用户名: 密码: 验证码:
利用小当量人工震源进行区域性深部探测的试验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
获取区域尺度地下结构的4D图像是探索地震物理预测、研究大陆动力学的重要途径。天然地震释放的能量大,但因为震源定位存在较大误差,故主要用于研究全球性大尺度问题,在研究区域性问题时分辨率常常显得不足。传统的深部结构探测,通常使用大当量炸药为震源,不环保且成本较高,难以在城市地区开展研究;又因采取流动地震测线的接收方式,覆盖区域有限,无法用来获取4D图像。对此不足,如果能做到小当量人工震源激发,区域地震台网(阵)远距离也能探测到信号,这将为地球科学建立研究地下的技术平台。
     本论文围绕2004年至2007年中国地震局联合众多单位在首都圈地区开展的多次人工地震实验,以采集到的首都圈固定地震台网和流动地震台数据为基础资料,从震源的激发、接收、数据处理和应用等方面较系统地研究了小当量人工震源探测区域性深部结构及其演化的可行性。
     炸药是陆地上使用时间最久、用途最广的震源。利用小药量的震源激发,能否获得较大范围的探测尺度是地球物理学家们十分关注的问题。论文利用10-25kg炸药量的陆地井下激发实验研究了小当量炸药的探测范围。结果表明25kg炸药的激发能量相当于M_L0.69天然地震,最远接收台的探测距离却超过200km,穿透深度约40km,振幅仅1.6nm。可识别Pg,Pm和Pc震相。此外,10-25kg炸药激发的波形具有相似性,可构成一定精度的重复地震。而利用三次大小炮联合实验计算出的振幅比和药量比关系,可用来提高小当量炸药的检测距离。综合分析得出:在良好的激发和接收条件下可以选择小当量炸药作为区域性震源,但炸药激发效果的可控性不高,重复性有限,应用潜力有限。
     气枪是海洋地震勘探使用最广的震源,将气枪移植到陆地,需对其激发特性和激发效果进行分析。论文研究了6000-8000inch~3的陆地水库气枪的探测距离、可重复性和影响因素等特征。结果表明气枪单次激发能量仅等同于1.4-1.6kg的炸药,但因为水中激发的地震波能量转换率比陆地炸药高10倍左右,激发产生的震级却相当于M_L0.5-0.6的天然地震。单次激发信号可传播120km,采用信号叠加技术后185km长的流动测线和近400km处的固定地震台可清晰记录到Pg,Pc,PmP,Pn,Sg,SmS,Sn等震相,穿透深度可至上地幔顶部。分析还表明:气枪具有环保、经济、较高可操作性和高度可重复性(相关系数平均值大于0.96)的特点,是较理想的区域性研究震源,而且激发效果容易控制,通过增加气枪容量和沉放深度的方式就可以有效提高气枪的探测范围。
     区域地震台网是人工震源主动探测地下结构、研究地下介质物性变化的重要组成部分,认识并充分利用固定地震台网对4D地震学研究意义重大。为了研究台网对短周期微弱信号(1-20Hz)的检测能力,论文通过分析首都圈固定地震台网2000多条噪声数据,得出基岩台的背景噪声平均水平低于沉积层台约13dB。台址的好坏可以根据对某一次地震记录的信噪比大小来比较,2006年朝鲜地下核试验提供了这次难得的机会,波形记录经1-5Hz滤波后,台网中的18个基岩台可以清晰辨认核爆破产生的P波或Lg波,研究表明背景噪音较小的台站通常也具有较高的信噪比;而通过台网的基岩台计算得到的朝鲜核试验震级和NEIC计算的震级结果相同,表明基岩台的记录是真实可靠的。因此一些较好的基岩台可在4D地震学研究中重点研究,发挥其重要作用。
     首都圈的大城市都建在沉积层上,研究沉积层区地震波激发、传播和衰减特征对开展城市区域的地下结构成像至关重要。研究发现2570inch~3的气枪在渤海激发,区域地震台网可在近100km处检测到波速为1.7-1.8km/s的强震相,但P波的传播距离仅为21km。8000inch~3水库气枪激发的P波在沉积层区传播距离也不超过30km。研究还表明沉积层会从波形、噪声、信噪比和衰减等各方面较严重地影响深部探测的结果。根据人工地震实验和天然地震的衰减规律,引入半衰距离的概念来表征衰减的快慢,得出地震波在浅部沉积层的半衰距离为几十米,远远低于基岩的几公里。地震波的衰减并非线性变化,因此人工地震波的检测距离存在一定的突变性。
     S波分裂可以为地震预测探索实践提供可靠的物理途径。论文对水库气枪实验数据进行S波分裂分析,发现气枪激发可以产生S波(Sg和SmS)。S波来自于气枪激发的P波在液-固界面的转化,S波能量较强,叠加后和M_L 1.6天然地震相当。对布置在燕山隆起带的流动地震台的气枪信号进行S波分裂参数分析,结果表明快剪切波偏振优势方向为NWW和NNE向,偏振方向和区域断裂的性质密切相关。气枪是高度可重复性人工震源,利用气枪定点激发和定点接收有可能精确获取S波分裂参数,参数随时间的变化规律可以反映应力场随时间的变化,可应用于地震的物理预测。
The 4D map of regional structure of deep earth provides important information for earthquake prediction and understanding the continental geodynamics. Suitable seismic source and advanced recording and processing systems are necessary to produce the 4D map. Although natural earthquakes can release huge amounts of energy, the epicenters of natural earthquakes are not accurate enough to be used for producing the 4D map. Traditionally, explosives are used as the seismic sources for exploring depth structure. However, explosives are expensive and have a large negative effect on the environment, so it is difficult to use them. Alternative seismic sources are necessary. If we can use a regional seismic network or seismic array to detect the seismic signal generated from small artificial seismic sources far away, it will provide a practical way to explore the regional deep structure of the Earth.
     From 2004 to 2007, China Earthquake Administration with some other organizations held several artificial seismic experiments. In this paper, I will discuss some topics of using small artificial seismic sources to explore regional structure of the deep earth, including features of the artificial seismic sources, signal detection, data processing technics and application. The data used in this paper is based on the seismic datasets recorded by Capital Area Seismograph Network(CASN) and portable seismic stations.
     Explosion is the most common source for seismic exploration in the land. However, is a small explosive a good source to investigate the deep structure? A borehole explosion experiment with 10-25kg chemical charges was conducted to answer this question. The energy of the explosive equals to a about M_L0.69 natural earthquake. The seismic wave generated by 25kg explosive can be detected by a permanent seismic station with offset up to 218km, and the seismic phases Pg, Pm and Pc can be identified. Pm waves can be detected with the peak-to-peak amplitude being about 1.6 nanometers and the depth of propagation is about 40km. The comparability of seismic waves generated by several 10-25kg explosions shows that the explosion is a fairly repeatable source. The relationship between amplitude of seismic wave and charge of the explosives was calculated. The result shows that the explosive can be used as the seismic source for deep structure exploration if the source and receiver conditions are good. However, it is not easy to control the conditions and the explosive has a limited application.
     The airgun is the most important seismic source in marine exploration. We conducted two experiments using airguns in a reservoir. The airgun-array (4 airguns) had a volume of 6000-8000 cubic inches and the energy released by one shot is equivalent to a 1.4-1.6 kg TNT explosion. Because more energy is transformed into seismic waves in the water than in the land, the energy of an airgun-array is equivalent to a M_L0.5-0.6 earthquake. In order to enhance the signal, we stack the recordings of about 272 shots for each receiver. The phases of Pg, Pc, PmP, Pn and Sg, SmS, Sn can be picked easily in the stacked seismic recordings. We found that once stacked, the signal can be detected by receivers with offset up to 185km and by a permanent station with offset upto 400km. The crosscorrelation coefficient (CC) of the signal is higher than 0.96. The results shows that airgun is also a green, cheap source with high controllability and repeatability, so it is the suitable source for exploring regional deep structure of the Earth.
     The regional seismic network plays an important role for studying deep crustal structure and monitoring the changes of rock properties via artificial seismic source. The artificial sources generally generate short-period seismic signals between l-20Hz. In order to study the ability of the seismic network to detect short -period weak signals, I analyse noise datasets of the CASN. The results show that the background noise level at seismic stations on bedrock is about 13dB lower than that at stations located on sedimentary layers. An underground nuclear explosion detonated by North Korea in 2006 is a good opportunity to examine the ability of CASN to detect weak signals. The records band-pass filtered between 1-5Hz show that the P or Lg waves generated by the nuclear explosion can clearly be recorded by 18 seismic stations located on bedrock. The average amplitude of the P waves is 16 nanometers. The magnitude calculated is mb4.3, the same as that given by NEIC. The result also shows the background noise level of a station is one of the most important factors for signal detectability. The good bedrock stations can play a significant role in 4D seismology.
     Nearly all the big cities in the Beijing area are located on sedimentary layers. The propagation and attenuation of seismic waves in sedimentary layers are different from that in the deep earth. It is important to know the features of the sedimentary layers when we want to obtain underground structure maps of the urban areas. A strong phase is found in the signal generated by airguns with a volume of 2570 cubic inches in Bo-Sea. Its velocity is about 1.7-1.8km/s and can be detected with offset up to nearly 100km. Note that the P wave can only be detected at offsets up to 21km. Even by increasing the the airgun volume to 8000 cubic inches, the P wave generated by airguns in a reservoir is only detected at offsets up to 30km. The result shows that the waveforms, signal-to-noise ratio and attenuation of seismic waves in the sedimentary layers are factors affecting the result of detection. The attenuation of seismic wave in sedimentary layers is much stronger than in rocks, and the variation is not linear, which means the detection range of the signal is not a linear relation with distance.
     Shear wave splitting is an possible method for earthquake stress-forecasting. I applied shear-wave splitting analysis to a seismic dataset generated by airguns in a reservoir. We found that the seismic data contains shear-waves (Sg and SmS). The shear-waves are converted at the water-solid interface from P-waves generated by the airgun source, and the energy of the converted shear-wave is equivalent to the energy released by a M_L 1.6 earthquake. We analyzed the data recorded by a seismic line deployed over the Yanshan uplift. The results shows that the predominant polarizations of the fast shear-wave are in the directions of NWW and NEE, which are affected by the characteristics of the local fault system. Using an airgun as a repeatable seismic source and recording the data at a fixed point, the variation of shear-wave splitting parameters can indicate the variation of local stress-strain fields, and hence provides a method for earthquake stress-forecasting.
引文
安艺敬一,P G理查兹.定量地震学[M].北京:地震出版社,1987.
    彼得.鲍曼.新地震观测实践手册[M].北京:地震出版社,2006.
    陈浩林,宁书年,熊金良,等.气枪阵列子波数值模拟[J].石油地球物理勘探,2003,38(4):363-368.
    陈培善.地震波衰减研究的最新进展[J].国际地震动态,1989,1:1-8.
    陈培善.地震波衰减研究在我国的进展[J].地球物理学报,1994,37增(1):231-241.
    陈棋福,李丽,李纲,等.列车振动的地震记录信号特征[J].地震学报,2004,26(6):651-659.
    陈绍绪,刁桂苓,罗兰格.超大功率振动源在首都圈地震监测预报中的应用研究[J].国际地震动态,2002,(7):15-17.
    陈颙,陈龙生,于晟.城市地球物理学发展展望[J].大地测量与地球动力学,2003b,23(4):l_4.
    陈颙,李丽.地震科学的几个发展趋势[J].国际地震动态,2003a,1:2-6.
    陈颙,李宜晋.地震波雷达研究展望:用人工震源探测大陆地壳结构[J].中国科学技术大学学报,2007b,37(8):813-819.
    陈颙,王宝善,葛洪魁,等.建立地震发射台的建议[J].地球科学进展,2007a,22(5):441-446.
    陈颙,张尉,陈汉林,等.地震雷达[J].地球物理学进展,2006b,21(1):1-5.
    陈颙,张先康,丘学林,等.陆地人工激发地震波的一种新方法[J].科学通报,2007c,52(11):1317-1321.
    陈颙,周华伟,葛洪魁.华北地震台阵探测计划[J].大地测量与地球动力学,2006a,25(4):1-5.
    陈颙,朱日祥.设立“地下明灯研究计划”的建议[J].地球科学进展,2005,20(5):485-489.
    陈运泰,吴忠良,王培德,等.数字地震学[M].北京:地震出版社,2000.
    邓东,张宏乐,沈向军,等.新一代国产可控震源KZ-30[J].物探装备,2005,15(1):72-74.
    方盛明,张先康,刘保金,等.探测大城市活断层的地球物理方法[J].地震地质,2002,24(4):606-613.
    方盛明,张先康,刘保金,等.城市活断层地震勘探的最佳组合方法与应用研究[J].地震地质,2006,28(4):646-654.
    方玄昌.中国正式加入”探月俱乐部”与最高水平仍存差距[EB/OL].http://auto.chinanews.com.cn/gn/n ews/2007/10-26/1060556.shtml.2007-10-26.
    冯少孔.微动勘探技术及其在土木工程中的应用[J].岩石力学和工程学报,2003,22(6):1029-1036.
    傅承义,陈运泰,祁贵仲.地球物理学基础[M].北京:科学出版社,1985.
    傅承义.地球介质中的面波与导波(综述)[J].声学学报,1965,2(2):49-55.
    高锐,李秋生,赵越,等.燕山造山带深地震反射剖面启动探测研究[J].地质通报,2002,21(12):905-906.
    高霞,魏文博,张永旺.小型冲击叠加震源及应用效果[J].勘探地球物理进展,2006,29(4):290-295.
    高原,藤吉文.中国大陆地壳与上地幔地震各向异性研究[J].地球物理学进展,2005,20(1):180-185.
    高原,郑斯华,孙勇.唐山地区地壳裂隙各向异性[J].地震学报,1995,17(3):283-293.
    高原,郑斯华.唐山地区剪切波分裂研究(Ⅱ)—相关函数分析法[J].中国地震,1994,10(增刊):11-21.
    高原.利用剪切波分裂研究地壳介质各向异性[J].安徽师范大学学报,2006,29(3):205-211.
    高原.唐山地区近震S波分裂的观测与研究[J].地震,1995,3:208-213.
    高原.唐山地区快剪切波偏振图像及其变化[J].地球物理学报,1999,42:228-232.
    葛洪魁,林建民,王宝善,等.编码震源提高地震探测能力的野外实验研究[J].地球物理学报,2006,49(3):864-870.
    郭飙,刘启元,陈九辉,等.首都圈数字地震台网的微震定位实验[J].地震地质,2002,24(3):453-459.
    郭建.一种新型地震专用炸药震源[J].勘探地球物理进展,2004,27(6):451-454.
    国家地震局《深部物探成果》编写组.中国地壳上地幔深部探测成果[M].北京:地震出版社,1986.
    国家地震局科技监测司.地震观测技术[M].北京:地震出版社,1995.
    何汉漪.海上高分辨率地震技术及其应用[M].北京:地质出版社,2001.
    和伟,高攸纲.用表面阻抗法求雷电产生的水平电场[J].北京邮电大学学报,1999,22(4):56-59.
    黄金莉,赵大鹏.首都圈地区地壳三维P波速度细结构与强震孕育的深部构造环境[J].科学通报,2005,50(4):348-355.
    黄凯,徐群洲,杨晓海,等.地震波能量的衰减及其影响因素[J].新疆石油地质,1997,18(3):212-216.
    嘉世旭,刘昌铨.华北地区人工地震测深震相与地壳结构研究[J].地震地质,1995,17(2):97-105.
    嘉世旭,齐诚,王夫运,等.首都圈地壳网格化三维结构[J].地球物理学报,2005b,48(6):1316-1324.
    嘉世旭,张先康,方盛明.华北裂陷盆地不同块体地壳结构及演化研究[J].地学前缘,2001,8(2):259-265.
    嘉世旭,张先康.华北不同构造块体地壳结构及其对比研究[J].地球物理学报,2005a,48(3):611-620.
    简文彬,李哲生,黄真萍,等.福建沿海地区地微动的谱结构特征[J].工程地质学报,2002,10(2):216-219.
    赖院根,刘启元,陈九辉,等.新疆伽师强震群区的横波分裂与应力场特征[J].地球物理学报,2002,45(1):83-92.
    赖院根.流动宽频带地震台阵:首都圈横波分裂与地壳应力场[D].[硕士学位论文]北京:中国地震局地质研究所.2004.
    雷军,王培德,姚陈,等.云南剑川近场横波特征及其与构造的关系[J].地球物理学报,1997,40(6):791-801.
    李成香,强建科,王建军.地质雷达在公路裂缝检测中的应用[J].工程地球物理学报,2004,1(3):282-286.
    李辉,戴旭初,葛洪魁,等.基于互信息量的地震信号检测和初至提取方法[J].地球物理学报,2007,50(4):1190-1197.
    李娟.首都圈地区Pn和PmP层析成像研究[D].[博士学位论文].北京:中国地震局地球物理研究所,2003.
    李丽,彭文涛,李纲,等.可作为新震源的列车振动及实验研究[J].地球物理学报,2004,47(4):680-684.
    李庆忠.地球物理勘探技术:寻找石油的眼睛[J].中国科技画报,2001,(5):62-64.
    李庆忠.走向精确勘探的道路[M].北京:石油出版社,1993.
    李秋生,卢德源,高锐,等.新疆地学断面(泉水沟.独山子)深地震测深成果综合研究[J].地球学报,2001,22(6):534-540.
    李松林,张先康,宋占隆,等.多条人工地震测深剖面资料联合反演首都圈三维地壳结构[J].地球物理学报,2001,44(3):360-370.
    李文栋,赵根模,郭瑞芝,等.平原新生代沉积层对天津地方震定位影响及改善途径的研究[J].地震地磁观测与研究,2001,22(5):35-41.
    李雪英,陈立强,赵英萍,等.首都圈数字遥测地震台网单台震级偏差研究[J].华北地震科学,2004,22(3):33-39.
    李英康,高锐,李敬卫,等.深地震测深数据子库[J].地球学报,2001,22(6):486-490.
    梁慧云,李松林.俄罗斯的人工地震探测研究进展[J].大地测量与地球动力学,2004,24(4):117-122.
    梁慧云,张先康.各国地壳上地幔沈地震反射研究计划与进展[J].地球物理学进展,1996,11(1):42-60.
    廖成旺,庄灿涛,梁鸿森.精密可控常时震源系统(ACROSS)的初步实验[J].中国地震,2003,19(1):89-96.
    林建民,王宝善,葛洪魁,等.大容量气枪震源特征及地震波传播的震相分析[J].地球物理学报,2008,51(1):206-212.
    林建民,王宝善,葛洪魁,等.重复地震及其在人工探测中的潜在应用[J].中国地震,2006,22(1):1-9.
    林君.电磁驱动可控震源地震勘探原理及应用[M].北京:科学出版社,2004.
    刘昌铨,刘明军.利用华北北部深中地球物理资料数值模拟地壳应力场[J].地震学报,1998,20(3):240-249.
    刘洪斌,陈如恒.地震勘探震源的历史与发展[J].石油机械,1997,25(8):43-45,52.
    刘洪涛,翟明国,刘建明,等.华北克拉通北缘中生代花岗岩:从碰撞后到非造山[J].岩石学报,2002,18(4):433-448.
    刘建华,胥颐,郝天珧.地震波衰减的物理机制研究[J].地球物理学进展,2004,19(1):1-7.
    刘堃,张中杰,滕吉文,等.中国陆区S波分裂的频带相关性及其意义[J].中国科学,2001,31(2):155-161.
    刘启元.高分辨率地震成像研究:21世纪地震学发展的一个重要趋势[J].国际地震动态,2000,(4):9-11.
    刘峡,傅容珊,杨国华,等.用GPS资料研究华北地区形变场和构造应力场[J].大地测量与地球动力学,2006,26(3):33-39.
    刘志,张先康,嘉世旭,等.泰安—忻州剖面S波分裂计算及介质 各向异性与深部构造相关性探讨[J].地球物理学进展,2000,15(3):3.
    卢德源,李秋生,高锐,等.横跨天山的人工爆炸地震剖面[J].科学通报,2000,45(9):982-988.
    陆涵行,曾融生,郭建明,等.唐山震区深反射剖面分析[J].地球物理学报,1988,31(1):27-36.
    罗桂纯,葛洪魁,王宝善,等.气枪震源激发模式及应用[J].中国地震,2007,23(3):225-232.
    罗桂纯,王宝善,葛洪魁,等.气枪震源在地球深部结构探测中的应用研究进展[J].地球物理学进展,2006,21(2):400-407.
    罗桂纯.利用相关检测法进行地震波速及其变化的精确测量[D].[硕士学位论文].北京:中国地震局地震预测研究所,2006.
    马文涛,徐锡伟,于贵华,等.首都圈地区的地震活动性与断裂的关系[J].地震地质,2004, 26(2):293-304.
    美国“地球透镜计划”项目组.美国“地球透镜计划”[J].国际地震动态,2004,3:22-41.
    孟国杰,黄志斌,王永力,等.首都圈遥测台网卫星传输数据流与传递函数[J].地震地磁观测与研究,2003,24(5):20-25.
    聂文英,祝治平,张先康,等.穿过张家口—渤海地震带西缘的折射剖面所揭示的地壳上地幔构造与速度结构[J].地震研究,1998,21(1):94-101.
    潘纪顺,刘保金,朱金芳,等.城市活断层高分辨率地震勘探震源对比试验研究[J].地震地质,2002,24(4):533-541.
    潘纪顺,张先康,刘保金,等.城市活断层的抗干扰高分辨率浅层地震勘探研究[J].中国地震,2003,19(2):148-157.
    潘文锋,赵伟卫,孟祥顺,等.高分辨率地震勘探中最佳药量及耦合条件的选取[J].石油地球物理勘探,2000,35(4):443-451.
    彭远黔,刘素英.承德钢铁公司黑山铁矿矿山爆破地震动效应[J].山西地震,1997,90(3):18-23.
    齐诚,陈棋福,陈颙.利用背景噪声进行地震成像的新方法[J].地球物理学进展,2007,3:771-777.
    齐诚,赵大鹏,陈颙,等.首都圈地区地壳P波和S波三维速度结构及其与大地震的关系[J].地球物理学报,2006,49(3):805-815.
    钱荣钧.炸药震源激发效果分析[J].石油地球物理勘探,2003,38(6):583-588.
    钱绍瑚,李套山.炸药震源爆炸机制及激发条件的研究[J].石油物探,1998,37(3):1-14,33.
    丘学林,陈颙,朱日祥,等.大容量气枪震源在海陆联测中的应用:南海北部试验结果分析[J].科学通报,2007,52(1):1-7.
    丘学林,赵明辉,叶春明,等.南海东北部海陆联测与海底地震仪探测[J].大地构造与成矿学,2003,27(4):295-300.
    山长仑,张玲,李永红,等.爆破短周期面波的分析[J].地震地磁观测与研究,2001,22(6):43-48.
    施浒立.美国GPS的发展之路[N].科学时报,2004-9-30
    孙若昧,赵燕来,梅世蓉.渤海及其邻区的地震层析成像[J].地球物理学报,1993,36(1):44-54。
    陶知非.可控震源的现状与问题[J].石油物探装备,1995,5(1):11-26.
    滕吉文,张中杰,王光杰,等.地球内部各圈层介质的地震各向异性与地球动力学[J].地球物理学进展,2000,15(1):1-35.
    汪品先.我国的地球系统科学研究向何处去[J].地球科学进展,2003,18(6):837-851.
    王宝善,孙道远,李生杰.岩石非均匀性对超声衰减的影响及其修正[J].中国地震,2001,17(1):1-7.
    王椿镛,丁志峰,陈学波,等.大别造山带地壳S波分裂和介质各向异性[J].科学通报,1997b,42(23):2539-2542.
    王椿镛,丁志峰,宋建立,等.大别造山带地壳S波速度结构[J].地球物理学报,1997a,40(3):337-346.
    王恩福,陈学波,祝水平.利用地壳测深资料研究剪切波分裂与偏振异常[J].地震学报,1993,15(1):1-8.
    王海燕,高锐,卢占武,等.地球深部探测的先锋.深地震反射方法的发展与应用[J].勘探地球物理进展,2006,29(1):7-19.
    王云峰.高分辨率空气枪阵列及子波研究[J].中国海上油气(地质),1996,10(6):395-401.
    王振东.浅层地震勘探应用技术[M].北京:地质出版社,1988.
    吴建平.城市地震活断层探测的地球物理方法[J].国际地震动态,2001,(8):2-15.
    吴晶,高原,陈运泰,等.首都圈西北部地区地壳介质地震各向异性特征初步研究[J].地球物理学报,2007,50(1):209-220.
    吴其斌,国外深地震反射研究之现状[J].地质科技情报,1993,12(1):85-91.
    熊章强,方根显.浅层地震勘探[M].北京:地震出版社,2002.
    徐果明,周惠兰.地震学原理[M].北京:科学出版社,1982.
    徐菊生,袁金荣,高士钧,等.利用GPS观测结果研究华北地区现今构造应力场[J].地壳形变与地震,1999,29(2):81-89.
    徐明才,高景华.欧美陆地反射地震调查[J].国外地质勘探技术,1992,6:17-22.
    徐平,王宝善,张尉,等.利用互相关系数求地震波衰减[J].地球物理学报,2006,49(6):1738-1744.
    徐惟诚主编.中国大百科全书.大气科学卷[M].北京:中国大百科全书出版社,2000.
    徐锡伟,吴卫民,张先康,等.首都圈地区地壳最新构造变动与地震[M].北京:科学出版社,2002.
    阎贫.海底地震仪记录中的横波[J].海洋地质与第四纪地质 1998,18(115-118).
    杨光亮,朱元清.可控震源在深部地壳探测中的应用[J].大地测量与地球动力学,2007,27(5):72-81.
    杨怀春,高生军.海洋地震勘探中空气枪震源激发特性研究[J].石油物探,2004,43(4):323-326.
    姚陈,陈祥国,唐建侯.爆破源地震反射波三分量记录理论地震图研究[J].石油地球物理勘探,1999,34(210-217).
    姚陈,郝重涛,蔡明刚.理论地震图解释爆破源横波[A].见:中国地球物理学会,中国地球物理学会第二十三届年会,青岛,2007.
    姚陈.卢龙地区S波偏振与上地壳裂隙各向异性[J].地球物理学报,1992,35(3):305-315.
    于晟,常旭.中国2000城市地球物理研究战略研讨会简况[J].地球物理学进展,2000,16(1):117-119.
    於国平,姜海,魏学进.Vsp气枪震源的研制与应用[J].物探装备,2002,12(1):18-20,27.
    俞寿朋.地震勘探[G].见:姜椿芳 主编.中国大百科全书·固体地球物理学测绘学空间科学卷.北京:中国大百科全书出版社,1992.
    原秦喜,孙鸿,戴鹏,等.人工地震测深和天然地震流动观测兼用的轻便数字地震仪系统[J].中国地震,1999,15(2):159-166.
    曾鸾,李志勇,高凤珍.大吨位可控震源的应用及效果分析[J].石油物探,2002,41(3):327-333.
    曾融生.固体地球物理学导论[M].北京:科学出版社,1984.
    张成科,张先康,赵金仁,等.渤海湾及其邻区壳幔速度结构研究与综述[J].地震学报,2002,24(4):428-435.
    张松涛.GPS的接受原理与定位技术[J].兵工自动化,2004,23(1):9.
    张先康,李松林,王夫运,等.青藏高原东北缘、鄂尔多斯和华北唐山震区的地壳结构差异——深地震测深的结果[J].地震地质,2003,25(1):52-60.
    张雪亮,黄树棠.爆破地震效应[M].北京:地震出版社,1981.
    张智,刘财,邵志刚.地震勘探中的炸药震源药量理论与实验分析[J].地球物理学进展,2003,18(4):724-728.
    张中杰,白志明,王椿镛,等.三江地区地壳结构及动力学意义:云南遮放-宾川地震反射/折射剖面的启示[J].中国科学,2005,35(4):314-319.
    张中杰,藤古文,贺振华.EDA介质中地震波速度、衰减与品质因子方位异性研究[J].中国科学(E辑),1999,29(6):569-574.
    张中杰.地震各向异性研究进展[J].地球物理学进展,2002,17(2):281-293.
    赵根模,王大宏,任峰,等.声波方法在城市活断层探查与评价中的应用——人工地震、雷达和声波方法的比较与组合[J].中国地震,2003,19(3):217-224.
    赵明辉,丘学林,夏戡原,等.南海东北部海陆联测地震数据处理及初步结果[J].热带海洋学报,2004,23(1):58-63.
    赵明辉,丘学林,夏少红,等.南海东北部三分量海底地震仪记录中横波的识别和分析[J].自然科学进展,2007,17(11):1516-1523.
    郑秀芬,张春贺,孙振凯.美国“地球透镜计划”[J].国际地震动态,2004,3:22-41.
    中国地震局分析预报中心.首都圈台网技术报告.首都圈防震减灾示范区系统工程项目单项工程验收材料(编号SSD-0-1)[R].北京:中国地震局.2002.
    中国地震学会普及工作委员会.院士专家谈地震[M].北京:地震出版社,2000.
    中国科学院地球物理研究所编.监测地下爆炸的地震方法[M].北京:中国科学技术情报研究所,1972.
    中国科学院地学部“中国地球科学发展战略”研究组.地球科学:世纪之交的回顾与展望[M].济南:山东教育出版社。2002.
    周宝华,刘威北.气枪震源的发展与使用分析(下)[J].物探装备,1998,8(2):1-6.
    朱金芳,徐锡伟,张先康,等.福州盆地及邻区地壳精细结构的深地震反射与高分辨率折射及宽角反射/折射联合探测研究[J].中国科学,2005,35(8):738-749.
    朱日祥.地球内部结构探测研究-以华北克拉通为例[J].地球物理学进展,2007,22(4):1090-1100.
    庄灿涛.首都圈数字地震遥测台网的技术构成[J].地震地磁观测与研究,1999,20(5):23-28.
    庄灿涛.探索预报大城市直下型灾害性地震的一种技术措施[J].国际地震动态,2002,13(8):35-37.
    左公宁.陆地电火花震源的特性及其应[J].勘察科学技术,2003,1:55-60.
    Alekseev A S,Chichinin I S,Komeev V A.Powerful Low-Frequency Vibrators for Active Seismology[J].Bull.Seismol.Soc.Am.,2005,95:1-17.
    Alekseev A S,Egorkin A V,Pavlenkova N I.Shear waves in lithosphere studies on the territory of the U.S.S.R[J].Tectonophysics,1988,154(3-4):227-239.
    Amick H.Frequency-dependent soil propagation model[J].Proceedings of SPIE,1999,3786:72-80.
    Ammon C J,Lay T.Nuclear Test Illuminates USArray Data Quality[J].EOS,2007,88(4):37-38.
    AMSAT-DL.Raumsonde VOYAGER 1 yon Funkamateuren empfangen[EB/OL],http://www.amsat-dl.o rg//index.php?option=com_content&task=view&id=62&Itemid=97.2006-04-03.
    Baeten G,Ziolkowski A.The Vibroseis Source[M].Oxford:Elsevier,1990.
    Barbier M G,Bondon P,Mellinger R,et al.Mini-SOSIE for land seismology[J].Geophysical Prospecting,1976,24(3):518-527.
    Bath M.Earthquakes in Sweden 1951-1976[J].Swed.Geol.Surv.NTIS,C,1979,750:79.
    Bohnhoff M,Makris J.Crustal structure of the southeastern Iceland-Faeroe Ridge(IFR) from wide aperture seismic data[J]. Journal of Geodynamics, 2004, 37(2):233-252.
    Bondar I, Myers S C, Engdahl E R, et al. Epicentre accuracy based on seismic network criteria[J]. Geophysical Journal International, 2004,156(3):483-496.
    Brooks S G, Chroston P N, Booth D C. Extensive dilatancy anisotropy (EDA) inferred from observations of crustal shear waves generated by a refraction experiment in northern Scandinavia[J]. Geophysical journal of the Royal Astronomical Society, 1987, 90(1):225-232.
    Caldewll J, Dragoset W. A brief overview of seismic air-gun arrays[J]. The Leading Edge, 2000, 19(8):898-902.
    Caldwell J. Does air-gun noise harm marine mammals?[J]. The Leading Edge, 2002,21(1):75-78.
    Calvert A J. Seismic reflection imaging of two megathrust share zones in the northern Cascadia subduction zone[J]. Nature, 2004, 428:163-167.
    Chapman W L, Brown G L, Fair D W. The Vibroseis system: A high-frequency tool[J]. Geophysics, 1981, 46(12):1657-1666
    Chen Y, Chen Q F, Liu J, et al. Seismic Hazard and Risk Analysis: A Simplified Approach[M]. Beijing:Science Press, 2002.
    Cheng W B, Wang C, Shyu C T, et al. Crustal structure of the convergent plate-boundary zone, eastern Taiwan, assessed by seismic tomograp[J]. Geol Soc Am Special Paper, 2002, 358:161-176.
    Crarnpin S, Booth D C. Shear-wave polarizations near the North Anatolian Fault-11. Interpretation in terms of crack-induced anisotropy[J]. Geophys, 1985a:75-92.
    Crampin S, Evans R, Ucer S B. Analysis of records of local earthquakes: The Turkish Dilatancy Projects (TDP1 and TDP2), Geophys[J]. JRAstron. Soc, 1985b, 83(3):1-16.
    Crampin S, Evans R, Uecer B, et al. Observations of dilatancy-induced polarization anomalies and earthquake prediction[J]. Nature, 1980,286(5776):874-877.
    Crampin S, Gao Y, Chastin S, et al. Speculations on earthquake forecasting[J]. Seism Res Lett, 2003, 74(3):271-273.
    Crampin S, Volti T, Stefansson R. A successfully stress-forecast earthquake[J]. Geophys. J. Int, 1999, 138(1).
    Crampin S, Zatsepin S V. Modelling the compliance of crustal rock- Ⅱ. Response to temporal changes before earthquakes[J]. Geophys. J. Int, 1997,129:495-506.
    Crampin S. An introduction to wave propagation in anisotropic media[J]. Geophys. JR Astron. Soc, 1984, 76:17-28.
    Crampin S. Calculable fluid-rock interactions[J]. Journal of the Geological Society, 1999, 156(3):501-514.
    Crampin S. Developing stress-monitoring sites using cross-hole seismology to stress-forecast the times and magnitudes of future earthquakes[J]. Tectonophysics, 2001, 338(3-4):233-245.
    Crampin S. Geological and industrial implications of extensive-dilatancy anisotropy[J]. Nature, 1987, 328(6130):491-496.
    Crampin S. Seismic wave propagation through a cracked solid: polarization as a possible dilatancy diagnostic[J]. Geophys. JR astr. Soc, 1978, 53:467-496.
    Crampin S. Stress-forecasting: a viable alternative to earthquake prediction in a dynamic Earth[J]. Trans. R. Soc. Edin., Earth Sci, 1998, 89:121-133.
    Davis J L,Annan A P.Ground-penetrating radar for high-resolution mapping of soil and rock stratigraphy[J].Geophysical Prospecting,1989,37(5):531-551.
    Dekorp Research Group.Wide-angle vibroseis data from the western Rhenish Massif[J].Tectonophysics,1990,173:83-93.
    Digranes P,Mjelde R,Kodaira S,et al.A regional shear-wave velocity model in the central Voring Basin,N.Norway,using three-component Ocean Bottom Seismographs[J].Tectonophysics,1998,293(3-4):157-174.
    Dragoset W.Introduction to air guns and air-gun arrays[J].The Leading Edge,2000,19(8):892-987.
    Fang K.Pseudo-Spectral Modelling of Cracked Anisotropic Media and Rotation of Multicomponent Shear-Wave Data[D].[Master Thesis].Calgary:Univ.of Calgary,1998.
    Finn W D L,Wightman A.Ground motion amplification factors for the proposed 2005 edition of the National Building Code of Canada[J].Canadian Journal of Civil Engineering,2003,30(2):272-278.
    Fuis G S,Clayton R W,Davis P M,et al.Fault systems of the 1971 San Fernando and 1994 Northridge earthquakes,southern California:Relocated aftershocks and seismic images from LARSE Ⅱ[J].Geology,2003,31(2):171-174.
    Furumoto M,Hiramatsu Y,Satoh T.地震波速度变化と地殻内応力の测定[J].地震研究所汇报,2003,78:219-226.
    Furumoto M,Ichimori Y,Hayashi N,et al.Seismic wave velocity changes and stress build-up in the crust of the Kanto-Tokai region[J].Geophys.Res.Lett,2001,28:3737?740.
    Gao Y,Crampin S.Temporal variations of shear-wave splitting in field and laboratory studies in China[J].Journal of Applied Geophysics,2003,54(3-4):279-287.
    Gaskell T F.The Relation Between Size of Charge and Amplitude of Refracted Wave[J].Geophysical Prospecting,1956,4(2):185-193.
    Gelchinsky B,Shtivelman V.Automatic picking of first arrivals and parameterization of traveltime curves[J].Geophys.Prosp,1983,31:915-928.
    Geller R J,Jackson D D,Kagan Y Y,et al.Earthquakes cannot be predicted[J].Science(Washington,D.C.),1997,275(5306):1616-1617.
    Gibbons S J,Ringdal F.The detection of low magnitude seismic events using array-based waveform correlation[J].Geophysical Journal International,2006,165(1):149-166.
    Giese P,Prodehl C,Stein A.国家地震局地球物理勘探大队译,欧洲中部爆破地震研究[M].北京:地震出版社,1983.
    Gitterman Y,Ben-Avraham Z,Ginzburg A.Spectral analysis of underwater explosions in the Dead Sea[J].Geophys.J.Int.,1998,134(2):460-472.
    Gitterman Y,Hofstetter A.Dynamic features and identification of regional seismic signals from Dead Sea calibration shots[A],in:Israel Geol.Soc.,Israel Geol.Soc.Annual Meeting,Maalot,2000.
    Gupta I N,Wagner R A.Evidence for Rg-to-P scattering in teleseismic P coda of East Kazakh explosions[J].Bulletin of the Seismological Society of America,1992,82(5):2139-2152.
    Harrison M P.Processing of P-SV surface-seismic data:anisotropy analysis,dip moveout,and migration[D].[Ph.D.Thesis].Calgary:University of Calgary,1992.
    Holbrook W S,Menke W,Solomon S,et al.Imaging Earth History Beneath the Ocean Floor:Three Decades of Major Scientific Accomplishment[EB/OL]. http://www.geo-prose.com/projects/pdfs/imaging_earth.pdf. Oct. 2006.
    Ikuta R, Yamaoka K, Miyakawa K, et al. Continuous monitoring of propagation velocity of seismic wave using ACROSS[J]. Geophys. Res. Lett., 2002, 29.
    Jost M L, Schweitzer J, Harjes H P. Monitoring nuclear test sites with GERESS[J]. Bulletin of the Seismological Society of America, 1996, 86(1 A):172-190.
    Kim W Y, Sykes L R, Armitage J H, et al. Seismic waves generated by aircraft impacts and building collapses at World Trade Center, New York City[J]. EOS, 2001, 82(47):565-571.
    Kulhanek O. The Structure and Interpretation of Seismograms[G]. in: Lee W H, et al. ed. International Handbook of earthquake and engineering seismology. San Diego: Academic Press, 2002.
    Lutter W J, Fuis G S, Thurber C H, et al. Tomographic images of the upper crust from the Los Angeles basin to the Mojave Desert, California: Results from the Los Angeles Region Seismic Experiment: Journal of Geophysical Research[J]. Journal of Geophysical Research, 1999,104(B11):25543-25565.
    Maurice G, Barbier. Pulse coding in seismology[M]. Boston:International Human Resources Development Corporation, 1982.
    McCauley R D, Fewtrell J, Duncan A J, et al. Marine seismic surveys-a study of environmental implication[J]. APPEA Journal, 2000,40:692-708.
    McIntosh K, Nakamura Y, Wang T K, et al. Crustal-scale seismic profiles across Taiwan and the western Philippine Sea[J]. Tectonophysics, 2005, 401:23-54.
    Melhuish A, Holbrook W S, Davey F. Crustal and upper mantle seismic structure of the Australian Plate[J]. Tectonophysics, 2005, 395:113-135.
    Miller R D, Pullan S E, Waldner J S, et al. Field comparison of shallow seismic sources[J]. Geophysics, 1986,51:2067.
    NASA. Voyager Location in Heliocentric Coordinates[EB/OL]. http://voyager.jpl.nasa.gov/science/Vgrlo cations.pdf. 2007-06-22.
    Nazareth J J, Clayton R W. Crustal structure of the Borderland-Continent Transition Zone of southern California adjacent to Los Angeles[J]. J. Geophys Res., 2003, 108(B8):2404.
    Ni S, Kanamori H, Helmberge D. Energy radiation from the Sumatra earthquake[J]. Nature, 2005, 434(582).
    Nuttli O. The effect of the earth's surface on the S wave particle motion[J]. Bulletin of the Seismological Society of America, 1961, 51(2):237-246.
    O'Brien P. The Relationship between Seismic Amplitude and Weight of Charge[J]. Geophysical Prospecting, 1957, 5(3):349-352.
    Okaya D, Henrys S, Stem T. Double-side onshore-offshore seismic imaging of a plate boundary: "super-gathers" across South Island, New Zealand[J]. Tectonophysics, 2002,255:247-263.
    Oliver J, Cook F, Brown L. COCORP and the continental crust[J]. JGR, 1983, 88(B4):3329-3347.
    Park J, Anderson K, Aster R, et al. Global seismograms network records the great Sumatra-Andaman Earthquake[J]. EOS, 2005, 86(6):57-61.
    Pecher I A, ten Brink U S. Structure of the Cascadia Subduction Zone Offshore Washington—Results From an Onshore/Offshore Seismic Experiment[A], in: American Geophysical Union, American Geophysical Union Fall Meeting, San Francisco, 2001.
    Peraldi R,Clement A.Digital processing of refraction data—study of first arrivals[J].Geophys.Prosp,1972,20(529-548).
    Peterson J.Observations and modeling of seismic background noise,Open-File Report 93-322[R].New Mexico:U.S.Geol.Survey 1993.
    Qiu X L,Ye S,Wu S.Crustal structure across the Xisha Trough,northwestern South China Sea[J].Tectonophysics,2001,341:179-193.
    R E谢里夫,L P吉尔达特.勘探地震学[M].北京:石油工业出版社,1999.
    Reasenberg P,Aki K.A precise,continuous measurement of seismic velocity for monitoring in situ stress[J].J.Geophys.Res.,1974,(79):399-406.
    Richards P G.Seismological Methods of Monitoring Compliance with the Comprehensive Nuclear Test Ban Treaty[G].in:Lee W H K ed.International Handbook of Earthquake and Engineering Seismology.San Diego:Academic Press,2002.
    Richter C F.An instrumental earthquake magnitude scale[J].Bulletin of the Seismological Society of America,1935,25(1):1-32.
    Ronen S.Psi,pascal,bars,and decibels[J].The Leading Edge,2002,21:60-61.
    Rost S,Thomas C.Array seismology:Methods and applications[J].Reviews of Geophysics,2002,40(3):2-27.
    Schaff D P,Richards P G.Repeating Seismic Events in China[J].Science,2004,303(5661):1176-1179.
    Shapiro N M,Campillo M,Stehly L,et al.High-Resolution Surface-Wave Tomography from Ambient Seismic Noise[J].Science,2005,307(5715):1615-1618.
    Shillington D J,Minshull T A,Peirce C,et al.P-and S-wave velocities of consolidated sediments from a seafloor seismic survey in the North Celtic Sea Basin,offshore Ireland[J].Geophysical Prospecting,2008,56(2):197-211.
    Silver P G,Niu F,Daley T M,et al.Developing a Methodology for Measuring Stress Transients at Seismogenic Depth[J].EOS,2004,85:47.
    Silver P.Why is earthquake prediction so difficult[J].Seism.Res.Lett,1998,69:111-113.
    Staples R K,Hobbs R W,White R S.A comparison between airguns and explosives as wide-angle seismic sources[J].Geophysical Prospecting,1999,47:313-339.
    Steer D N,Brown L D,Knapp J H,et al.Comparison of explosive and vibroseis source energy penetration during COCORP deep seismic reflection profiling in the Williston Basin[J].Geophysics,1996,61(1):211-221.
    Stern T,Okaya D,Scherwath M.Structure and strength of a continental transform from onshore-offshore seismic profiling of South Island,New Zealand[J].Earth Planets & Space,2002,54:1011-1019.
    Stolt R H,Benson A K.Seismic migration:theory and practice[M].London:Geophysical Press,1986.
    Storchak D A,Schweitzer J,Bormann P.The IASPEI Standard Seismic Phase List[J].Seism.Res.Lett,2003,74(6):761-772.
    Van Avendonk H.J.A.,Holbrook W S,Okaya D,et al.Continental crust under compression:a seismic refraction study of South Island Geophysical Transect,South Island,New Zealand[J].J.Geophys.Res.,2004,109,B06302.
    Veith K F,Clawson G E.Magnitude from short-period P-wave data[J].Bulletin of the Seismological Society of America,1972,62(2):435-452.
    Wang B S.Continuous subsurface velocity measurement with coda wave interferometry[J].Journal of Geophysical Research,2007:已投稿.
    Webb S C.Seismic Noise on Land and on the Sea Floor[G].in:Lee W H K ed.International Handbook of Earthquake and Engineering Seismology.San Diego:Academic Press,2002.
    Willis D E.Seismic measurements of large underwater shots[J].Bulletin of the Seismological Society of America,1963,53(4):789.
    Yamamura K,Sano O,Utada H,et al.Long-term observation of in situ seismic velocity and attenuation[J].J.Geophys.Res.,2003a,108(B6):2317-2331.
    Yamamura K,Sano O,Utada H,et al.Long-term observation of in situ seismic velocity and attenuation[J].Journal of Geophysical Research,2003b,108(B6):2317.
    Yuan J.Analysis of Four-component Seafloor Seismic Data for Seismic Anisotropy[D].[Ph.D.Thesis].Edinburgh:University of Edinburgh,2001.
    Zhao M,Qiu X,Xia S,et al.Identification and analysis of shear waves recorded by three-component OBSs in northeastern South China Sea[J].Progress in Natural Science,2008,18(2):181-188.
    Zhou H W.Multi-scale tomography for crustal P and S velocities in southern California[J].Pure and Applied Geophysics,2004,161:283-302.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700