用户名: 密码: 验证码:
金属冲击射流形成、断裂和颗粒化分布研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
金属冲击射流形成、失稳和颗粒化断裂问题的理论和数值模拟,是当前冲击动力学研究和工程应用研究中的重要课题;尤其是,对于近年来工程物理中普遍关注的高压动载荷下金属材料表面微喷射研究具有重要的现实意义。基于这一应用背景,本论文的研究工作主要集中在以下几个方面:
     1.平面来流非对称碰撞形成射流的理论研究。针对目前国内外非对称构形下金属射流形成问题的研究不足,首次在解椭圆上建立了平面来流非对称碰撞形成射流问题的方程组封闭条件,提出了非对称射流形成的几何理论,具体推导了射流形成的临界条件和出流公式。采用理论预测、欧拉程序模拟并结合实验,系统地研究了距离来流交汇点无限远和有限远两类典型碰撞情况下,存在稳态出流的来流交汇条件和出流规律,以及初始非对称因素如:来流厚度比、初始交汇状态和碰撞角等对形成射流和杵体的影响;并讨论了其他理论模型的适用性。本研究提出的非对称射流形成的几何理论,在较广的非对称碰撞条件下,与实验和数值计算结果一致性较好,弥补了以往近似理论的不足。
     2.金属冲击射流的失稳和断裂机理研究。建立了射流失稳断裂的近似理论:基于哈密顿原理,推导和建立了能够比较全面描述金属射流拉伸失稳的运动方程,编制了相应计算程序,该方程耦合了射流强度、剪切、应变率效应、动力学粘性、表面张力、气动阻力和惯性力等多种因素对射流稳定性的影响。推导了射流失稳的小扰动方程,具体分析了影响金属射流稳定性的各种因素,并由数值解定量给出其影响大小,以及最不稳定波长与初始应变率乘积λ_m(?)_o值的变化范围;从理论上得到了相邻颗粒的速度差公式和断裂颗粒数目;给出了金属射流断裂的时间判据和近似理论公式,与射流实验点、Chou&Carleone公式比较,符合较好。
     3.工程物理中微喷射问题的应用研究。首次将建立的描述金属冲击射流形成、失稳和颗粒化断裂的近似理论,应用于对高压动载荷下金属表面微尺度射流形成、断裂和喷射场颗粒度分布规律研究。模拟了典型金属材料的沟槽微射流实验,对金属表面微粒喷射场的粒径分布和速度分布特征进行理论估计,得到了与LANL实验全息测量定性一致的结果,研究表明微射流拉伸断裂机制是形成金属表面喷射场前端高速颗粒喷射物的主要原因。本研究是对金属表面喷射混合问题研究的探索性新尝试,并为后期流场中喷射颗粒的气粒两相混合研究提供了较为真实的输入条件。
     本文的研究工作和相关研究成果对于金属冲击射流形成、断裂的机理研究和高压动载荷下金属材料表面喷射混合问题研究,具有重要的理论参考价值。
Theoretical research and numerical simulation on metallic jets formation, instability and fragmentation under shock-loaded condition,is one of the important research subjects in current impact dynamics and engineering application.Especially, the considerable interest in this problem stems from the fact that it brings realistic significance in recent engineering usage,concerning mass ejection from metallic free surface to high-pressure shock loading.Based on these applications,the studies in this dissertation mainly focus on the following aspects:
     1.The theory frame of asymmetrical jets formation in two-metallic-flow collision is established.Aiming at the lack of theoretical works on aspect of asymmetric flows collision,the author firstly investigates the effects on fully scale asymmetry in detail in the dissertation.The close condition of equations is built on the solution ellipse,which is satisfied by the problem of asymmetric collision.The geometrical theory of asymmetric jet formation is presented.The critical condition and theoretical expressions for the width and flow direction of jet and slug are obtained.By means of theoretical prediction,Euler numerical simulation and analysis using experiment data,we systemically investigate two cases of plane asymmetric flows collision:at a finite and infinite distance from the stagnation point.The formation condition and rule of steady outflows are given.The effects on asymmetrical factors of initial colliding figuration are investigated in detail,such as width ratio,flows configuration,colliding angle and so on.The adaptability of other theoretical models is discussed.The geometrical theory overcomes the defect of other models.Theoretic predictions are more accurate than the results of other models and in agreement with experiment data and hydrocode simulations over the majority of the range of flow width ratio variation.
     2.The approximate theory frame of stretching metallic jets instability and fragmentation is established.Based on the Hamilton principle,a coupling motion equation of stretching metallic shaped charge jets is presented.The corresponding codes are accomplished,which can be applied to study the effects of yield strength, shear,strain rate,viscosity,surface tensile force,gas resistance and inertial force on jet instability.The disturbance equations describing jets instability are derived.We discuss quantitatively various factors affecting on jet stability and obtain the varying range of non-dimensionalλ_m(?)_0 value versus initial strain rate.The velocity difference between particulated metallic jet particles and numbers of fragment particles are derived theoretically.The jet breakup time criterion and theoretical formula are given. It yields the prediction curves of jet breakup time versus initial strain rate in fairly good agreement with jet experimental data and other empirical formula.
     3.Theoretical results are applied to the subject in engineering field,concerning shock-induced metallic ejection.All research achievements on stretching jet breakup theory in this dissertation are,for the first time,successfully applied to the problem, concerning instability,fragmentation and particle size distributions of micro-jets from high-pressure shocked metal free surface.The formation process of micro-jets from shocked AL target sample with grooved surface is simulated by two-dimensional Eulerian code.Particle diameter and velocity of micro-jets are given.The calculated ejecta particle size and velocity distributions are compared with LANL experimental data.The qualitative consistency shows that the main reason of high-velocity matter ejection from shocked metal free surface is,the micro-jet fragmentation mechanism. It is an effective attempt to study the problem of shock-induced metal ejection and gas-particle flows.The results can be applied to provide real initial parameters for the study of gas-ejecta particle two-phase flows.
     The research of this dissertation and its achievements are valuable for the study on the mechanism of metallic jets fragmentation,as well as the study on the problem of shock-induced metal ejection and gas-particle multiphase flows.
引文
[1] Walters WP and Zukas JA. Fundamentals of Shaped Charges. In: John Wiley and Sons, ed. New York: Academic Press, 1989.
    [2] Birkhoff G, MacDougall DP, Pugh EM and Taylor G. Explosives with lined cavities. J. Appl. Phys., 1948,19(6): 563-582.
    [3] Allison FE and Vitali R. An application of the jet formation theory to a 105 mm shaped charge. BRL Report 1165, March, 1962.
    [4] Perez E, Fauquignon D and Chanteret P. Fundamental studies of shaped charge mechanisms. In: Proc 3rd Intern Symp on Ballistics, Germany, 1977.
    [5] Pugh EM, Eichelberger RJ and Rostoker N. Theory of jet formation by charges with lined conical cavities. J. Appl. Phys., 1952, 23(5): 532-536.
    [6] Eichelberger RJ and Pugh EM. Experimental verification of the theory of jet formation by charges with lined conical cavities. J. Appl Phys., 1952, 23(5): 537-542.
    [7] Eichelberger RJ. Re-examination of the nonsteady theory of formation by lined cavity charges. J. Appl. Phys., 1955,26(4): 398-402.
    [8] Behrmann LA. Calculation of shaped charge jets using engineering approximations and finite difference computer codes. AFATL-TL-72-160, 1973.
    [9] Caleone J. Mechanics of shaped charges. Basic Principle of Hypervelocity Impact and Related Topics, Computational Mechanics Associate, Baltimore, MD, 1987.
    [10] Godunov SK, Deribas AA and Mali VI. Influence of material viscosity on the jet formation process during collisions of metal plates. Fizika Goreniya I Vzryva, 1975, 11(1): 1-7 (in Russia).
    [11] Walsh JM. Limiting conditions for jet formation in high velocity collisions. J.Appl.Phys.,1953,24(3):349-359.
    [12]Chou PC.The effect of compressibility on the formation of shaped charge.In:Proc 1st Intern Syrup on Ballistics,1976.
    [13]王继海.二维非定常流和激波.北京:科学出版社,1994.
    [14]恽寿榕,赵衡阳.爆炸力学.北京:国防工业出版社,2005.
    [15]Platini A.Sulla Confluamza di Due Vene.Atidel R.Instit.Veneto di Sc.Led Arti,LXXV,1916:45.
    [16]Wang JH.Asymmetric supersonic collision.In:Gupra YM,eds.Shock Waves in Condensed Matter-1985,New York,1986,661-666..
    [17]Wang JH.Motion of plate driven by glancing detonation and impact.In:Proc Intern Confon Ballistics,East China Inst.Techn Press,1988,Ⅳ:67-73.
    [18]Pack DC and Curtis JP.On the effect of asymmetries on the jet from a linear shaped charge.J.Appl.Phys.,1990,67(11):6701-6704.
    [19]Curtis JP and Kelly RJ.A limit of validity of the straight-line hypothesis in shaped charge jet formation modeling.J.Appl.Phys.,1997,82(1):107-111.
    [20]Curtis JP and Kelly RJ.Circular streamline model of shaped-charge jet and slug formation with asymmetry.J.Appl.Phys.,1994,75(12):7700-7709.
    [21]Curtis JP.Asymmetric formation of shaped charge jets.In:Proc 17th Intern Syrup on Ballistics,Midrand,South Africa,1998:405-412.
    [22]Hirsch E and Mordehai D.A test for measuring the energy density lost in two flow metallic collision.In:Proc 20th Int.Symp on Ballistics,2002:485-492.
    [23]Curtis JP.Variational principle for shaped charge jet formation.In:Proc 19th Int.Symp.on Ballistics,Interlaken,Switzerland,2001:781-787.
    [24]Mordehai D and Hirsch E.The problem of two flow collision—a generalized extension to the basic model.In:Proc 20th Int.Syrup on Ballistics,2002:478-484.
    [25]姜剑生,杭义洪,冯其京.非对称射流形成研究.兵工学报,2004,25(3): 292-295.
    [26]Kinelovskii SA and Sokolov AV.Nonsymmetric collision of plane jets of an ideal incompressible fluid.Translated from Zhurnal Prikladnoi Mekhaniki I Tekhnicheskoi Fisiki,1986,1:54-57.
    [27]Milne-Thompson LM.Theoretical fluid dynamics.Russian,Moscow,1964.
    [28]Drennov OB.Structure of a shaped jet formed in an oblique collision of flat metal plates.Explosion,Shock Wave and Hypervelocity Phenomena in Materials,2004,465-466:409-414.
    [29]Misha Vishik.Hydrodynamics in Besov Spaces.Arch.Rational Mech.Anal.1998,145:197-214.
    [30]Miller S and Ceder R.The indeterminacy of the outgoing flow of two impinging asymmetric jets.In:Proc.19th Int.Symp.on Ballistics,2001,843-850.
    [31]冯其京,等.二维高速碰撞问题欧拉数值模拟的混合网格计算.计算物理,2003,20(2):147-152.
    [32]Frankel I and Weihs D.Stability of a capillary jet with linearly increasing axial velocity(with application to shaped charges).J.Fluid Mech.1985,155:289-307.
    [33]Chou PC and Carleone J.The stability and breakup of shaped charge jets.In:Proc.3rd Int.Syrup.on Ballistic,Karlsruhe,Germany,1977.
    [34]郑哲敏.聚能射流的稳定性问题.爆炸与冲击,1981,1:6-17.
    [35]Shelton RD,Arbuckle AL.A calculation of particle size distributions in the break up of shaped charge jets.J.Appl.Phys.,1979,50(10):6190-6195.
    [36]Miller CW.Generation of necks in an elogating shaped charge jet.In:Proceedings of the BRL Symposium on Ballistics,1982.
    [37]Walsh JM.Plastic instability and particulation in stretching metal jets.J.Appl.Phys.,1984,56(7):1997-2006.
    [38]Frankel I,Weibs D.Influence of viscosity on the capillary instability of a stretching jet.J.Fluid Mech.,1987,185:361-383.
    [39]Curtis JP.Axisymmetric instability model for shaped charge jets.J.Appl.Phys.,1987,61(11):4978-4985.
    [40]Romero LA.The instability of rapidly stretching plastic jets.J.Appl.Phys.,1989,65(8):3006-3016.
    [41]Pack DC.On the perturbation and breakup of a high speed,elongating metal jet.J.Appl.Phys.,1988,63(6):1864-1871.
    [42]Zernow L,Herrmann RG and Sedgwick RT.Does the dynamic generation of porosity in the necking jet affect the jet particulation process? In:Proc.14th Int.Symp.on Ballistics,1993,101-117.
    [43]Fressengeas C and Molinari A.Fragmentation of rapidly stretching sheets.Eur.J.Mech.A/Solids.1994,13:251-268.
    [44]秦承森,段庆生等.聚能射流的断裂时间.爆炸与冲击,1997,17(4):318.
    [45]Qin CS,Duan QS and Lin Z.Study of shaped charge jet breakup.In:Proc.15th Int.Symp.on Ballistics,Jerusalem,Israel,1995,325-332.
    [46]Shenoy VB and Freund LB.Necking bifurcations during high strain rate extension.J.Mech.Phys.Solids,1999,47:2209-2233.
    [47]Guduru PR and Freund LB.The dynamics of multiple neck formation and fragmentation in high rate extension of ductile materials.Int.J.Solids Struct.,2002,39:5615-5632.
    [48]Jeanclaude V and Fressengeas C.Dynamic necking of rods at high strain rates.J.Phys.Ⅳ Colloque C3,1997,7:699-704.
    [49]Jeanclaude V and Fressengeas C,FEDSM00/11283.Fluids Engineering Division Summer Meeting(ASME,Boston),2000.
    [50]Mercier S and Molinari A.Predictions of bifurcation and instabilities during dynamic extension.Int.J.Solids Struct.,2003,40(8):1995-2016.
    [51]Cowan KG,Greenwood PR,Cornish R,et al.Hydrocode and analytical code modeling of the effect of linear material grain size on shaped charge jet break-up parameters.In:Proc.17th Int.Symp.on Ballistics.1998,2:217-224.
    [52]Cowan KG and Bourne B.Further analytical modeling of shaped charge jet break-up phenomena.In:Proc.19th Int.Symp.on Ballistics.2001,803-810.
    [53]Petit J,Jeanclaude V and Fressengeas L.Breakup of copper shaped charged jet:experiment,numerical simulations and analytical modeling.J.Appl.Phys.,2005,98:123521.
    [54]Babkin AV,Ladov SV and Fedovo SV.Regularities of shaped charge metal jets deformation and breakup in free flight.In:Proc.17th Int.Symp.on Ballistics,South Africa,1998,2:225-232.
    [55]Held M.Particulation of shaped jets.In:Proc.11th Int.Symp.on Ballistic,Brussels Belgium,1989,WM1:1-10.
    [56]Walters WP,Summers RL.The velocity difference between shaped charge jets particles.In:Proc.14th Int.Syrup.on Ballistic.1993,WM5:49-57.
    [57]秦承森,李勇.一个新的射流速度差公式.爆炸与冲击,2001,21(1):8-12.
    [58]Waiters WP and Summers RL.A review of jet breakup time models.Propellants,Explosives,Pyrotechnics,1993,18:241-244.
    [59]Chou PC and Carleone J.The stability of shaped charge jets.J.Appl.Phys.,1977,48:4187-4195.
    [60]Chou PC and Flis WJ.Recent developments in shaped charge technology.Propellants,Explosives,Pyrotechnics,1986,11:99-114.
    [61]Waiters WP and Zukas JA.Fundamentals of shaped charges.John Wiley and Sons,New York,1989.
    [62]Hirsh E.A formula for the shaped charge jet break-up time.Propellants,Explosives,Pyrotechnics,1979,4:89-94.
    [63]Hirsch E.Scaling of the shaped charge jet break-up time.Propellants,Explosives,Pyrotechnics,2006,31(3):230-233.
    [64]Pfeffer G.Determination par simulations numeriques de L'etat et des Lois de fregmentation des jets de charges creusses.In:Proc.5th lnt.Symp.on Ballistics,1980.
    [65]Haugstad B.On the break-up of shaped charge jets.Propellants,Explosives,Pyrotechnics,1983,8:119-120.
    [66]Mostert FJ,Koenig PJ.A link between liner metallurgy and shaped charge jet ductility.South African Journal of Physics,10(3),1987.
    [67]Chou PC,Grudza M,Liu Y and Ritman Z.Shaped charge jet breakup formula with metal anisotropy.In:Proc.13th Int.Symp.on Ballistic.,1992.
    [68]Johnson WF and Anderson CE.History and application of hydrocodes in hypervelocity impact.Int.J.Impact Engng.,1987,5:423-439.
    [69]Anderson CE.An overview of the theory of hydrocodes.Int.J.Impact Engng.,1997,5.
    [70]Amsden,AA.The Particle-in-Cell method for the calculation of the dynamics of compressible fluids.LA-3466,1966.
    [71]李德元,徐国荣等.二维不定常流体力学数值方法.科学出版社,1987.
    [72]冯圣中.混凝土侵彻与损伤的数值模拟及算法研究.[博士学位论文].北京:北京理工大学,1997.
    [73]Youngs,DL.Time-dependent multi-material flow with large fluid distortion.Numerical Methods For Fluid Dynamics.Academic Press,1982.
    [74]冯其京.二维多介质弹塑性流体力学高精度欧拉程序研制.中国国防科技报告.
    [75]温万治,恽寿榕,赵衡阳等.欧拉程序中描述分界面的网格线示踪点法(MOCL).兵工学报,1999,20(3):212-216.
    [76]Mulder W,Osher S and Sethian A.Computing interface motion in compressible gas dynamics.J.Comp.Phys.,1992,100:209-228.
    [77]王瑞利,闫伟等.流体力学中AMR技术的研究.第二届全国计算爆炸力学会议论文集.北京,2002,119-125.
    [78]袁国兴,段庆生.跟踪界面活动网格法.爆炸与冲击,1982,3.
    [79]Noh WFCEL:a time-dependent two-space-dimensional coupled Eulerian Lagrangian code.Methods in Computational Physics,1964,3.
    [80]Margolin LG.Introduction to an arbitrary Lagrangian-Eulerian computing method for all flow speeds.J.Comp.Phys.,1997,135.
    [81]Lucy LB.A numerical approach to the testing of the fission hypothesis.The Astron.J.,1977,8(12):1013-1024.
    [82]Monaghan JJ,Gingold RA.Shock simulation by the particle method SPH.J.Comput.Phys.,1983,52:374-389.
    [83]Monaghan JJ,Poinracic J.Artificial viscosity for Particle Methods.Applied Numerical Mathematics,1985,1:187-194.
    [84]Libersky LD,etc.Smoothed particle hydrodynamics with strength of material.In:Proc.Next Free Advances in the Free Lagrange.1991,248-257
    [85]Liu GR,Liu MB.Smooth particle hydrodynamics.World Scientific Press.2003.
    [86]张雄,刘岩.无网格法.北京:清华大学出版社,2004.
    [87]Karpp RR and Simon J.An estimate of the strength of a copper shaped charge jet and the effect of strength on the breakup of a stretching jet.Tech.Rep.BRL-1983,1976.
    [88]Karpp RR,Hull LM and Price ML.A technique for estimating the strength of materials in stretching shaped-charge jets.In:Proc.15th Int.Symp.on Ballistics,Israel,1995,2:175-182.
    [89]Karlsson HEV.Computer simulation of shaped charge jet fragmentation.In:Proc.19th Int.Symp.on Ballistics,Switzerland,2001,2:819-826.
    [90]Karlsson HEV.Computer simulations of shaped charge jet fragmentation.In:Proc.2Oth Int.Symp.on Ballistics,Orlando,Florida,2002,1:557-564.
    [91]Yao J,Gunger ME and Matuska DA.Simulation of shaped-charge with SPH rezone method.In:Shock Compression of Condensed Matter,2001,435-438.
    [92]Liu MB,Liu GR,et al.Meshfree particle simulation of the detonation Process for high explosives in shaped charge unlined cavity configurations.Shock Waves,2003,12:509-520.
    [93]Walsh JM,Shreffler RG,Willig FJ.Limiting conditions for jet formation in high velocity collisions.J.Appl.Phys.,1953,24(3):349-359.
    [94]Asay JR and Barker LM.Interferometric measurement of shocked-induced internal particle velocity and spatial variations of particle velocity.J.Appl.Phys.,1974,45(6):2540-2546.
    [95]Asay JR,Mix LP and Perry FC.Ejection of material from shocked surfaces.Appl.Phys.Lett.,1976,29(5):284-287.
    [96]Asay JR.Material ejection from shock-loaded free surface of aluminium and lead.Sandia Laboratories Report SAND76-0542,1976.
    [97]Asay JR.Effect of shock wave risetime on material ejection from aluminium surface.Sandia Laboratories Report SAND77-0731,1977.
    [98]Asay JR.A model for estimating the effects of surface roughness on mass ejection from shocked materials.Sandia Report SAND78-1256,1978.
    [99]Asay JR.Thick plate technique for measuring ejecta from shocked surfaces.J.Appl.Phys.,1978,49(12):6173-6175.
    [100]Andriot P,Chapron P and Olive F.Ejection of material from shocked surfaces of tin,tantalum and lead-alloys.In:Shock Waves in Condensed Matter,1982,505-509.
    [101]Andriot P,Chapron P,Lambert V,etc.Influence of melting on shocked free surface behavior using doppler laser interferometry and X ray densitometry.In:Shock Waves in Condensed Matter,1984,277-280.
    [102]谭显祥,黄福.一个用于观察自由面微物质喷射的高速纹影系统.高压物理学报,1988,2(2):171-173.
    [103]Karioris FG.Recommendations for applying flash X-radiographic(FXR)technoloques to the study of low-density material ejected from shocked Pb surface.Sandia Laboratories Report SAND80-2726,1980.
    [104]王国志,等.用脉冲激光全息术测量喷雾场中粒子的分布和运动速度.光学技术,1995,5:24-27.
    [105]Holtkamp DB,etc.A survey of high-explosive damage and spall in selected metals using proton radiography.In:Shock compression of condensed matter,2003.
    [106]Sorenson DS,Minich RW and Romero JL,et al.Ejecta particle size distributions for shock loaded Sn and Al metals.J.Appl.Phys.,2002,92(10):5830-5836.
    [107]曾鉴荣,庄以河.动载荷下金属板表面的微物质喷射.高压物理学报,1987,1(1):88-92.
    [108]韩长生.不同加载速率下铝自由面微粒子喷射现象研究.高压物理学报,1989,3(2):98-106.
    [109]Cheret R,Chapron P,Elias P and Martineau J.Mass ejection from the free surface of shock-loaded metallic samples.In:Gupta YM,eds.Shock Waves in Condensed Matter,New York:Plenum Press,1986,651-654.
    [110]Elias P,Chapron P.Experimental technique measuring mass ejection from shock-loaded metallic samples.In:Shock Waves in Condensed Matter-1985,New York:Plenum Press,1986,645-650.
    [111]Remiot C,Chapron P and Demay B.A flash X-ray radiography diagnostic for studying surface phenomena under shock loading.High Pressure Science and Technology,1993,Part 2,1763-1766.
    [112]Resseguier T,Signor L,Dragon A,etc.Experimental investigation of liquid spall in laser shock-loaded tin.J.Appl.Phys.,2007,101:013506.
    [113]Millan CM and Whipkey R.SPIE,1988,1032:553-559.
    [114]余泳.核武器与高技术,2000,4:28-38.
    [115]马云,汪小松,李欣竹等.Asay膜法测量微物质喷射总质量不确定度的初步实验研究膜法测量.高压物理学报,2006,20(2):207-210.
    [116]李作友,李泽仁,叶雁等.微射流粒子场的同轴Fraunhofer全息测试. 激光技术,2004,28(1):45-47.
    [117]罗振雄,李泽仁,刘振清等.同轴数字全息技术在高速射流粒子测量中的应用.爆炸与冲击,2007,27(3):278-282.
    [118]Elias P,Chapron P and Mondot M.Experimental study of the slowing down of shock-induced matter ejection into argon gas.In:Shock Compression of Condensed Matter,1990,783-786.
    [119]Couch R.Surface properties of shocked Lead.UCRL-9087,1985.
    [120]Buttler WT,Hixson RS,King NSP,et al.Method to separate and determine the amount of ejecta produced in a second-shock material-fragmentation event.Appl.Phys.Lett.,2007,90:151921.
    [121]Zellner MB,Grover M,etc.Effects of shock-breakout pressure on ejection of micron-scale material from shocked tin surfaces.J.Appl.Phys.,2007,102:013522.
    [122]Chandle EA,Egan PO,Stokes J,et al.Application of PegasusⅡ to study inertial instability and fracture of cylindrical tubes of solid aluminum.UCRL134657,1999.
    [123]Phil Davis.BILLI-G Programme.Discovery-The Science&Technology Journal of AWE.2000.
    [124]韩长生.估算冲击加载下材料自由表面微射流喷射量的一个半经验解析公式.高压物理学报,1989,3(3):234-240.
    [125]张景琳,王继海,杨淑霞.材料微喷射和动态损伤的分子动力学研究.计算物理,1993,10(3):318-324.
    [126]陈军,经福谦,张景琳等.冲击作用下金属表面微喷射的分子动力学模拟.物理学报,2002,51(10):2386-2392.
    [127]张颖,陈其峰,曹小林等.微喷射粒子团簇探测算法及其应用.计算物理,2006,23(4):441-446.
    [128]Timothy.Material Studies.LANL Annual Report,2003.
    [129]Germann TC,Hammerberg JE and Holian BL.Large-scale molecular dynamics simulations of ejecta formation in copper.In:Shock Compression of Condensed Matter,2004,285-288.
    [130]王裴,秦承森,张树道等.SPH方法对金属表面微射流的数值模拟.高压物理学报,2004,18(2):149-156.
    [131]王裴,洪滔.三维光滑粒子流体动力学并行计算程序.计算物理,2006,23(4):431-435.
    [132]刘超等.应用二维弹塑性流体力学欧拉程序对微喷射问题的数值研究.中国国防科技报告,2003.
    [133]刘超等.冲击波形对微射流影响的数值模拟.中国国防科技报告,2004.
    [134]Held M.Penetration cutoff velocities of shaped charge jets.Pro.Explo.Pyro.,1988,13:111-119.
    [135]Held M.The orthogonal dyndro synchro-streak technique as a diagnostic tool,particularly for shaped charge jets.Pro.Explo.Pyro.,1986,11:170-175.
    [136]王卫民,谭显祥,黄福.聚能射流高速光学测试技术.光子学报,1994,23(6):557.
    [137]Von Holle WG,Trimble JJ.Shaped charge temperature measurement.In:Proc.6th Int.Symp.on detonation.Coronado,California,1976.
    [138]Zernow L,Richard M,Zemow H.Experimental estimation of the average temperature of shaped charge jet particles by a non-optical calorimetric method.In:Proc.15th Int.Symp.on Ballistics.Jerusalem,Israel,1995.
    [139]刘大有.二相流体动力学.高等教育出版社,1993.
    [140]周力行.湍流两相流动和燃烧的理论与数值模拟.科学出版社,1994.
    [141]李静海等.颗粒流体复杂系统的多尺度模拟.科学出版社,2005.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700