):33-35
    11.侯瑞锋,黄岚,王忠义,徐志龙.肉品新鲜度检测方法.现代科学仪器,2005,5:76-80
    12.侯瑞锋,黄岚,王忠义,丁海曙,徐志龙.用近红外漫反射光谱检测肉品新鲜度的初步研究.光谱学与光谱分析,2006,26(12):2193-2196
    13.胡胜水,崔大付.次黄嘌呤微型传感器及其应用研究.分析科学学报,1999,15(6):468-471
    14.海铮.基于电子鼻的牛肉新鲜度检测.[硕士学位论文].杭州:浙江大学图书馆,2006
    15.金树德,张世芳,郑荣良.从玉米生理电特性诊断旱情.农业工程学报,1999,15(3):91-95
    16.江洪.基于DSP的脑电信号采集系统的设计.[硕士学位论文].合肥:安徽大学图书馆,2005
    17.江亚群,何怡刚.基于加窗DFT的相位差高精度测量算法.电路与系统学报,2005,4:112-116
    18.李光明,吴祁耀.生物阻抗测量技术的原理及应用.世界医疗器械,1999,5(3):51-54
    19.李江.基于脉冲电流激励模式的脑血流电阻抗测量技术.[硕士学位论文].西安:第四军医大学图书馆,2003
    20.李燕.罗氏沼虾冷藏期间一些品质变化的研究.[硕士学位论文].上海:上海水产大学图书馆,2001
    21.李刚,曲世海,郭培源,张慧.基于神经网络的肉类新鲜度辨识技术.传感器技术,2005,24(3):15-17
    22.刘奇.基于LabWindows/CVI的频率计、相位计的实现方法.测试技术,2000,11:19-20
    23.刘俊霞.基于虚拟仪器的生物阻抗测量平台.[硕士学位论文].天津:天津大学图书馆,2005
    24.刘熙,修建国.应用电导率仪检测鸡蛋新鲜度.食品科学,1991,(10):45-47
    25.刘国繁.基于谐波分析和周期跟踪的相位差测量.电机控制学报,2004,8(3):289-291
    26.刘红秀.仿生嗅觉系统信息获取与处理的方法研究.[硕士学位论文].广州:广东工业大学图书馆,2007
    27.林新.生物组织阻抗频谱测量技术及特性的基础研究.[博士学位论文].第四军医大学图书馆,2005
    28.罗锡文,臧英,周志艳.精细农业中农情信息采集技术的研究进展.农业工程学报,2006,22(1):167-173
    29.罗颖华,王立红.黄嘌呤氧化酶电极的研制和鱼的鲜度测定.化学传感器,1990,10(2):35-40
    30.吕剑.仪器分析法测定挥发性盐基氮的试验研究.现代检验医学杂志,2005,20(5):49-51
    31.马子华,张敏聪.果树抗寒性鉴定—活体电阻法探讨.内蒙古农牧学院学报,1996,17(3):52-56
    32.马成林,陈琦昌,李力权.应用三甲胺评价淡水鱼新鲜度的研究.兽医大学学报,1992,12(4):398-400
    33.马成林,陈琦昌,李力权.应用三甲胺评价鱼类新鲜度与TVB-N/TMA比值的研究.食品科学,1993,11:16-19
    34.马岚,杨玉星.生物电阻抗特征参数提取方法及测量系统的研究.航天医学与医学工程,2002,3:199-202
    35.裴素华,薛成山,周忠平.一种新型动物食晶鲜度测量传感器件In/TiO_2Nb_2O_5的研究.传感技术学报,1999,3:171-175
    36.彭亮,周理兵,王琦娜.基于采样数字法和自功率谱幅值校正的相位差测量方法.船电技术,2001,2001(5):7-10
    37.彭图治,杨丽菊,沈莲清.酶生物传感器测定鱼类鲜度的研究.应用科学学报,1996,14(3):358-363
    38.曲建岭.人工嗅觉系统中的信息处理技术.[博士学位论文].西安:西北工业在学图书馆,2000
    39.任超世.生物阻抗技术与人体功能信息.热点评价,1998,11:17-19
    40.任超世.生物电阻抗测量技术.中国医疗器械信息,2004,1:21-25
    41.宋蜇存,王克奇.阻抗法测定树木细胞活力的研究.林业科学,1995,31(1):92-94
    42.宋华宾,马成林,高晓伟.应用电导率测定猪肉新鲜度的试验研究.吉林畜牧兽医,1990,12(5):4-5
    43.孙永文,韩建国.便携式生物电阻抗测量系统设计.计算机测量与控制,2005,7:645-647
    44.孙钟雷.基于遗传组合网络的猪肉新鲜度人工嗅觉系统研究.[硕士学位论文].吉林:吉林大学图书馆,2005
    45.束美霞.基于小型电极的阻抗血流测量系统的研究.[硕士学位论文].武汉:华中科技大学图书馆,2005
    46.束美霞,杨玉星,周黎明,洁罗,赵小红.大鼠死后皮下肌肉组织电阻抗幅值和相位角变化的实验研究.中国医学物理学杂志,2005,22(2):472-475
    47.施宁.鱼鲜度检测仪的设计.[硕士学位论文].大连:大连理工大学图书馆,2003
    48.滕炯华,袁朝晖,王磊.基于气敏传感器阵列的牛肉新鲜度识别方法研究.测控技术,2002,7(21):1-3
    49.王太全.关于对半微量定氮法测定动物性柔产品中挥发性盐基氮(TVB-N)蒸馏装置改进的探讨.试验与研究,2002,(8):16-17
    50.王文艇,钟季康,马骏.生物阻抗技术概述.上海针灸杂志,2005,24(11):40-40
    51.王祝平.基于EMD、关联维数与神经网络结合的内燃机故障诊断系统的研究.[硕士学位论文].武汉:华中农业大学图书馆,2007
    52.王超,王湘嵛,孙宏军,王化祥.用于生物阻抗测量的双反馈电流源研究.生物医学工程学杂志,2006,04:704-707
    53.王超,章晓丽,刘俊霞,王化祥,袁成刚.基于虚拟仪器的混频生物阻抗测量系统.北京理工大学学报,2006,01:53-56
    54.王慥,张钟兴,冯媛.几种淡水鱼研制鱼鲜度变化的特点.水产学报.,1994,18(4):272-277
    55.王鑫.近红外光谱—偏最小二乘法无损非破坏药物分析.[硕士学位论文].吉林:吉林大学图书馆,2005
    56.王伟,李章勇,魏进民,贺中华,杨及,王美霞,张淑红.电阻抗成像的研究与探讨.中国医学物理学杂志,2006,06:70-73
    57.沈莲清.次黄嘌呤生物传感器检测鱼类新鲜度之研究.水产学报,1995,19(2):152-158
    58.汪小芳.基于人工神经网络利用机械特性检测苹果品质方法的研究.[硕士学位论文].武汉:华中农业大学图书馆,2006
    59.汪之和.农产品加工与利用.北京,化学工业出版社,2003
    60.魏新军.TVB-N的氨气敏电极快速测定方法.食品研究与开发,2001,22(5):60-62
    61.吴成业,叶玫,王勤.几种淡水鱼在冷藏过程中鲜度变化研究.淡水鱼业,1994,24(1):16-18
    62.吴英才.测量与鲜度的三甲胺MIS机构的敏感性与机理.[硕士学位论文]湛江海洋大学学报,1999,19(1):44-48
    63.邬志敏,冯彩群.电导率法监测灌水猪肉的探讨.中国公共卫生,1992,8(9):399-400
    64.肖贵遐,韩冰,刘国庆,朱代谟.生物电阻抗技术的医学运用.中国医学物理学杂志,2003,20(4):287-300
    65.胥芳,张立彬,周国君,贾灿纯.无损检测桃子电特性的试验研究.农业工程学报,1997,13(1):202-205
    66.徐宝梁,李兵.鱼肉新鲜度测定生物传感器研究概况.食品与发酵工业,1997,23(3):45-49
    67.艳茹.牛宰后肌肉生物电阻抗特性变化的研究.[硕士学位论文].呼和浩特:内蒙古农业大学图书馆,2006
    68.叶盛权.冰藏储存中鲈鱼鲜度的化学指标分析.食品研究与开发,2003,24(2):111-112
    69.于雯,吕玉琼.全自动凯氏定氮仪测定食品中蛋白质.中国卫生检验杂志,2001,11(5):610
    70.张平,阎宏涛.反射光谱法测定食品中挥发性盐基氮.食品科学,1998,19(1):44-46
    71.张立彬,胥芳,贾灿纯,陈子辰.苹果内部品质的电特性无损检测研究.农业工程学报,2000,16(3):104-106
    72.张立彬,胥芳,周国君,贾灿纯,赵文霞.苹果的介电特性与新鲜度的关系研究.农业工程学报,1996,12(3):186-190
    73.张忠孝,孟阿兰,李厚福.测量鱼鲜度的三甲胺(N(CH3)3)半导体金属氧化物传感器元件的研制.传感器技术.1995,3:31-34
    74.张俐,马小愚,雷得天,杨方.农业物料电特性研究进展.农业工程学报,2003,19(3):18-22
    75.张毅刚,付平,王丽.采用数字相关法测量相位差.计量学报,2000,21(3):216-221
    76.张帅.基于DSP控制的多频电阻抗断层成像硬件系统研究.[硕士学位论文].天津:河北工业大学图书馆,2005
    77.张钢,肖建忠,陈段芬.测定植物抗寒性的电阻抗图谱法.植物生理与分子生物学学报2005,31(1):19-24
    78.周冬香,陈椒,徐朝霞.用电导率快速检测淡水鱼鲜度的方法研究.上海水产大学学报,1997,6(3):216-222
    79.皱晓葵,夏惠民.氨气敏电极测定食品中的挥发性盐基氮.食品与发酵工业,1995,5:40-43
    80.赵小红.死亡间隔时间推断的新研究.[博士学位论文].武汉:华中科技大学图书馆,2006
    81.赵舒,任超世.生物电阻抗法检测胃动力功能.国际生物医学工程杂志,2006,2:93-96
    82.Acha V,Meurens M,Naveau H,Agathos S N.ATR-FTIR sensor development for continuous on-line monitoring of chlorinated aliphatic hydrocarbons in a fixed-bed bioreactor.Biotechnol Bioeng,2000,68(5):473-87
    83.Afridi M Y.Monolithic CMOS microhotplate-based gas-sensor system.(Ph D dissertation).Washington:The George Washington University,2002
    84.Aishima T.Correlating sensory attributes to gas chromatography-mass spectrometry profiles and e-nose responses using partial least squares regression analysis.J Chromatogr A,2004,1054(1-2):39-46
    85.Al-Surkhi O I,Riu P J,Vazquez F F,Ibeas J.Monitoring Cole-Cole parameters during haemodialysis(HD).Conf Proc IEEE Eng Med Biol Soc,2007:2238-2241
    86.Alimelli A,Pennazza G,Santonico M,Paolesse R,Filippini D,D'Amico A,Lundstrom I,Di Natale C.Fish freshness detection by a computer screen photo assisted based gas sensor array.Analytica Chimica Acta,2007,582(2):320-328
    87.Armenta S,Coelho N M,Roda R,Garrigues S,de la Guardia M.Seafood freshness determination through vapour phase Fourier transform infrared spectroscopy.Anal China Acta,2006,580(2):216-222
    88.Boknaes N,Jensen K N,Andersen C M,Martens H.Freshness Assessment of Thawed and Chilled Cod Fillets Packed in Modified Atmosphere Using Near-infrared Spectroscopy.Lebensm.-Wiss.u.-Technol,2002,35(7):628-634
    89.Baixas-Nogueras S,Bover-Cid S,Vidal-Carou M C,Veciana-Nogues M T,Marine-Font A.Trimethylamine and total volatile basic nitrogen determination by flow injection/gas diffusion in Mediterranean hake(Merluccius merluccius).J Agric Food Chem,2001,49(4):1681-1686
    90.Baixas-Nogueras S,Bover-Cid S,Veciana-Nogues M T,Marine-Font A,Vidal-Carou M C.Biogenic amine index for freshness evaluation in iced Mediterranean hake(Merluccius merluccius).J Food Prot,2005,68(11):2433-2438
    91.Balas B,Belfort R,Harrison S A,Darland C,Finch J,Schenker S,Gastaldelli A,Cusi K.Pioglitazone treatment increases whole body fat but not total body water in patients with non-alcoholic steatohepatitis.J Hepatol,2007,47(4):565-570
    92.Barbri N E,Amari A,Vinaixa M,Bouchikhi B,Correig X,Llobet E.Building of a metal oxide gas sensor-based electronic nose to assess the freshness of sardines under cold storage.Sensors and Actuators B:Chemical,2007,128(1):235-244
    93.Bayford R H.Bioimpedance tomography(electrical impedance tomography).Annu Rev Biomed Eng,2006,8:63-91
    94.Bechmann L,Riesen D V,Stenffen Leonhardt.Optimal electrode placemetn and frequency range selection for the detection of lung water using bioimpedance spectroscopy.Proceeding of the 29th Annual International Conference of the IEE EMBS,2007,Lyon,France
    95.Bertemes-Filho P,Brown B H,Wilson A J.A comparison of modified Howland circuits as current generators with current mirror type circuits.Physiol Meas,2000,21:1-6
    96.Bohrer F I,Sharoni A,Colesniuc C,Park J,Schuller I K,Kummel A C,Trogler W C.Gas sensing mechanism in chemiresistive cobalt and metal-free phthalocyanine thin films.J Am Chem Soc,2007,129(17):5640-5646
    97.Bonilla A C,Sveinsdottir K,Martinsdottir E.Development of Quality Index Method(QIM)scheme for fresh cod(Gadus morhua) Wllets and application in shelf life study.Food Control,2007,18:352-358
    98.Boone K,Barber D,Brown B.Review imaging with electricity:report of the European concerted action on impedance tomography.Journal of Medical Engineering & technology,1997,21(2):201-232
    99.Bourrounet B,Talou T,Gaset A.Application of a multi-gas-sensor device in the meat industry for boar-taint detection.Sensors & Actuators:B.Chemical,1995,27(1-3):250-254
    100.Brag R,Rosell J,Riu P.A wide-band Ac-coupled current source for electrical impedance tomography.Physiol.Meas.,1994,15:91-99
    101.Burt J R,Gibson D M,Jason A C,Sanders H R.Comparison of methods of freshness assessment of wet fish.Part Ⅰ.Sensory assessment of boxed experimental fish.Journal of Food Technology,1975,10:645-656
    102.Burt J R,Gibson D M,Jason A C,Sanders H R.Comparison of methods of freshness assessment of wet fish.Ⅲ.Laboratory assessment of commercial fish.Journal of Food Technology,1976,11:117-128
    103.Chytiri S,Paleologos E,and Savvaidis I,Kontominas M G.Relation of biogenic amines with microbial and sensory changes of whole and filleted freshwater rainbow trout(Onchorynchus mykiss) stored on ice.J Food Prot,2004,67(5):960-965
    104.Di Natale C,Macagnano A,Martinelli E,Paolesse R,D'Arcangelo G,Roscioni C,Finazzi-Agro A,D'Amico A.Lung cancer identification by the analysis of breath by means of an array of non-selective gas sensors.Biosens Bioelectron,2003,18(10):1209-1218
    105.Dinatale C,Brunik J,Jos A.Recongition of fish storage time by a metalloporphyrins-coated QMB sensor array.Means Sci Technol,1996,7:1103-1114
    106.Dodd T H.Monitoring of fishery product quality using an electronic nose and visible/near-infrared spectroscopy.(Ph D dissertation).Raleigh:North Carolina State University,2006
    107.Du W-X.Assessing the development and detection of biogenic amines as indices for aquatic product quality and safety.(Ph D dissertation).Gainesville:University of Florida,1999
    108.Dufour E,Frencia J P,Kane E.Development of a rapid method based on front-face fluorescence spectroscopy for the monitoring of fish freshness.Food Research International,2003,36(5):415-423
    109.Duncan M,Craig S R,Lunger A N,Kuhn D D,Salze G,McLean E.Bioimpedance assessment of body composition in cobia Rachycentron canadum(L.1766).Aquaculture,2007,271(1-4):432-438
    110.Ellis P C,Silva M L,Lee C M.Statistical classification of seafood quality.J AOAC Int,1997,80(6):1347-1359
    111.Fang Q,Liu X,Cosic I.Bioimpedance Study on Four Apple Varieties.13th International Conference on Electrical Bioimpedance and the 8th Conference on Electrical Impedance Tomography,2007,Graz,Austria
    112.Fujimori H,Sasaki T,Hibi K,Senda M,Yoshioka M.Measurement of adenine nucleotide levels with an adenine analyser as an index of freshness of porgy.J Chromatogr,1990,528(2):305-314
    113.Funazaki N,Hemmi A,Ito S,Asano Y,Yano Y,Miura N,Yamazoe N.Application of semiconductor gas sensor to quality control of meat freshness in food industry.Sensors and Actuators B:Chemical,1995,25(1-3):797-800
    114.Gajewska R,Ganowiak Z.Evaluation of degree of freshness and value of fish and fish product t intake based on histamine and trimethylamine analysis.Rocz Panstw Zakl Hig,1992,43(3-4):245-251
    115.Ghosh S,Sarker D,Misra T N.Development of an Amperometric Enzyme Electrode Biosensor for Fish Freshness Detection.Sensors and Actuators B,1998,53(1-2):58-62
    116.Goncalves A C,Antas S E,Nunes M L.Freshness and quality criteria of iced fanned Senegalese sole(Solea senegalensis).J Agric Food Chem,2007,55(9):3452-3461
    117.Grimnes S,Martinsen O G.Bio-impedance and bioelectricity basics.Great Britain,ACADEMIC PRESS,2000
    118.Crigioni G M,Margar C A,Pensel N A,Sanchez G,Vaudagna S R.Warmed-over flavour analysis in low temperature-long time processed meat by an "electronic nose".Meat Science,2000,56(3):221-228
    119.Gutierrez-Osuna R.Signal processing and pattern recognition for an electric nose.(Ph D dissertation).Raleigh:North Carolina State University,1998
    120.Hammond J,Marquis B,Michaels R,Oickle B,Segee B,Vetelino J,Bushway A,Camire M E,Davis-Dentici K.A semiconducting metal-oxide array for monitoring fish freshness.Sensors and Actuators B:Chemical,2002,84:113-122
    121.Hammond J M.A semiconducting metal oxide fish freshness sensor.(Ph D dissertation).Orono:University of Maine,2001
    122.Haugen J E.Electronic noses in food analysis.Adv Exp Med Biol,2001,488:43-57
    123.Haugen J E,Undeland I.Lipid oxidation in herring fillets(Clupea harengus) during ice storage measured by a commercial hybrid gas-sensor array system.J Agric Food Chem,2003,51(3):752-759
    124.Haugen J E,Chanie E,Westad F,Jonsdottir R,Bazzo S,Labreche S,Marcq P,Lundby F,Olafsdottir G.Rapid control of smoked Atlantic salmon(Salmo salar) quality by electronic nose:Correlation with classical evaluation methods.Sensors and Actuators B:Chemical,2006,116:72-77
    125.Hemandez-Herrero M M,Duflos G,Malle P,Bouquelet S.Amino acid decarboxylase activity and other chemical characteristics as related to freshness loss in iced cod(Gadus morhua).J Food Prot,2002,65(7):1152-1157
    126.Heymsfield S B,Gallagher D,Grammes J,Nunez C,Wang Z,Pietrobelli A.Upper extremity skeletal muscle mass:Potential of measurement with single frequency bioimpedance analysis.Applied Radiation and Isotopes,1998,49(5-6):473-474
    127.Hildrum K I,Wold J F,Segtnan V H,Renou J P,Dufour E.New Spectroscopic Techniques for Online Monitoring of Meat Quality.Advanced Technologies for Meat Processing,2006,
    128.Hwang D F,Huang Y R,Lin K P,Chen T Y,Lin S J,Chen L H,Hsieh H S.Investigation of hygienic quality and freshness of marketed fresh seafood in Northern Taiwan.Shokuhin Eiseigaku Zasshi,2004,45(5):225-230
    129.Ionescu R,Llobet E,Vilanova X,Brezmes J,Sueiras J E,Calderer J,Correig X.Quantitative analysis of NO2 in the presence of CO using a single tungsten oxide semiconductor sensor and dynamic signal processing.Analyst,2002,127(9):1237-1246
    130.Jason A C,Lees A.Estimation of fish freshness by dielectric measurement.Department of Trade and Industry,London,UK,1971
    131.Jason A C,Richards J C S.The development of an electronic fish freshness meter.Journal of Physics E:Scientific Instruments,1975,8(10):826-830
    132.Jebb S A,Siervo M,Murgatroyd P R,Evans S,Fruhbeck G,Prentice A M.Validity of the leg-to-leg bioimpedance to estimate changes in body fat during weight loss and regain in overweight women:a comparison with multi-compartment models.Int J Obes(Lond),2007,31(5):756-762
    133.Karube I,Matsuoka H,Suzuki S,Watanabe E,Toyama K.Determination of fish freshness with an enzyme sensor system.Journal of Agricultural and Food Chemistry,1984,32(2):314-319
    134.Kent M,Oehlenschlager J,Mierke-Klemeyer S,Manthey-Karl M,R.Knochel F D,.O S.A new multivariate approach to the problem of fish quality estimation.Food Chemistry,2004:531-535
    135.Kent M,Oehlenschlager J,Mierke-Klemeyer S,Manthey-Karl M,Knochel R,Daschner F,Schimmer O.A new multivariate approach to the problem of fish quality estimation.Food Chemistry,2004,(87):531-535
    136.Kim W T,Lim Y S,Shin I S,Park H,Chung D,Suzuki T.Use of electrolyzed water ice for preserving freshness of pacific saury(Cololabis saira).J Food Prot,2006,69(9):2199-2204
    137.Kim Y H,Lee N H,Kim Y J,Seo M H.Study on the detection method of irradiated beef and flatfish meats by electric nose.2004 IFT Annual Meeting,July 12-16-Las Vegas,NV,2004
    138.Ko W C,Hsu K C.Changes in K value and microorganisms of tilapia fillet during storage at high-pressure,normal temperature.J Food Prot,2001,64(1):94-98
    139.Leleux D P,Claps R,Chen W,Tittel F K,Harman T L.Applications of Kalman filtering to real-time trace gas concentration measurements.Appl Phys B,2002,74(1):85-93
    140.Lepetit J,Sale P,Favier R,Dalle R.Electrical impedance and tenderisation in bovine meat.Meat Science,2002,(60):51-62
    141.Levin N W,Zhu F,Seibert E,Ronco C,Kuhlmann M K.Use of segmental multifrequency bioimpedance spectroscopy in hemodialysis.Contrib Nephrol,2005,149:162-167
    142.Li Q,Wang J,Ye Z,Ying Y,Li Y.Detection of fruit quality based on bioimpedance using probe electrodes.Proceedings of SPIE,2005
    143.Li X,Zeng Z,Zhou J,Gong S,Wang W,Chen Y.Novel fiber coated with amide bridged-calixarene used for solid-phase microextraction of aliphatic amines.J Chromatogr A,2004,1041(1-2):1-9
    144.Li X C,Guerun O T.Development and application of electronic noses in freshnes sassessmen to fishery Product.Journal of Fisher of China,2002,26(3):275-280
    145.Luoranen J,Repo T,Lappi J.Assessment of the frost hardiness of shoots of silver birch(Betula pendula) seedlings with and without controlled exposure to freezing.Canadian Journal of Forest Research,2004,34(5):1108-1118
    146.Machado R F,Laskowski D,Deffenderfer O,Burch T,Zheng S,Mazzone P J,Mekhail T,Jennings C,Stoller J K,Pyle J,Duncan J,Dweik R A,Erzurum S C.Detection of lung cancer by sensor array analyses of exhaled breath.Am J Respir Crit Care Med,2005,171(11):1286-1291
    147.Mancuso S,Nicese F,Masi E,E A.comparing fractal analysis,electrical impedance and electrolyte leakage for the assessment of cold tolerance in Callistemon and Grevilea spp.J Hortic Scf Biotech,2004,(79):627-632
    148.Marquez-Rios E,Moran-Palacio E F,Lugo-Sanchez M E,Ocano-Higuera V M,Pacheco-Aguilar R.Postmortem biochemical behavior of giant squid(Dosidicus gigas) mantle muscle stored in ice and its relation with quality parameters.J Food Sci,2007,72(7):356-362
    149.Martinsen O G,Grinmes S,Mirtaheri P.Non-invasive measurements of post-mortem changes in dielectric properties of haddock muscle-a pilot study.Journal of Food Engineering,2000,43(3):189-192
    150.Matz G,Schroder W,Ollesch T.New methods for fast on-site measurement of odorous compounds.Waste Manag,2005,25(9):864-871
    151.Miettinen H,Arvola A,Luoma T,Wirtanen G.Prevalence of Listeria monocytogenes in,and microbiological and sensory quality of,rainbow trout,whitefish,and vendace roes from Finnish retail markets.J Food Prot,2003,66(10):1832-1839
    152.Moon J R,Tobkin S E,Roberts M D,Dalbo V J,Kerksick C M,Bemben M G,Cramer J T,Stout J R.Total body water estimations in healthy men and women using bioimpedance spectroscopy:a deuterium oxide comparison.Nutr Metab(Lond),2008,5(1):7
    153. Morales G, Blanco L, Arias M L,Chaves C. Bacteriological evaluation of fresh tilapia (Oreochromis niloticus) coming from the northern region of Costa Rica. Arch Latinoam Nutr, 2004,54(4): 433-437
    154. Nalan G, Pinar Y. Use of eye fluid refractive index in sardine (Sardina pilchardus) as a freshness indicator. European Food Research and Technology, 2004,218(3): 295-297
    155. Nassis G P, Sidossis L S. Methods for assessing body composition, cardiovascular and metabolic function in children and adolescents: implications for exercise studies. Curr Opin Clin Nutr Metab Care, 2006,9(5): 560-567
    156. Nguyen A L, Luong J H,Masson C. Determination of nucleotides in fish tissues using capillary electrophoresis. Anal Chem, 1990,62(22): 2490-2493
    157. Nilsen H, Esaiassen M, Heia K, Sigernes F. Visible/near-infrared spectroscopy: a new tool for the evaluation of fish freshness. Journal of Food Science, 2002,67(5): 1821-1826
    158. Nilsena H, Esaiassen M. Predictingsensory score of cod (Gadus morhua) from visible spectroscopy. Lebensm.-Wiss. u.-Technol, 2005,38: 95-99
    159. Niu J, Lee J Y A. A needle-type electrode for the determination of fish freshness. Directions in Electroanalytical Chemistry II ,1999, The Electrochemical Society, Inc
    160. Niu J, Lee J Y A. New Approach for the Determination of Fish Freshness by Electrochemical Impedance Spectroscopy. Journal of Food Science, 2000,65(5):780-785
    161. Nordberg A, Hansson M, Sundh I, Nordkvist E, Carisson H, Mathisen B. Monitoring of a biogas process using electronic gas sensors and near-infrared spectroscopy (NIR). Water Sci Technol, 2000,41(3): 1-8
    162. O'Connell M, Valdora G, Peltzer G, Negri R M n. A practical approach for fish freshness determinations using a portable electronic nose. Sensors and Actuators B: Chemical, 2001,80: 149-154
    163. Ohashi M. Determination of K-value and histamine of mackerel and tuna, by using the oxygen-sensor method. Shokuhin Eiseigaku Zasshi, 2002,43(1): 39-43
    164. Okuma H, Watanabe E. Flow system for fish freshness determination based on double multi-enzyme reactor electrodes. Biosens Bioelectron, 2002,17(5): 367-372
    165. Olafsdottir G, Jonsdottir R, Lauzon H L, Luten J, Kristbergsson K. Characterization of volatile compounds in chilled cod (Gadus morhua) fillets by gas chromatography and detection of quality indicators by an electronic nose. J Agric Food Chem, 2005,53(26): 10140-10147
    166. Olafsdottir G, Martinsdottir E, Oehlenschlager J, Dalgaard P, Jensen B, Undeland I, Mackie I M, Henehan G, Nielsen J,Nilsen H. Methods to evaluate fish freshness in research and industry. Trends in Food Science & Technology, 1997,8(8): 258-265
    167.Olafsdottir G,Nesvadba P,Di Natale C,Careche M,Oehlenschlager J,Tryggvadottir S V,Schubring R,Kroeger M,Heia K,Esaiassen M,Macagnano A,Jorgensen B M.Multisensor for fish quality determination.Trends in Food Science & Technology,2004,15(2):86-93
    168.Olafsson R E,Olafsdottir G,Sigfnssonand P L,Gardner J W(1992).Monitoring of fish freshness using tin oxide sensors.Sensors and sensory systems for an electronic nose.J.W.G.a.P.N.Bartlett,Kluwer Academic Publishers:257-272.
    169.Oral N,Gulmez M,Vatansever L,Guven A.Application of antimierobial ice for extending shelf life of fish.J Food Prot,2008,71(1):218-222
    170.Ostling O,Johanson K.Mieroelectrophoretic study of radiation induced DNA damages in individual mammalian cells..BioehemBioPhysRes Comm,1984,123:291-298
    171.Pacquit A,Lau K T,McLaughlin H,Frisby J,Quilty B,Diamond D.Development of a volatile amine sensor for the monitoring of fish spoilage.Talanta,2006,69:515-520
    172.Pacquit A,Frisby J,Diamond D,Lau K T,Farrell A,Quilty B,Diamond D.Development of a smart packaging for the monitoring of fish spoilage.Food Chemistry,2007,102(2):466-470
    173.Pantazi D,Papavergou A,Poumis N,Kontominas M G,Savvaidis I N.Shelf-life of chilled fresh Mediterranean swordfish(Xiphias gladius) stored under various packaging conditions:microbiological,biochemical and sensory attributes.Food Microbiol,2008,25(1):136-143
    174.Parisi G,Franci O,Poli B M.Application of multivariate analysis to sensorial and instrumental parameters of freshness in refrigerated sea bass(Dicentrarchns labrax) during shelf life.Aquaculture,2002,214:153-167
    175.Paulsson N J,Winquist F.Analysis of breath alcohol with a multisensor array:instrumental setup,characterization and evaluation.Forensic Sci Int,1999,105(2):95-114
    176.Pavlou A K,Magan N,Sharp D,Brown J,Barr H,Turner A P.An intelligent rapid odour recognition model in discrimination of Helicobacter pylori and other gastroesophageal isolates in vitro.Biosens Bioelectron,2000,15(7-8):333-342
    177.Percival D C,Eaton L J,Stevens D E,Prive J P.Use of windbreaks in low bush blueberry(Vaccinium Angustifolium Ait).production.Ⅶ International Symposium on Vaccinium Culture 574,2000:309-316
    178.Persaud K,Dodd G.Analysis of discrimination mechanisms in the mammalian olfactory system using a model nose.Nature,1982,299(5881):352-355
    179.Pething R.Dielectric properties of biological materials:biophysical and medical applications.IEEE Trans Electr Insul,1984,19:453-474
    180.Piccoli A,Pastori G,Codognotto M,Paoli A.Equivalence of information from single frequency v.bioimpedance spectroscopy in bodybuilders.Br J Nutr,2007,97(1):182-92
    181.Plank L D,Monk D N,Woollard G A,Hill G L.Evaluation of multifrequency bioimpedance spectroscopy for measurement of the extracellular water space in critically ill patients.Applied Radiation and Isotopes,1998,49(5-6):481-483
    182.Pournis N,Papavergou A,Badeka A,Kontominas M G,Sawaidis I N.Shelf-life extension of refrigerated Mediterranean mullet(Mullus surmuletus) using modified atmosphere packaging.J Food Prot,2005,68(10):2201-2207
    183.Raatikainen O,Pursiainen J,Hyvonen P,von Wright A,Reinikainen S P,Muje P.Fish quality assessment with ion mobility based gas detector.Meded Rijksuniv Gent Fak Landbouwkd Toegep Biol Wet,2001,66(3b):475-480
    184.Rebelo D,Teixeira J,Marques-Vidal P,Oliveira J M.Obesity markers and blood pressure in a sample of Portuguese children and adolescents.Eur J Cardiovasc Prev Rehabil,2008,15(1):73-77
    185.Repo T,Zhang G,Ryyppo A,Rikala R(2000).The electrical impedance spectroscopy of Scots pine(Pinus sylvestris L.) shoots in relation to cold acclimation,Soc Experiment Biol.51:2095-2107
    186.Rock F,Gurlo A,Weimar U.Multisensor system for characterization of packaging emissions:prediction of total solvent amount and odor scores.Anal Chem,2005,77(9):2762-2769
    187.Rodriguez T,Montilla J J,Bello R A.Fish silage from shrimp by catch fish:I.Preparation and biological evaluation.Arch Latinoam Nutr,1990,40(3):426-38
    188.Rosenbaum A,Howard H C,Breen P H.Novel portable device measures preoperative patient metabolic gas exchange.Anesth Analg,2008,106(2):509-16,table of contents
    189.Rudnitskaya A,Legin A.Sensor systems,electronic tongues and electronic noses,for the monitoring of biotechnological processes.J Ind Microbiol Biotechnol,2008
    190.Schafroth Torok S,Lenppi J D,Baty F,Tamm M,Chhajed P N.Combined Oximetry-Cutaneous Capnography in Patients Assessed for Long Term Oxygen Therapy.Chest,2008,3
    191.Schweizer-Berberich P M,Vaihinger S,Gopel W.Characterization of food frshness wiht sensor arrays.Sensors and Actuators B,1994,18(1-3):282-290
    192.Sena C,Bello R A.Preparation of a spread from shrimp by-catch fish.Arch Latinoam Nutr,1988,38(4):865-882
    193.Shackelford S D,Wheeler T L,Koohmaraie M.Development of optimal protocol for visible and near-infrared reflectance spectroscopic evaluation of meat quality.Meat Science,2004,68(3):371-381
    194.Shackelford S D,Wheeler T L,Koohmaraie M.On-line classification of US Select beef carcasses for longissimus tenderness using visible and near-infrared reflectance spectroscopy.Meat Science,2005,69(3):409-415
    195.Skibsted E,Lindemann C,Roca C,Olsson L.On-line bioprocess monitoring with a multi-wavelength fluorescence sensor using multivariate calibration.J Biotechnol,2001,88(1):47-57
    196.Tavares J F,Baptista J A,Marcone M F.Milk-coagulating enzymes of tuna fish waste as a rennet substitute.Int J Food Sci Nutr,1997,48(3):169-176
    197.Triqui R,Bouchriti N.Freshness assessments of Moroccan sardine(Sardina pilchardus):comparison of overall sensory changes to instrumentally determined volatiles.J Agric Food Chem,2003,51(26):7540-7546
    198.Vainola A,Repo T.Impedance Spectroscopy in Frost Hardiness Evaluation of Rhododendron Leaves.Annals of Botany,2000,86:799-805
    199.Vargas-Rodriguez E,Rutt H N.Analytical method to find the optimal parameters for gas detectors based on correlation spectroscopy using a Fabry-Perot interferometer.Appl Opt,2007,46(21):4625-4632
    200.Vozary E,Meszaros P Effect of Mechanical Stress on Apple Impedance Parameters.13th International Conference on Electrical Bioimpedance and the 8th Conference on Electrical Impedance Tomography,2007,Graz,Austria,Springer Berlin Heidelberg
    201.Vozary E,Laslo P,Zsivanovits G.Impedance Parameter Characterizing Apple Bruise.Annals of the New York Academy of Sciences,1999,873(1):421-429
    202.Watanabe E,Tamada Y,Hamada-Sato N.Development of quality evaluation sensor for fish freshness control based on KI value.Biosens Bioelectron,2005,21(3):534-538
    203.Wen G,Zhang Y,Shuang S,Dong C,Choi M M.Application of a biosensor for monitoring of ethanol.Biosens Bioelectron,2007,23(1):121-129
    204.Wu L,Ogawa Y,Tagawa A.Electrical impedance spectroscopy analysis of eggplant pulp and effects of drying and freezing-thawing treatments on its impedance haracteristics.Journal of Food Engineering,2007,87(2):274-280
    205.Xing J,Ngadi M,Gunenc A,Prasher S,Gariepy C.Use of visible spectroscopy for quality classification of intact pork meat.Journal of Food Engineering,2007,82(2):135-141
    206.Yapar A,Yetim H.Determination of anchovy freshness by refractive index of eye fluid.Food Research International,1998,31(10):693-695
    207.Zamojska S,Szklarek M,Niewodniczy M,Nowicld M.Correlates of habitual physical activity in chronic haemodialysis patients.Nephrol Dial Transplant,2006,21(5):1323-1327
    208.Zdolsek H J,Lindahl O A,Angquist K-A,Sjoberg F.Non-invasive assessment of intercompartmental fluid shifts in burn victims.Burns,1998,24(3):233-240
    209.Zhang C,Bailey D P,Suslick K S.Colorimetric sensor arrays for the analysis of beers:a feasibility study.J Agric Food Chem,2006,54(14):4925-4931
    210.Zhang G,Ryyppo A,Repo T.The electrical impedance spectroscopy of Scots pine needles during cold acclimation.Physiologia Plantarum,2002,115(3):385-392
    211.Zhang M I N,Repo T,Willison J H M,Sutinen S.Electrical impedance analysis in plant tissues:on the biological meaning of Cole-Cole α in Scots pine needles.European Biophysics Journal,1995,24(2):99-106
    212.Zhu F,Wystrychowski G,Kitzler T,Thijssen S,Kotanko P,Levin N W.Application of bioimpedance techniques to peritoneal dialysis.Contrib Nephrol,2006,150:119-128

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700