用户名: 密码: 验证码:
太行山低山丘陵区退化生态系统植被恢复过程生态特征分析与评价
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
恢复生态学是生态学研究领域中最年轻的分支之一,也是现代生态学领域的研究热点。太行山低山丘陵区属平原与山地的生态过渡带,由于长期人为的过渡开发利用,现有植被处在不同的退化阶段,植被表现出以天然植被稀疏、低矮、部分地段裸露并镶嵌类型各异的人工植被为主要特点。导致植被改善环境的能力减退。而环境改善和稳定的根本是森林生态系统的恢复、发展和保护。为此,阐明太行山低山丘陵区退化生态系统自然恢复过程的生态学特征,探求自然恢复机理、对植被恢复过程进行正确评价和预测,既能丰富恢复生态学的内容,同时也为人工加快植被恢复进程和实现该区域资源的可持续发展提供科学的依据。
     通过研究,导致太行山低山丘陵区植被退化和恢复进程较慢的关键问题是人为的干扰和区域气候变化的结果。本论文在对研究区植被恢复阶段分类的基础上,从土壤、植被和群落演替分析入手,深入地剖析了恢复演替过程中群落的物理、化学和生物学变化特征,找到了群落演替过程中生态特征利环境特征变化规律;建立了研究区的群落演替模型;通过采取植被恢复预测模型的手段,对植被演替和恢复时间进行了初步探索,提出了研究区各群落植被恢复经历的时间;构建了植被恢复过程的评价指标体系,对植被恢复进程进行了有效的评价。
     通过研究,本论文取得主要结果:
     (1)导致研究区植被退化的主要原因是人为干扰,其次是气候原因。气温的年际变化具有6a、3.5a的周期规律;降水量变化具有8.5a、4.3a的周期性规律。研究区气候特点是平均湿度的减少和平均气温的升高,未来气候将更暖、更干燥。蒸发蒸腾量(ET_0)值将会持续升高。
     (2)随植被恢复进程,土壤容重和毛管孔隙度大小排序为草本恢复阶段>乔木恢复阶段>灌丛恢复阶段,灌丛和乔木恢复阶段容重差别不大。裸地阶段土壤容重最大,而孔隙度最小。土壤自然含水量大小顺序为乔木阶段>草本阶段>灌丛阶段>裸地。从裸地到乔木阶段,随着植被恢复进程,土壤理化指标逐渐提高。石砾含量降低,粘粒含量增加,粉粘比减小。土壤粘粒与有机质、全氮、速效氮呈显著正相关关系。
     (3)植被降温效应和增湿效应随植被恢复进程而增强。气温日变化特征呈不对称的单峰曲线,植被恢复程度越高,气温变化幅度越小,群落调节气温的作用越显著。空气相对湿度的日变化呈不规则“U”型变化,与温度的日变化呈负相关。
     (4)研究区植物成熟绿叶中的N素含量在1.568%~5.011%之间;枯叶中N素含量变化在0.82%~3.890%之间。植物叶片中N素与土壤有机质含量、土壤含水量等指标相关性显著。植物N素回收效率(NRE)平均值为28.8%,都属于低回收率植物。乔木的NRE表现为最低,灌木的NRE最高。NRE与叶片中N素含量呈负相关,与土壤N含量、有机质含量、速效氮和土壤水分呈现负相关关系。
     (5)植物种类随植被恢复进程增加较快,物种丰富度也呈升高的态势;土壤湿度、土壤厚度与H′、D_1、PIE等多样性指数之间呈极显著的正相关;土壤有机质、速效氮、速效磷等养分指标与多样性指数(H′、D_1)有显著的正相关;乔木、灌木群落多样性指数H′与群落生物量表现为正相关;乔木林群落多样性指数(Jsw、H′)与恢复时间呈正相关;栓皮栎群落恢复时间每增加10a,群落物种数平均增加6种;物种多样性指数(H′)与灌木的盖度和高度呈较好的线性关系;草本群落的高度和盖度与物种丰富度指数(D_2)呈显著的负相关关系。
     (6)随恢复进程,群落生物量呈增加趋势,二者呈现幂函数关系;栓皮栎群落总生物量最大,刺槐次之,侧柏群落生物量最低。乔木群落生物量结构都表现为树干最高,根次之的规律;灌木群落地上部分的生物量明显大于地下部分的生物量,其比值在2.30~3.825之间;草本群落以魁蒿群落总生物量最高,白草群落最小。
     (7)乔木群落的凋落量要显著高于灌木群落;群落的凋落量随季节而变化,一般凋落量随季节变化规律为秋季>春季>冬季。凋落物持水量与植被恢复阶段有显著关系,最大吸水率为刺槐群落;最大持水量为20a生栓皮栎群落。刺槐的分解速率最快,理论上完全分解时间需要8.83a:40a生栓皮栎林凋落物分解速度最慢,理论分解时间为26.63a。同一群落中,30a生栓皮栎群落凋落物分解速度最快。灌木群落凋落物分解时间整体上较快,酸枣凋落物理论完全分解期是9.66a;荆条凋落物理论完全分解期为12.35a。随着演替的发展,群落的枯落层和腐殖质层厚度均不断增加,呈现乔木群落>灌木群落>草本群落。表明复杂的群落结构具有更强的物质循环能力。
     (8)研究区生态系统总碳贮量随恢复进程而增加。由草本阶段到乔木群落增加约4.5倍。土壤碳总贮量也呈上升状态,但土壤碳贮量占生态系统总贮量的比重却呈下降趋势;植物碳贮量所占比例逐渐增高,植被在恢复过程中的作用越来越大。
     (9)植被演替呈现出草本群落--灌木群落--乔木群落发展的趋势。草本群落逐渐由一年生草本占主导地位发展到多年生草本、半灌木及灌木占据群落主体。草本群落演替到10a时,逐渐形成以酸枣、荆条为建群种的单优群落。栓皮栎为优势种的群落是研究区的气候演替项极。刺槐群落在自然演替条件下,它将逐渐为栓皮栎群落所替代,但是由于人为的干扰,刺槐成为研究区一个偏途演替顶级群落。侧柏群落演替进程虽然缓慢,但却表现出了由针叶纯林向针阔混交林发展的趋势。
     (10)在研究区,从裸地开始植被演替到顶极群落最快也需要80a时间;但是达到相对稳定的森林群落则只要40a左右。草本植物恢复的时间大约是7~8a。其中土壤中物理结构恢复较慢;群落生物量恢复时间最长。灌木群落恢复时间大约是12~14a。栓皮栎林经过60~84a的时间才能演替到顶级群落。刺槐群落演替时间大致为60~73a;侧柏群落演替时间最长,需要95~110a。演替时间表现为阴坡小于阳坡;缓坡小于陡坡;其中坡度对植被恢复时间的影响最显著。
     (11)按照聚类结果,研究区群落恢复进程可分为4个阶段,分别为恢复初期、恢复进展期、恢复中期、恢复稳定期。根据不同恢复阶段,从地理环境、小气候、群落结构、土壤等4个方面选取指标,构建了小浪底山地退化生态系统恢复综合评价指标体系,运用层次分析法,用生态恢复指数对小浪底山地退化生态系统的恢复程度进行了评价。
Restoration ecology is one of the new branches in ecology, and one of issues on which many ecologists focus. Restoration and reconstruction of degraded ecosystems have become one of the major subjects of modern ecology. The hilly area in Taihang mountains is an ecotone between the plain vegetation and the mountainous vegetation. As a result of the over-exploitation to vegetation for a long time, ecosystems in the research areas have degraded seriously, which are characterized by natural vegetation with lower coverage ,lower height, even bare land in some parts, and mosaic with different types of artificial vegetations. The ecological protection functions of the vegetations have been declined. Forest ecosystems play an important role for improving and stabilizing agriculture environment in hill areas of Taihang mountains. For this reasons, this dissertation deals mainly with studies on the natural restoration process and their mechanism of degraded forests in order to find out the limit factors of vegetation restoration and promote the natural restoration and forest sustainable development.
     The ecological mechanisms and ways for vegetation restoration in the hilly areas of Taihang mountains have been analyzed in this study. The degradation of studied ecosystem is mostly caused by disturbance and climatic change. Based on the methods of classifying restoration stages, Starting from analyze soil physical—chemical properties, vegetation and succession and much previous research, The physical ,chemical and biologic characteristics of main communities in hilly areas of Taihang mountains are investigated . The ecological and environmental feature during vegetation succession has been revealed. The succession models of communities have been set up. The succession times of different communities have been put forward by using the method of modeling for vegetation restoration. The evaluating index structure of vegetation succession period have been established. Which are also well-assessment to vegetation restoration.
     Major conclusion are summarized as follows:
     1) The present findings suggested that nature and human activity factors would lead to degraded vegetation for studied ecosystem. The degradation of vegetation is mostly caused by human disturbance and destruction. The lower air moisture and higher air temperature is climatic feature in studied areas. In the future, the climate will be more worm and dry. The ET_0 would be progressive increase. Analysis of climatic functional spectrum indicates that changes temperature and precipitation among years present the distinct periodic fluctuation, of which the former changes with 6a, 3.5a periods and the later changes with 8.5a, 4. 3a periods.
     2) With the development of vegetation restoration, different restoration stages result in different soil bulk density and such as in order as follows: herbs stage>trees stage>shrub stage. The soil bulk density between shrub stage and trees stage are no significantly different. The capillary moisture capacity and porosity of soil was the lowest in bare land, and the soil bulk density is reversed, soil nature moisture becomes lower in the order from the trees stage, herbs stage, shrub stage and bare land. With progressive vegetation succession, the gravel content decreased; while the indicators increase gradually. The content of clay grain is significantly positive with the soil organic matter and total nitrogen and available nitrogen contents of soil.
     3) The effect of lowering air temperature and increasing air humidity of vegetation increased with vegetation succession. Daily changes of air temperature in every restoration community stage presented a anisomerous curve of single apex. The air temperature and their fluctuation declined with the development of the community. That showed the effect of adjusting air temperature was better and better. Daily changes of air relative humidity in every restoration community stage had anomalous change presenting "U", which was contrary related to daily changes of air temperature change.
     4) Nitrogen concentration in green leaves varied widely among species from 1.568% to 5.011% and from 0.82% to 3.89% in senescing leaves. A significant correlation was found between N concentrations in leaves and soil organic matter ,soil moisture. N concentration in green leaves (Ng) and N concentration in senecing leaves (Ns) increased with increasing soil organic matter, total soil N and soil moisture. NRE in these species ranged from 17.4% to 50.1%, with an average of 28.8%, depending upon the species and the life-form. The results show that most of species examined in this study can be categorized as incomplete N resorption plants. The pattern of NRE in different life-forms followed the order of herbs>shrubs>trees. NRE was positively related to soil organic matter, total soil N and soil moisture, meaning that the higher soil organic matter was due to low plants NRE.
     5) The species numbers and richness had significant increased with vegetation succession, some species diversity indices, such as H', D_1 and PIE had a significantly positive correlation with moisture and thickness of soil, others diversity indices H' and D_1 have positively correlation with soil organic matter, available N, available P. The biomass of shrubs and trees had a significantly correlated with H'. There are no relation between H' and biomass of herbs. The vegetation restoration period was positively correlated with species diversity indices Jsw and H', but not PIE, D_1 and D_2. The species numbers increased by six averagely during 10 years of vegetation restoration. H' had significantly positive correlation with coverage and height of shrubs. There was a clear negative correlation between species richness indices and height and coverage of herbs, and no significant correlation with H'. 6) Biomass is significant increase with the succession stages. Which is relationship of power function. The biomass of the Quercus variabilis was the highest, whilst the Platycladus orientalis was the lowest, and the Robinia pseudoacacia was in the middle. The roots biomass of trees community was lower than that of stem. The ground biomass of the shrubs community was higher than that of underground, the biomass ratio between ground and underground ranged from 2.3 to 3.82. The biomass of Artemisia princeps was the highest, and whilst the Pennisetum flaccidum was lowest.
     7) The litterfall amount of trees community is significant more than that of shrubs. The quantity dynamical of litterfall is obviously along with the seasonal variation, The sequence is that: autumn >spring>winter. The water content of litterfall was close relationship with vegetation restoration stages. Water retention rate of Robinia pseudoacacia is the highest. Water absorption rate of Quercus variabilis in 20 years old is the lowest. Litter decomposition rate of Robinia pseudoacacia is fastest, which will just take 8.83years to almost decompose litterfall. Loweast by 40 years old Quercus variabilis, 26.63 years. Litter decomposition rate of 30 years old Quercus variabilis in same community is the fastest. Litter decomposition rate of shrubs has faster than other community. It will take 9.66 years to almost decompose litterfall by Ziziphus jujube, and 12.35 years by Vitex negundo.
     8) total carbon storage of ecosystem and soil increased with progressive succession. It increased 4.5times form herbs stage to trees stage, the ratios of soil carbon storage / ecosystem carbon storage show decreased. And the ratios of carbon storage in vegetation increased gradually by progressive succession. So that, The vegetation played an important role in degraded ecosystem restoration process.
     9) Vegetation successional processes show the trend form herbs to shrubs and trees. With the progressive succession, the community would turn from annual grass species dominance into a multiple-community dominated perennial herbaceous genus , semi-shrubs, shrubs. When the herbs successes 10 years, Ziziphus jujube and Vitex negundo formated mono-dominant community, the community of Quercus variabilis dominance is climax community. Robinia pseudoacacia under natural succession will been taken by Quercus variabilis community. Robinia pseudoacacia might be a dis—climax community under the human disturbance. Platycladus orientalis successes slowly. But the community would turn from mono-dominant coniferous forests into a broadleaf/coniferous mixed stand.
     10)The successive times will take almost 80 years at fastest speed form bare land to climax-community.but it take about 40 years to reach the sustainable community. The restoration time is about 7-8 years for herbs, and 12-14 years for shrubs. Restoration time of soil is slower than that of community. Physical character index of soil recovered the slowest, biomass restoration take the longest. Quercus variabilis community will reach the climax-community after 60-80 years. The slope effect on restoration process obviously. The restoration time in shade slope is faster than that in sunny slope. And restoration time in steep slope is faster than that in gentle slope. The restoration time is 60-73 years in Robinia pseudoacacia, 95-110 years in Platycladus orientalis, which is longest.
     11) As a results of cluster analysis, The vegetation in the researching areas can be classified into 4 types, including initial restoration stage (IRS) , progressive restoration stage (PRS), middle restoration stage(MRS), stable restoration stage(SRS). According to different restoration, the index , valued degraded ecosystem ,which included environment , micro-climate , community structure and soil had been setup. The degraded ecosystem at hilly areas in Taihang mountain was assessed by using method of analytic hierarchy process and eco-restoration indices.
引文
1.余作岳,彭少麟.热带亚热带退化生态系统植被恢复生态学研究.广州:广东科技出版社,1996.
    2.Jordan W R,Gilpin J D,Aber J D,et al.Restoration ecology:A synthetic approach to ecological research.Cambridge University Press.1987.
    3.彭少麟.恢复生态学与植被重建[J].生态科学,1996,15(2):26-31.
    4.章家恩,徐琪.恢复生态学研究的一些基本问题探讨[J].应用生态学报,1999,10(1):109-112.
    5.任海,彭少麟.恢复生态学导论[M].北京:科学出版社,2001.
    6.Cairns J Jr.Restoration ecology.Encyclopedia of Environmental Biology,1995,3:223-235.
    7.Hobbs R J &Norton D A.Towards a conceptual framework for restoration ecology.Restoration Ecology,1996,4(2):93 - 110.
    8.Pimentel D,Allen J,Beers A.Soil erosion and agricultural productivity[A].In:Pimentel D,ed.World soil erosion and consevation[C].Cambridge:Cambridge University Press,1993.
    9.Oldeman L R,Hakkeling R T A,Sombroek W G.World map of the status of human-induced soil degradation[Z].An explanatory note,Wageningen,Netherlands:ISRIC and PUNE,1991.
    10.Dregne H E,Chou N T.Global desertification dimensions and costs[A].In:Dregne H E,ed.Degradation and Restoration of Aridlands[C].Lubbock,Texas USA:Texas Technolog University,1992.
    11.彭少麟,赵平.跨越边界的生态恢复-第十三届国际恢复生态学大会综述[J].生态学报,2001,21(12):2173-2173.
    12.赵晓英,恢复生态学的基本概念[J].资源生态环境网络研究动态,2000.11(4):25-29.
    13.周国逸,余作岳,彭少麟.广东小良水保站三种生态系统地表侵蚀研究[J].热带亚热带植物学报,1995,3(2):70-76.
    14.陈灵芝,陈伟烈.中国退化生态系统研究[M].北京:中国科技出版社,1995.5-87.
    15.赵晓英.气候研究陆地预测小组近两年的活动[J].资源生态环境网络研究动态,2000,11(1):45-46.
    16.彭少麟.热带亚热带恢复生态学研究与实践[M].北京:科学出版社,2003.
    17.Van der Valk.Succession theory and wetland restoration.Proceedings of INTECOL's V International wetlands conference,Perth,Australia.1999,162.
    18.Clements,F.E.Plant Succession:An analysis of the development of vegetation.Carnegie inst.Wash.Pub.1916,242:1-512.
    19.Higgs F S.What is good ecological restoration? Conservation Biology.1997,11(2):338-348.
    20.Risser P G.Methods for inventory and monitoring of vegetation,litter,and soil surface condition.In:Developing strategies for rangeland management.Boulder,Colo.,Westview Press,1984.'
    21.魏斌,张霞,吴热风.生态学中的干扰理论与应用实例[J].生态学杂志.1996,15(6):50-56.
    22.岑慧贤,王树功.生态恢复与重建[J].环境科学进展.1999,7(6):110-115.
    23.赵晓英,孙成权.恢复生态学及其发展[J].地球科学进展,1998,13(5):474-480.
    24.Parker V T.The scale of successional models and restoration ecology.Restoration Ecology,5(4):301-306.
    25.赵文智,程国栋.菌根及其在荒漠化土地恢复中的应用[J].应用生态学报.2001,12(6):947-950.
    26.王仁卿.山东森林植被恢复的理论方法和实践[M].山东林业科技.2001,(3):12-15.
    27.王伯荪,彭少麟.鼎湖山森林群落分析Ⅴ:群落演替的线性系统[J].中山大学学报,1985,4:75-80.
    28.Egler F E.Vegetation science concepts,I.Initial floristic composition,a factor in old-field vegetation development.Vegetation,1954,412-417.
    29.Conell J H,Slatyer R O.Mechanism of succession in natural communities and their role in community stability and organization.American Naturalist.1977,111:1119-1144.
    30.Grime J P.The C-S-R model of primary plant strategies:origins implications and tests.Plant Evolutionary Biology,1988,317-393.
    31.Tilman D.The resource-ratio hypothesis of plant succession,American Naturalist.1985,125:827-852.
    32.Pickett S T A.et al.A hierarchical consideration of causes and mechanisms of succession.Vegetation,1985,69:109-114.
    33.Bazzaz F A.The physiological ecology of plant succession,Ecologies,10:351-371.
    34.王仁卿,藤原一绘,尤海梅.森林植被恢复的理论和实践[J].植物生态学报,2002,26(增刊):133-139.
    35.张玉钧,王建中.密云水库上游北庄试验区植被性质的初步研究[J].北京林业大学学报,1997,19(3):39-44.
    36.王印传,傅桦.雾灵山自然保护区研究Ⅳ雾灵山森林群落的同期发生演替[J].首都师范大学学报,2001,22(3):83-87.
    37.孙航,周浙昆.喜马拉雅东部雅鲁藏布江大峡弯地区热带森林植被的次生演替规律[J].云南植物研究.1996,18(3):308-316.
    38.余树全.浙江淳安天然次生林演替的定量研究[J].林业科学,2003,39(1):17-22.
    39.王献溥.广西大穗鹅耳枥林的分类和演替趋向[J].植物资源与环境,1997,6(3):13-18.
    40.吕亚强.望天树林次生演替趋势初探[J].云南林业科技,20011:21-25.
    41.吴邦兴.云南哀牢山徐家坝中山湿性常绿阔叶林动态和节律的研究[J].植物学报(英文版),1995,37(12):969-977.
    42.周国逸,余作岳.南亚热带丘陵地综合利用的研究[J].资源生态环境网络研究动态,1997,8(4):1-5.
    43.孙儒泳.普通生态学[M].高等教育出版社.2002.
    44.张金屯.植被数量生态学方法[M].北京:中国科学技术出版社,1995,58-67.
    45.王刚.生态位理论若干问题探讨[J].兰州大学学报,1990,26(2):109-113.
    46.张大勇,赵松岭.青杆林恢复演替过程中的邻体竞争效应及邻体干扰指数的改进模型[J].生态学报1989,9(1):52-58.
    47.李兴东,宋永昌.常绿阔叶林次生演替的一种系统动力学模型[J].生态学报1993,13(3):287-290.
    48.郑元润.大青沟森林群落演替预测研究[J].林业科学.1999,35(2):21-25.
    49.王德艺,郭文增.雾灵山自然保护区森林群落的聚类与排序[J].河北林果研究.1997,12(4):311-316.
    50.赵景柱.生态系统优势种演替模型的定量分析[J].生态学报,1992,12(2):113-118.
    51.张大勇,杜国祯.甘南山地草原人工草场的演替[J].植物生态学与地植物学学报,1990,14(2):103-109.
    52.张金屯.群落演替的数量分析方法[J].山西大学学报.1994,17(4):457-463.
    53.彭少麟.中国南亚热带退化生态系统的恢复及其生态效应[J].应用与生物学报,1995,1(1):403-414.
    54.王孝安,冯杰.甘肃马衔山林区植被的数量分类与排序[J].植物生态学报,1994,18(3):271-282.
    55.熊利民,钟章成.四川缙云山森林群落的同期发生演替及其模型预测[J].生态学报.199l,11(1):49-53.
    56.Cannell,M.G.R.World forest biomass and primary productivity data.Academic press,Berlin,Heideberg,New York,1982.
    57.Huxley J S Problems of relative growth,New York:Dail.1932.
    58.杨文治,邵明安.黄土高原环境的旱化与黄土中水分关系[J].中国科学(D辑),1998,28(4):36-38.
    59.张小泉,张清华,毕树峰.太行山北部幼林地土壤水分的研究[J].林业科学,1994,30(3):193-199.
    60.刘贤赵,康绍忠.黄土高原沟壑区小流域土壤入渗分布规律的研究[J].吉林林学院学报,1997,13(4):203-208.
    61.解文艳,樊贵盛.土壤含水量对土壤入渗能力的影响[J].太原理工大学学报,2004,35(3):272-275.
    62.赵西宁.不同耕作管理措施对坡耕地降雨入渗的影响[J].西北农林科技大学学报:自然科学版,2004,32(2):69-72.
    63.刘奉觉,郑世楷,巨关升.树木蒸腾耗水测算技术的比较研究[J].林业科学,1997,33(2):117-125.
    64.杨小波,张桃林,吴庆书.海南琼北地区不同植被类型物种多样性与土壤肥力的关系[J].生态学报.2002.22(2):190-196.
    65.吴彦,刘庆,乔永康,等.亚高山针叶林不同恢复阶段群落物种多样性变化及其对土壤理化性质的影响[J].植物生态学报.2001,25(6):648-655.
    66.王效举,张西森.地理信息系统辅助土壤质量变化图的编制[J].土壤.1997,29(1):37-42.
    67.王效举,龚子同.红壤丘陵小区域不同利用方式下土壤变化的评价和预测[J].土壤学报.1998,35(1):135-139.
    68.陈浮,彭补拙,濮励杰,等.区域土地可持续管理评估及实践研究[J].土壤学报.2001,38(4):529-539.
    69.胡金明,刘兴土.三江平原土壤质量变化评价与分析[J].地理科学.1999,19(5):417-421.
    70.章家恩,徐琪.三峡库区秭归县土壤退化综合评价[J].生态农业研究.1999,7(1):32-35.
    71.陈浮,濮励杰,等.近20年太湖流域典型区土壤养分时空变化及驱动机理[J].土壤学报.2002,39(2):237-245.
    72.黄建辉.物种多样性的空间格局及其形成机制初探.生物多样性.[M].生物多样性.1994,2(2):103-107.
    73.李新彬,王襄平,罗菊春,等.干扰对长白山北坡次生林群落结构和树种多样性的影响[J].林业科学.2006,42(2):105-110.
    74.杨玉盛,何宗明,丘仁辉,等.严重退化生态系统不同恢复和重建措施的植物多样性与地力差异研究[J].生态学报.1999,19(4):490-494.
    75.王国良.福建龙栖山甜槠林恢复生态学研究(Ⅰ)[J].浙江林学院学报.2002,19(4):363-366.
    76.刘忠宽,智建飞,李英杰,等.休牧后土壤养分空间异质性和植物群落α多样性[J].河北农业情报.2004,8(4):1-8.
    77.万雪琴,胡庭兴,张键,等.坡耕地退耕还林后的植被恢复.林业科学,2005,41(2):191-194.
    78.沈泽昊,方精云,刘增力,等.贡嘎山东坡植被垂直带谱的物种多样性格局分析[J].植物生态学报.2001,25(6):721-732.
    79.Tilman D.Wedub D and J Knops.Productivity and sustainability influenced by biodiversity in grassland ecosystem,Nature,1996.379:718-720.
    80.Tilman D.Diversity and production in Europen grasslands.Science,1999,286:1099-1100.
    81.Wheeler B D,Shaw S C.Above-ground crop mass and species richness of the principal types of herbaceous rich-fen vegetation of lowland England and wales.Journal of ecology,1991,79:285-301.
    82.Huston M and Smith T.Plant succession:life history and competition.American Naturalist,1987,130:168-198.
    83.Wilson J B.Methods for fitting dominance diversity curves.Journal of vegetation science,1991,2:35-46.
    84.王仁忠,李建东.松嫩平原南部主要群落植物多样性的比较研究[J].应用生态学报.1996,7(4):381-385.
    85.闫俊华,周国逸,林永标.鹤山马占相思生态系统在重建过程中对立地水热因子的调节作用[J].植物生态学报.2002,26(4):465-472.
    86.彭少麟,任海,陆宏芳.退化生态系统恢复与恢复生态学[J].生态学报.2004,24(8):1756-1764.
    87.李宗峰,陶建平,王微,等.岷江上游退化植被不同恢复阶段群落小气候特征研究[J].生态学杂志.2005,24(5):364-367.
    88.邓艳,蒋忠诚,李先琨,等.广西弄岗不同演替阶段植被群落的小气候特征[J].热带地理,2004,24(4):316-325.
    89.温远光,梁宏温,和太平,等.大明山退化生态系统群落光照的变化[J].1998,17(2):199-203.
    90.Conn C,Dighton J.Litter quality influences on decomposition,ectomycorrhizal community structure and mycorrhizal root surface and phosphatase activity.Soil Biol Biochem,2000.32:489-496
    91.King S,Allen H L,Dougherty P,Strain B R..Decomposition of roots in loblolly pine:Effects of nutrient and water availability and root size class on mass loss and nutrient dynamics.Plant Soil,1997,195:171-184.
    92.黄建辉,陈灵芝,韩兴国.辽东栎枝条分解过程中几种主要营养元素的变化[J].植物生态学报.1998,22(5):398-402.
    93.Seastedt T R.Mass,nitrogen,and phosphorus dynamics in foliage and root detritus of tall grass prairie.Ecology,1988.69(1):59-65.
    94.Koukoura Z.Decomposition and nutrient release from C3 and C4 plant litters in a natural grassland.Acta Oecol,1998.19(2):115-123.
    95.Taylor B R,Parkinson D,Parsons W F J.Nitrogen and lignin content as predictors of litter decay rates:a microcosm test.Ecology,1989.70:97-104Taylor.
    96.Kemp P R,Deborah G W,Clenton E O,James F R,Ross A V.Effects of elevated CO_2 and nitrogen fertilization pretreatments on decomposition on tallgrass prairie leaf litter.Plant Soil,1994.165:115-127
    97.田大伦,刘萱章.杉木林生态系统净化水质功能的研究[J].林业科学.1995,31(3):193-199.
    98.卢俊培,吴仲民.海南岛尖峰岭热带山地雨林及其更新群落的凋落物量与贮量[J].植物生态学报.1994,18(4):306-313.
    99.李凌浩,邢雪荣.武夷山甜槠林细根生物量和生长量研究[J].应用生态学报.1998,9(4):337-340.
    100.阮宏华,姜志林,高苏铭.苏南丘陵主要森林类型碳循环研究---含量与分布规律,生态学杂志,1997,16(6):17-21.
    101.张萍,冯志立.西双版纳热带雨林次生林的生物养分循环[J].土壤学报.1997,34(4):418-426.
    102.Chapin Ⅲ,F.S.,Kedrowski,R.A.,Seasonal changes in nitrogen and phosphorus fractions and autumn retranslocation in evergreen and deciduous taiga trees.Ecology.1983.64,376-391.
    103.Carrera,A.L.,Bertiller,M.B.,Sain,C.L.,Mazzarino,M.J.Relationship between plant nitrogen conservation strategies and the dynamics of soil nitrogen in the arid Patagonian Monte,Argentina.Plant and Soil.2003.255,595-604.
    104.Aerts,R.,Nutrient resorption from senescing leaves of perennials:are there general patterns.Journal of Ecology.1996.84,597-608.
    105.Aerts,R.,Interspecific competition in natural plant communities:mechanisms,trade-offs and plantsoil feedbacks.Journal of Experimental Botany.1999.50,29-37.
    106.Charles E.P.Total biomass and nutrient s of 25-yea r~old Lobioily Pines(Pinus taeda ).For.Eel.Monog.,1984,9(3): 153-158.
    107.Chapin Ⅲ,F.S.,The mineral nutrition of wild plants.Annual Review of Ecology,Evolution and Systematics.1980.11,233-260.
    108.Escudero A.DEL Arco J M,Sanzi C,Ayala J.Effects of leaf longevity and retranslocation efficiency on the retention time of nutrients in the leaf biomass of different woody species.Oecologia,1992,90:80-87.
    109.Aerts,R.,Chapin Ⅲ,ES.,The mineral nutrition of wild plants revisited:a re-evaluation of processes and patterns.Advances in Ecological Research.2000.30,1-67.
    110.Schlesinger W H.Delucia E H.Bllings W D.Nutrient use efficiency of woody plants on contrasting soil in the western Great Basin.Ecology,1989,70:105-113.
    111.Yuan,Z.,L.Li,X.Han,J.Huang,G.Jiang,S.Wan,W.Zhang,Q.Chen.Nitrogen resorption from senescing leaves in 28plant species in a semi-arid region of northern China.Journal of Arid Environments.2005.63:191-202.
    112.Delucia E H,Schlesinger W H.Photosynthetic rates and nutrient-use efficiency among evergreen and deciduous shrubs in Okeefenokee Swamp.International journal of plant science,1995,156:19-28.
    113.Bray JR,Gotham E.Litter production in forest of the world.Advances in Ecological Research,1964,2,101-158.
    114.王凤友.森林凋落量研究综述[J].生态学进展,1989,6(2):82-89
    115.吴承祯,洪伟,姜志林,等.我国森林凋落物研究进展[J].江西农业大学学报,2000,22(3):155-163.
    116.胡肆慧,陈灵芝,孔繁志,等.两种中国特有树种的枯叶分解速率[J].植物生态与地植物学学报,1986,10(1):35-43.
    117.于明坚,陈启怅,李铭红,等.浙江建德青冈常绿阔叶林凋落量研究[J].植物生态学报,1996,20(2):144-150.
    118.Fox W,Je D,Xu Z.Litterfall and nutrient dynamics in a montane moist evergreen broad-leaved forest in Ailao Mountains,SW China.Plant Ecology.2002a,164,157-170.
    119.Costanza R.The value of ecosystem services:putting the issues in perspective.Ecol-Econ.1998,25:67-72.
    120.Costanza,R R.Arge R and Groot R.The value of the worlds ecosystem services and natural capital.Nature,1997,387:253-259.
    121.欧阳志云,王如松,赵景柱.生态系统服务功能及其生态经济价值评价[J].应用生态学报.1999,10(5):635-640.
    122.FangJ,Y,Chen A P,Peng C H,et al.,Change in Forest Biomass Carbon Storage in China Between 1949 and 1998[J].Science,2001,292:2320-2322.
    123.方精云,慈龙骏.中国森林生物量的估算:对Fang等Science一文(Science,2001,291:2320-2322)的若干说明[J],植物生态学报26(2):243-249.
    124.薛达元,包浩生.长白山自然保护区森林生态系统间接经济价值评估[J].中国环境科学.1999,19(3):247-252.
    125.欧阳志云,王效科.中国陆地生态系统服务功能及其生态经济价值的初步研究[J].生态学报.1999,19(5):607-613.
    126.杨柳春,陆宏芳,刘小玲等.小良植被生态恢复的生态经济价值评估[J].生态学报.2003,23(7):1423-1429.
    127.方运霆,莫江明.鼎湖山自然保护区土壤有机碳贮量和分配特征[J].生态学报.2004,24(1):135-142.
    128.Wooes L E.Influence of soil organic matter concentration on carbon and nitrogen activity[J].Soil Sei.SOe.Am J,1985,50:1241-1245.
    129.杨玉盛,谢锦升,王义祥,等.杉木观光木混交林C库与C吸存[J].北京林业大学学报.2003,25(5):10-14.
    130.Houghton R.A.Land-use change and the carbon cycle.Global Change Biology,1995,1:275-287.
    131.Moore B,Boone R.D.Hobbie J.E.et al.A simple model for analysis of the role ofterriestrial ecosystems in the global carbon budget.In carbon cycle modeling(ed.Bert Bolin).SCOPE 16 Chichester:John Wiley &Sons,1981,365-385.
    132.章家恩,徐琪.生态退化研究的基本内容与框架[J].水土保持通报.1997,17(6):46-53.
    133.刘国华,傅伯杰.中国生态退化的主要类型,特征及分布[J].生态学报.2000,20(1):13-19.
    134.杜晓军,郭浩等.辽西低山丘陵区生态系统退化程度的定量确定[J].应用生态学报2001,12(1):156-158.
    135.Cairns,J.J.Recovery and retoration of damaged ecosystems.Charlottesvill:University press of Virginia,17-27.
    136.Davis J.Focal species offer amangement tool.science,1996.271:1362-1363.
    137.Margaren F.Disneyland or native ecosystem:genetics and the restorationist.Restoration and amangement Notes.1997,14(2): 148-150.
    138.彭少麟.热带亚热带退化生态系统的恢复与复合农林业[J].应用生态学报.1998,9(6):587-591.
    139.Careher D.Knapp W H.A ssessing ecosystem health in the Blue mountains.Silviculture:from the cradle of forestry to ecosystem management.General technical report SE-88(U.S.forest,editor ),Southeast Forest Experiment Station,U.S.forest service,Hendersonville,North Carolina,1995,75.
    140.Tongway D.Hingley N Manual for the assessment of soil condition of tropical grasslands.CSIRO Wildlife and ecology.Canberra.1995.
    141.Rapport D J.Costanza R and McMchiael A J.Assessing ecosystem health.Trends in ecology and evolution,1998,13:397-402.
    142.Madenjian C P.Schloesser S.Krieger K A.Population models of burrowing mayfly recolonization in western lake erie.Ecological Applications,1998,8:1206-1212.
    143.余作岳,周国逸.南亚热带丘陵地综合利用的研究[J].资源生态环境网络研究动态.1997,8(4):1-5.
    144.侯扶江,肖金玉.黄土高原退耕地的生态恢复[J].应用生态学报.2002,13(8):923-929.
    145.邹厚远,程积民.黄土高原草原植被的自然恢复演替及调节[J].水土保持研究.1998,5(1):127-135.
    146.喻理飞,魏鲁明.退化喀斯特群落自然恢复过程研究~自然恢复演替系列[J].山地农业生物学报.1998,17(2):71-77.
    147.贺金生,江明喜.长江三峡地区退化生态系统植物群落物种多样性特征[J].生态学报,1998,18(4):399-407.
    148.马世震,陈桂琛,彭敏.青藏铁路沿线高寒草原生态质量评价指标体系初探[J].干旱区研究.2005,22(2):231-235.
    149.郝文芳,梁宗锁,陈存根.黄土丘陵区弃耕地群落演替过程中的物种多样性研究[J].草业科学,2005,22(9):1-8.
    150.唐志尧,柯金虎.秦岭牛背梁植物物种多样性垂直分布格局[J].生物多样性,2004,12(1):108-114.
    151.沈泽昊,张新时,金义兴.三峡大老岭森林物种多样性的空间格局分析及其地形解释[J].植物学报,2000,42(6):620-627.
    152.覃光莲,杜国祯.高寒草甸植物群落中相似性、物种多样性与地上生物量的年际变异性[J],西北植物学报,2005.25(5):979-984.
    153.刘美珍,蒋高明,于顺利.浑善达克退化沙地恢复演替18年中植物群落动态变化,生态学报,2004,24(8):1731-1737.
    154.王国梁,刘国彬,许明祥.黄土丘陵区纸坊沟流域植被恢复的土壤养分效应.水土保持通报[J].2002,22(1):1-5.
    155.杨晓晖,张克斌,侯瑞萍.半干旱沙地封育草场的植被变化及其与土壤因子间的关系[J].生态学报.2005,25(12):3212-3219.
    156.周择福,王延平.五台山林区典型人工林群落物种多样性研究[J].西北植物学报,2005,25(2).321-327.
    157.曾祥福,黄闰泉.三峡库区农林复合生态系统植物物种多样性指数[J].湖北林业科技.1998,(2):1-4.
    158.胡小兵,于明坚.浙江北部保护区青冈常绿阔叶林物种多样性[J].广西植物,2003,23(5):399-403.
    159.济源市统计局编.济源市统计年鉴(1980~2005)
    160.河南省气象局气候中心.新安,孟津气象站气候观测资料(1982~2004)
    161.李文龙.荒漠区人工植物群落恢复的机理模式及其生态健康研究.兰州大学博士论文.2005.
    162.中国科学院南京土壤研究所.土壤理化分析[M].上海:上海科学技术出版社,1978.
    163.国家标准局.森林土壤分析方法[M].北京:中国标准出版社,1988.
    164.沈慧,姜凤歧.辽西水土保持林土壤改良效应的研究[J].应用生态学报.1998,9(1):1-6.
    165.盛才余,刘伦辉,刘文耀.云南南干热河谷退化山地人工林植被恢复初期生物量及土壤环境动态[J].植物生态学报,2000,24(5):575-580.
    166.李贵才,韩兴国,黄建辉.哀牢山木果柯林及其退化植被下土壤无机氮库的干季特征[J].植物生态学报,2001,25(2):210-217.
    167.韩玉萍,杨万勤,李旭光,等.缙云山森林土壤速效N的分布规律[J].西南师范大学学报,1998,23(2):212-217.
    168.杨万勤,钟章成,陶建平,等.缙云山森林速效N,P,K的时空特征研究[J].生态学报,2001,21(8):1285-1289.
    169.卢其明,林琳,庄雪影,等.车八岭不同演替阶段植物群落土壤特征的初步研究[J].华南农业大学学报,1997.18(3):48-52.
    170.陈晓德.缙云山森林土壤速效氮,钾含量随植物群落演替变化趋势分析[J].西南师范大学学报,1998,23(1):121-124.
    171.郝云庆,何丙辉,李旭光.巫溪县红池坝不同植被恢复阶段土壤养分评价[J].西南农业大学学报(自然科学版),2006,18(1): 149-153.
    172.刘鸿雁,黄建国.缙云山森林群落次生演替中土壤理化性质的动态变化[J].应用生态学报,2005,16(11):2041-2046.
    173.宋会兴,苏智先,彭元英.山地土壤肥力与植物群落次生演替关系研究[J].生态学杂志,2005,24(12):153l-1533.
    174.杨玉盛,何宗明,陈光水,等.杉木多代连栽后土壤肥力变化[J].土壤与环境,2001,10(1):33-38.
    175.朱海燕,刘忠德,钟章成.喀斯特退化生态系统不同恢复阶段土壤质量研究[J].林业科学研究,2006,19(2):248-252.
    176.尹光彩,周国逸,刘景时,等.鼎湖山针阔叶混交林生态系统水文效应研究[J].热带亚热带植物学报,2004,12(3):195-201.
    177.郭立群,王庆华,周洪昌,等.滇中高原区主要森林类型森林植物的降雨截留功能[J].云南林业科技.1999,(1):12-21.
    178.李海涛,陈灵芝.暖温带山地森林的小气候研究[J].植物生态学报,1999,23(2):139-147.
    179.Burns O P.Measurement If solar radiant energy in plant habitats[J]..Ecology,4(2):189- 195.
    180.潘开文,张咏梅,刘照光,等.四川中亚热带扁刺栲-华木荷群系不同演替阶段林内小气候的比较[J].植物生态学报,2002,26(2):195-202.
    181.付为国,李萍萍.镇江内江湿地不同演替阶段植物群落小气候日动态[J].应用生态学报,2006,17(9):1699-1704.
    182.王琳,张金屯.历山山地草甸的物种多样性及其与土壤理化性质的关系[J].应用与环境生物学报,2004,10(1):18-22.
    183.尚占环,姚爱兴,龙瑞军等.宁夏香山荒漠草原区植物群落类型多样性及数量分析[J].甘肃农业大学学报,2004,39(6):644-650.
    184.王占军.蒋齐宁夏毛乌素沙地退化草原恢复演替过程中物种多样性与生产力的变化[J].草业科学,2005,22(4):5-8.
    185.史惠兰,王启基.江河源区人工草地及“黑土滩”退化草地群落演替与物种多样性动态[J].西北植物学报,2005,25(4):655-661.
    186.王占军,王顺霞.宁夏毛乌素沙地不同恢复措施对物种结构及多样性的影响[J].生态学杂志,2005,24(4):464-466.
    187.朱万泽'蔡小虎,何飞.四川盆地西缘湿性常绿阔叶林不同恢复阶段物种多样性响应[J],生物多样性,2006,14(1):1-12.
    188.周本智,傅懋毅,李正才.浙西北天然次生林群落物种多样性研究[J].林业科学研究,2005,18(4):406-411.
    189.朱彪,陈安平,刘增力.广西猫儿山植物群落物种组成、群落结构及树种多样性的垂直分布格局[J],生物多样性2004.12(1):44-52.
    190.杨晓晖,张克斌,侯瑞萍.半干旱沙地封育草场的植被变化及其与土壤因子间的关系[J].生态学报.2005,25(12):3212-3219.
    191.袁建英,张金屯,席跃翔.山西关帝山亚高山灌丛、草甸物种多样性的研究[J].草业学报,2004,13(3):34-39.
    192.石培礼,钟章成,李旭光.四川恺柏混交林生物量的研究[J].植物生态学报,1996,20(6):524-533.
    193.刘玉萃.黄山松人工林生态系统中林木生物产量的研究.河南农学院学报,1980.(2):21-31.
    194.鲍显诚,陈灵芝,陈清朗等.栓皮栎林的生物量[J].植物生态学与地植物学丛刊.1984.8(4):313-319.
    195.木村允(姜恕等译).陆地植物群落生物量的测定法.北京:科学出版社.1981.59-105.
    196.王燕,赵世洞.天山云杉林生物量和生产力的研究[J].应用生态学报,1999,10(4):389-391
    197.李庆梅,谢宗强.豫西山杨林立地指数与生物量的研究[J].植物生态学报,1998.22(1):90-96
    198.冯宗炜,王效科,吴刚.中国森林生态系统的生物量和生产力[M].北京科学出版社,1999:1-5
    199.胡中民,樊江文,钟华平,韩彬.中国草地地下生物量研究进展[J].生态学杂志,2005,24(9):1095-1101
    200.王代军,黄文惠,苏加楷等.多年生黑麦草和白三叶人工草地生物量动态研究[J].草地学报,3(2):135-143
    201.温远光,韦炳二,黎洁娟.亚热带森林凋落物产量及动态的研究[J]琳业科学,1989,25(6):542-547
    202.陈金耀.天然林木混交林及主要伴生树种凋落物动态变化[J].福建林学院学报,1998,18(3):255-259
    203.Aerts,R.,Interspecific competition in natural plant communities:mechanisms,trade-offs and plantsoil feedbacks.Journal of Experimental Botany.1999.50,29-37.
    204.刘景双,孙雪利.三江平原小叶樟,毛果苔草枯落物中氮素变化分析[J].应用生态学报,2000,11(6):898-902
    205.任丽昀,袁志友,王洪义,等.中国北部半干旱区乔木、灌木和草本3种不同生活型植物的氮素回收特征[J].西北植物学报,25(3):497-502
    206.袁志友,李凌浩,韩兴国,等.藜个体在高密度种群中的氮素利用效率[J].植物生态学报,2004,28(3):294-299.
    207.Yuan,Z.,L.Li,X.Hart,J.Huang,G.Jiang,S.Wan,W.Zhang,and Q.Chen.Soil characteristics and nitrogen resorption in Stipa krylovii native to northern China.Plant and Soil.2005.273:257-268.
    208.Escudero A.DEL Arco J M,Sanzi C,Ayala J.Effects of leaf longevity and retranslocation efficiency on the retention time of nutrients in the leaf biomass of different woody species.Oecologia,1992,90:80-87.
    209.Anderson,W.B.,Eickmeier,W.G.Nutrient resorption in Claytonia virginica L.:implications fordeciduous forest nutrient cycling.Canadian Journal of Botany,2000.78,832-839.
    210.Staaf H.Plant nutriet changes in beech leaves during senescence as influenced by site characteristics.Acta oecologra.1982.3:161-170.
    211.谢宪丽,孙波,周惠珍,等.中国土壤有机碳密度和储量的估算与空间分布分析[J].土壤学报,2004,41(1):35-43.
    212.方运霆,莫江明,SandraBrown,等.鼎湖山自然保护区土壤有机碳贮量和分配特征[J].2004,24(1):135-142.
    213.刘映良,喀斯特典型山地退化生态系统植被恢复研究.南京林业大学博士论文.2005.
    214.杨利民,韩梅,李建东.松嫩平原主要草地群落放牧退化演替阶段的划分.草地学报,1996,4(4):281-287.
    215.杜晓军,姜凤岐,焦志华.辽宁西部低山丘陵区植被恢复研究:基于演替理论和生态系统退化程度[J].应用生态学报.2004,15(9).1507-1511.
    216.王绪高,李秀珍,贺红士,等.大兴安岭森林景观在不同火干扰及人工更新下的演替动态[J].北京林业大学学报,2006,28(1):14-22.
    217.包维楷,陈庆恒.退化山地植被恢复和重建的基本理论和方法[J].长江流域资源与环境.1998,7(4):37l-376.
    218.胥泽银,郭科.多元统计方法及其程序设计[M].成都:四川科学技术出版社,1999.
    219.余建英,何旭宏.数据统计分析与SPSS应用[M].人民邮电出版社,2003.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700