用户名: 密码: 验证码:
燕辽成矿带钼(铜)矿床成矿作用及成矿动力学背景
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
燕辽地区是华北地北缘一条重要的多金属成矿带,也是我国第二大钼矿带。成矿带内已发现钼(铜)矿床(点)20余处,这些矿床主要分布于冀北和辽西地区,矿床成因类型包括斑岩型、斑岩-矽卡岩型、矽卡岩型和石英脉型。本论文在前人研究成果的基础上,重点选择了成矿带内兰家沟、肖家营子、撒岱沟门3个典型矿床进行研究。通过对燕辽成矿带内区域地质背景、矿床地质特征、流体包裹体、稳定同位素、成岩成矿年代学及综合分析对比等多种手段,研究了成矿流体来源、演化及成因机制,总结了成矿规律,探讨了燕辽钼矿带成矿地球动力学背景及其演化,并与东秦岭钼矿带进行了对比,取得了如下成果:
     1、燕辽成矿带钼(铜)矿床主要分布于华北板块北缘的弧形构造带内,受区域性EW向、NE向和NNE向断裂控制。赋矿地层主要为蓟县系雾迷山组白云质灰岩和寒武系-奥陶系灰岩、页岩,与钼(铜)矿化有关的岩体主要是中生代中酸性复式侵入体(肖家营子除外)。钼矿床多产于含钼花岗质岩石之中或与地层的接触带之中。侵入岩与地层条件对矿床的形成具有一定的制约性,产于花岗斑岩、长英质或中酸性火山岩内的钼矿床多为斑岩型,而产在花岗质岩类与碳酸盐岩地层接触带的钼或铜(铜)矿床为矽卡岩型或斑岩-矽卡岩型。
     2、兰家沟钼矿床矿体主要赋存于细粒花岗岩体内部及与粗粒花岗岩的接触部位,矿石类型以石英-辉钼矿大脉为主,围岩蚀变主要是钾化、硅化、云英岩化和水白云母化。含钼石英脉中流体包裹体以气液两相为主,包裹体的均一温度为160~405℃;盐度w(NaCl_(eq))为2.4%~16.5%,成矿流体属NaCl-H_2O±(CO_2)体系。石英的δD为-81‰~-101‰,δ~(18)O_(H2O)为-0.1‰~4.5‰,表明成矿流体来自岩浆水与大气降水的混合。成矿流体在演化过程中发生了中等盐度和低盐度流体的混合作用,2种不同组分流体的混合作用使得辉钼矿大量沉淀而成矿。通过与典型斑岩型钼矿床地质特征、矿化、围岩蚀变、流体包裹体特征及同位素组成的对比,认为兰家沟钼矿床属于石英脉型钼矿床。
     3、肖家营子矿床是一个与中-基性侵入岩有关的矽卡岩型钼(铁)矿床,矿体主要赋存于细粒闪长岩与雾迷山组白云岩接触部位的矽卡岩体中。石榴石矽卡岩阶段和磁铁矿化阶段流体包裹体主要为含子矿物包裹体,含子矿物包裹体通过气泡消失而均一,均一温度分别为505~560℃和435~541℃,盐度w(NaCl_(eq))分别为43.4%~50.0%和44.9%~56.9%;辉钼矿化阶段以含子矿物包裹体和气液两相包裹体为主,含子矿物包裹体通过子矿物消失而完全均一,均一温度为203~440℃,盐度w(NaCl_(eq))为32.0%~52.0%,气液两相包裹体通过气泡消失而均一,均一温度为146~402℃,盐度w(NaCl_(eq))为4.3%~18.4%。肖家营子矿床成矿流体属于H_2O-NaCl±(KCl)高盐度体系。流体包裹体和氢氧同位素分析表明,成矿早期为高温、高盐度的岩浆流体;辉钼矿阶段流体为中温、高盐度流体和中-低温、低盐度的混合流体。含矿流体在演化的过程中,高温、高盐度流体由于压力和密度的转化对磁铁矿沉淀富集具有重要影响;中温、高盐度与低盐度流体的混合有利于辉钼矿富集成矿。
     4、撒岱沟门矿床矿体主要以网脉状、细脉状、星散浸染状或条带状赋存于二长花岗岩体内,属于斑岩型钼矿床。钼矿化与微斜长石化、硅化、白云母化关系密切。撒岱沟门钼矿床石英脉中主要发育气液两相、含CO_2三相和CO_2相包裹体。成矿前与成矿期后流体以气液两相包裹体为主,包裹体均一温度、盐度w(NaCl_(eq))分别为280~452℃、5.4%~18.4%和153~279℃、3.9%~9.7%;成矿期流体中3类包裹体都发育,包裹体均一温度为170~370℃,盐度w(NaCl_(eq))为4.3%~14.4%,成矿流体属于NaCl-H_2O-CO_2不混溶体系。含钼石英脉的δD为-82‰~-98‰,δ~(18)O_(H2O)为0.1‰~6.2‰,表明成矿流体以岩浆水为主,晚期有大气水的混入。成矿流体在形成过程中经历了3个阶段的流体演化:早期为岩浆脱水、脱气阶段,成矿期为流体不混溶阶段,晚期为大气水混合阶段。其中,流体的不混溶作用对辉钼矿沉淀成矿产生了积极的影响。
     5、分别采用SHRIMP锆石U-Pb定年法、锆石U-Pb定年法和辉钼矿Re-Os同位素测年方法对兰家沟、肖家营子、撒岱沟门矿床的成岩成矿年龄进行了精测。获得兰家沟细粒花岗岩的SHRIMPU-Pb年龄为(188.9±1.2)Ma与辉钼矿Re-Os年龄(186.5±0.7)Ma相似:肖家营子细粒闪长岩的SHRIMP U-Pb年龄为(169.9±1.4)Ma,辉钼矿Re-Os等时线年龄为(165.5±4.6)Ma;撒岱沟门二长花岗岩的U-Pb年龄为227 Ma,辉钼矿Re-Os模式年龄为237~238 Ma;大草坪钼矿床花岗闪长岩U-Pb年龄为137 Ma,辉钼矿Re-Os模式年龄为136~146 Ma。通过与成矿带内其它钼矿床的对比发现,燕辽成矿带内大规模的钼(铜)矿化事件主要集中于225±Ma、185±Ma、140±Ma,这些矿床形成的地球动力学背景分别为西伯利亚板块与华北板块后碰撞造山作用的短期挤压阶段;蒙古—鄂霍茨克洋消减、闭合时期:中国东部地球动力学机制大调整晚期。
     6、对比研究表明,华北板块南北缘钼矿床的形成在区域地球化学背景、赋矿层位、构造、岩浆岩和成岩成矿年龄方面存在一定的差异性。华北板块北缘燕辽钼矿带区域钼、铜地球化学异常背景高,地层层位对钼(铜)矿床的控制作用较华北板块南缘东秦岭钼矿带明显。华北板块北缘区域性EW向、NE向、NNE向断裂控制着燕辽地区的岩浆活动与钼(铜)矿床的展布,与钼(铜)矿化有关的岩浆系列从基性→中性→酸性都有,而东秦岭钼矿带构造格局以NWW向和NE向断裂为主,与钼矿化有关的岩体主要为一些中酸性花岗岩类小岩体。在成矿时代方面,燕辽成矿带早侏罗世钼矿床成矿事件较为强烈,早白垩世成矿作用弱。而东秦岭成矿带内早侏罗世钼成矿事件弱,晚侏罗-早白垩世成矿作用强烈。
The Yan-Liao(Yanshan-western Liaoning) area is an important metallogenic belt for Au,Ag,Pb-Zn on the northern margin of the North China Block and is also the second largest Mo metallogenic belt in China where more than 20 Mo(Cu) deposits have been explored.Those Mo(Cu) deposits are present in the northern Hebei province and western Liaoning province and are mainly porphyry types,skarn types and quartz vein types.Base on the pervious researchers and detail field investigation in Yan-Liao area,we selected three types of representative Mo deposits such as Lanjiagou(quartz vein types),Xiaojiayingzi (skarn type) and Sadaigoumen(porphyry type) to detail study.Focusing on the geological characteristics, fluid inclusions analyses,stable isotope,chronology and synthetically comparative study etc,we studied the source and evolution of ore fluids of representative Mo deposit,summarized the metallogenic regularities of Mo(Cu) deposits,discussed the metallogenic mechanism and the relation between geodynamics evolution and the Mo(Cu) mineralization of the Yan-Liao area,and compared with the Mo deposits in east Qinling Mo metallogenic belt in the southern margin of North China Block.The main advance achievements from this study are as followings:
     1.Located in the Yan-Liao area,the Mo(Cu) deposits occurred in an arc structure belt in the northern margin of North China Block,which were controlled by the EW-trending,NE-trending and NNE-trending regional faults.The host rocks of these deposits are Mesoproterozoic Wumishan Formation,comprising dolomitic limestone and Cambrian-Ordovician limestone and shale.Most these Mo(Cu) deposits were temporally and spatially associated with intermediate-felsic rocks(except Xiaojiayingzi deposit),and occurred in the inner of felsic rocks or the contact zone between the felisc with host rocks.Intrusive rocks and host rocks play an important role for the metal mineralization.Those Mo(Cu) deposits,occurring in the inner of granite porphyry,felsic rocks and intermediate-felsic volcanic rock are mainly porphyry type, whereas the Mo(Cu) deposits,occurring in the contact zone between felsic rocks and carbonate rocks are mainly skarn type or porphyry type deposits.
     2.The Lanjiagou Mo deposit is located in Liaoning province.Its major molybdenite orebodies are situated at the inner of fine granite of Hongluoshan and the contact zone between fine granite and coarse granite.Molybdenite quartz large veins are the primary mineralization type in Lanjiagou deposits.The wallrock alteration consists of potassium alteration,silicification,greisenization and hydromuscovite alteration.Petrographic observation shows that aqueous two-phase inclusion is the mainly fluid inclusion type in molybdenite quartz veins and the homogenization temperatures and salinities of the inclusion in ore-forming stage range from 160 to 405℃,2.4~16.5%NaCl equivalent,respectively.Laser Raman Spectroscopic analysis of fluid inclusions suggest that the ore-forming fluids once were of NaCl-H_2O±(CO_2) system.The hydrogen and oxygen isotopic components of typical ores indicate that theδD values of ore-forming fluids from -81‰to -101‰and theδ~(18)O_(H2O) values vary from -0.1‰to 4.5‰,which suggested that the ore-forming fluids could be produced by mixing magmatic and meteoric water.During mineralization stages,the fluid inclusions with lower salinities underwent mixing processes with the fluid inclusion with middle salinities,which brought positive influence to molybdenite mineralization and concentrate.Comparative studies on geological features,mineralization,wallrock alteration,fluid inclusions characteristics and H,O isotope,the author confirm that there are many differences between Lanjiagou Mo deposit and porphyry Mo deposit.The genesis of Lanjiagou deposits is of quartz vein type Mo deposit.
     3.The Xiaojiayingzi Mo(Fe) deposit is temporally and spatially associated with intermediate to mafic rocks and the mineralization hosted in skarn.Detail fluid inclusion studies show that there are mainly two types primary fluid inclusion occurred in this deposit.The fluid inclusion in granet and chondrodite from garnet skarn stage and magnetite mineralization stage are mainly daughter crystal-bearing polyphase,which homogenized to the liquid phase by disappearance of vapor phase and homogenization temperatures from 505 to 560℃and 435 to 541℃,salinity from 43.4 to 50.0%NaCl equiv and 44.9 to 56.9%NaCl equiv, respectively.The fluid inclusions occured in calcite and quartz from molybdenite mineralization stage: daughter crystal-bearing polyphase inclusion and aqueous two-phase inclusion.The former homogenized to liquid phase by dissolution of daughter minerals,with homogenization temperatures from 203 to 440℃and salinity ranging from 32.0%to 52.0%NaCl equiv.The latter homogenized to the liquid phase by disappearance of the vapor bubble at homogenization temperatures from 146 to 402℃,salinity between 4.3%to 18.4%NaCl equiv.Fluid inclusion and H,O isotope analysis show that the ore-forming fluid from pre-ore stage is characterized by high temperature and high salinity.The ore-forming fluid from molybdenite mineralization stage are characterized by mixed fluid of high temperature and high salinity fluid end and medium to lower temperature and lower salinity fluid end.During the evolutional processes of ore-forming fluid,the transformed of the pressure and density of high temperature and high salinity fluid play an important role to magnetite minealization,and the mixing of fluid between high salinity and lower salinity take a positive influence to molybdenite deposition.
     4.The Sadaigoumen deposit lies in Hebei province and is the largest molybdenum deposit in this region thus far reported.Its major molybdenite orebodies are mainly hosted inside monzogranite and occurred as veinlet,disseminated structure or banding structure.Molybdenite mineralization is closely associated with microclinization,silicification and muscovitization.Fluid inclusion studies suggest that three types of fluid inclusion are present in this deposit:aqueous two-phase inclusions,CO_2-bearing three-phase inclusions and CO_2 phase inclusions.Fluid inclusions in quartz in the pre-ore stage and post-ore stage are mainly aqueous two-phase.The homogenization temperatures and salinities of the former stage vary from 280 to 452℃and from 5.4%to 18.4%NaCl equivalent respectively,and those of the latter stage vary from 153 to 279℃and from 3.9%to 9.7 wt%NaCl equivalent respectively.During the mineralization stage,all the three types of fluid inclusion were formed in ores.Microthermometric studies indicate that their homogenization temperatures and salinities range from 170 to 370℃and from 4.3 to 14.4 wt%NaCl equivalent respectively.Laser Raman spectrometric and hydrogen and oxygen isotope studies of the fluid inclusions in ores indicate that quartz in the Sadaigoumen deposit contains -82 to -98‰δD and 0.1 to 6.2‰δ~(18)O_(H2O) and that the ore-forming fluids once belonged to the immiscible NaCl-H_2O-CO_2 system and were mainly derived from magmatic water,which were mixed with meteoric water in the post-ore stage.During the formation of the ore-forming fluids,three stages of fluid evolution occurred in the Sadaigoumen deposit:magma dehydrating and degassing in the pre-ore stage,fluid immiscibility in the mineralization stage and meteoric waters mixing in the post-ore stage,respectively.The decrease of temperatures and fluid immiscibility are the dominant factors for molybdenite deposition.
     5.SHRIMP zircon U-Pb,zircon U-Pb and molybdenite Re-Os isotopic dating methods are utilized in order to determine the timing of the mineralization and its relationship intrusive rock.We obtained the SHRIMP zircon U-Pb weighted mean age of(188.9±1.2) Ma for the Lanjiagou fine-grained granite and (169.9±1.4) Ma for the Xiaojiayingzi fine-grained diorite.The molybdenite Re-Os isochron age is (165.5±4.6) Ma for Xiaojiayingzi deposit.The molybdenite Re-Os model age ranges from 237 to 238 Ma for the Sadaigoumen deposit and 136 to 146 Ma for the Dacaoping deposit.The zircon U-Pb for monzonitic granite from Sadaigoumen deposit and for granodiorite from Dacaoping deposit yield modle age of 227 Ma and 137 Ma,respectively.After collecting and documenting the precise radiometric age of the Mo(Cu) deposits in Yan-Liao area,there appear three Mo(Cu) mineralization pulses,i.e.ca.225 Ma,ca. 185 Ma and ca.145 Ma in Mesozoic.Base on the Mesozoic tectonic evolution,we propose these three pulses of large-scale mineralization are the consequences of the short time compression during the postcollisional process of the Siberian Block with the North China Block,the closure of Mongolo-Okhotsk, and the late stage of tectonic regime changing its main stress from NS-trending to EW-trending.
     6.Based on comprehensive studies and comparison of these Mo deposits between Yan-Liao metallogenic belt and east Qinling Mo mineralization belt,we confirmed that there were significant differences exist in regional geochemical anomaly,the tectonic system,the magmatic composition,the age of magma emplacement and the mineralization pulse.
引文
Ames L, Zhou G Z and Xiong B C. 1996. Geochronology and isotopic character of ultra-pressure metamorphism with implication for collision of the Sino-Korean and Yangtze cratons, central China. Tectonics, 15(2): 472-489.
    Bischoff J L. 1991. Densities of liquids and vapors in boiling NaCl-H_2O solutions: A PVTX summary from 300 to 500℃. America Journal of Science, 291: 309-338.
    Bloom M S. 1981. Chemistry of inclusion fluids: stockwork molybdenum deposits form Questa, New Mexico, Hudson Bay Mountain, and Endako, Bristish Columbia. Economic Geology, 76, 1906-1920.
    Bottinga Y and Javoy M. 1975. Oxygen isotope partitioning among the minerals in igneous and metamorphic rocks. Rev. Geophys. Space Phys., 13: 401.
    Chen B, Jahn BM, Wilde S., Xu B. 2000. Two contrasting Paleozoic magmatic belts in northern Inner Mongolia, China: petrogenesis and tectonic implications. Tectophysics, 157-182.
    Clayton R N, Mayeda T K, Mayeda T K. 1972 . Oxygen isotope exchange between quartz and water. J. Geophys. Res, 77: 3057-3067.
    Cline J S and Bodnar R J. 1994. Direct evolution of brine from a crystallizing silicate melt at the Questa, New Mexico, molybdenum deposit. Economic Geology, 89,1780-1802.
    Craw D. 1992. Fluid evolution, fluid immiscibility and gold deposition during Cretaceous-recent tectonics and uplift of the Otago and Alpine schist, New Zealand. Chemical Geology, 221-236.
    Darby, B.J., Davis, G.A., Zheng, Y., 2001. Structural evolution of the southern Daqing Shan, Yinshan belt, Inner Mongolia, China. In: Hendrix, M.S., Davis, G.A. (Eds.), Paleozoic and Mesozoic Tectonic Evolution of Central Asia: from Continental Assembly to Intracontinental Deformation. Geol. Soc. Am. Mem., vol. 194:199-214.
    Davis G A, Zheng Y D, Wang C, Darby B J, Zhang C and Gehrels G E. 2001. Mesozoic tectonic evolution of the Yanshan fold and thrust belt, with emphasis on Hebei and Liaoning provinces, northern China. Geological Society of America Memoir, 194:171-197.
    Davis G A, Zheng Y, Zhang J, et al., 1998. The enigmatic Yinshan fold-and-thrust belt of northern China: new vies on its intraplate contractional styles. Geology, 26: 43-46.
    Dewey J F and Burke K. 1973. Tibetan Variscan and Precambrian reactivation: products of continental collision, Jour. Geol, 81,683-692.
    
    Dewey J F and Horsfield B. 1970. Plate tectonics, Oreogeny and continental growth. Nature, 255, 521-525.
    Du A D, Wu S Q, Sun D Z, Wang S X, Qu W J, Stein H J, Morgan J and Malinovskiy D. 2004. Preparation and Certification of Re-Os Dating Reference Materials: Molybdenite HLP and JDC. Geostandard and Geoanalytical Research, 28 (1): 41-52.
    Dubessy J, Derome D, Sausse J, 2003. Numerical modelling of fluid mixings in the H_2O-NaCl system application to the North Caramal U prospect (Australia). Chemical Geology, 194, 25-39.
    Foster G, Lambert D D, Frick L R, et al. 1996. Re-Os isotopic evidence for genesis of Archaen nickel ores from uncontaminated komatiites. Nature, 382: 703-706.
    Friedman I and O'Neil J R. 1977. Complication of stable isotope fractionation factors of geochemical interest. In: Fleischer M, ed. Data of Geochemistry, 6~(th) edition. U. S. Geological Professional Pater.
    Fyfe W S,Price N J and Thompson A B. 1978. Fluids in the earth's Crust. Amsterdam: Elsterdam, 1-383.
    Gao S, Rudnick R L, Carbon R W, McUonough W E and Liu Y S. 2002. Re-Os evidence for replacement of ancient mantle lithosphere beneath the Nroth China Craton. Earth and Planetary Science Letter, 198: 307-322.
    Hacker B R, Ratschbacher L and Webb L, 1998. U/Pb zircon ages constrain the architecture of the ultrahigh-pressure Qinling-Dabie orogen, China. Earth and Planetary Science Letters, 1998, 161: 215-230.
    Hall D L, Sterner S M and Bodnar R J. 1988. Freezing point depression of NaCl-KCl-H_2O solutions. Economic Geology, 83:197-202.
    Hofstra A H, Leventhal J S and Northrop H R. 1991. Genesis of sediment-hosted disseminated-gold deposits by fluid mixing and sulfidization: Chemical-reaction-path modeling of ore-depositional processes documented in the Jerritt Canyon district, Nevada. Geology, 19: 36-40.
    Hou Z Q, Zeng P S, Gao Y F, Du A D, Fu D M .2006. Himalayan Cu-Mo-Au mineralization in the eastern Indo-Asian collision zone: constraints from Re-Os dating of molybdenite. Mineralium Deposita, 41: 33-45.
    
    Isozaki Y. 1997. Jurassic accretion tectonics of Japan: The Island Arc, 6: 25-51.
    Kamilli R J. 1978. The genesis of stockwork molybdenite deposits: implications form fluid inclusion studies at the Henderson mine. Geol. Soc. Am. Abstracts with Programs, 10: 431.
    Keith J D Christiansen E H, Carten R B and Nevada R. 1992. The genesis of giant porphyry molybdenum deposits. In Whiting B H, Hodgson C J and Mason R ed. Giant ore deposits II. Ottawa: Lancaster Press, 285-316.
    
    Kula C M. 2000. Understanding mineral deposits. Dordrecht: Kluwer academic publishers, 397-413.
    Lambert D D, Foster J G, Frick L R, et al. 1999. Re-Os isotopic systematics of the Voisey's bay Ni-Cu-Co magmatic ore system,Labrador, Canada. Lithos, 47: 69-88.
    Liu D Y, Nutman A P, Compston W, et al. 1992. Remmants of ≥3800Ma crust in the Chinese part of the Sino-Korean Craton. Geology, 20: 339-342
    Ludwig KR. 2004. Isoplot/Ex, version 3.0: a geochronological toolkit for Microsoft Excel. Berkeley Geochronology Center, Berkeley, CA
    Mao J W, Xie G Q, Bierlein F, Ye H S, Qu WJ, Du A D, Pirajno F, Li H M, Guo B J, Li Y F, Yang Z Q. 2008. Tectonic implications from Re-Os Dating of Mesozoic Molybdenum Deposits in the East Qinling-Dabie Orogenic Belt. Geochimica et Cosmochimica Acta (in press)
    Mao J W, Zhang Z C, Zhang Z H, Du A D. 1999. Re-Os isotopic dating of molybdenites in the Xiaoliugou W(Mo) deposit in the northern Qilian mountains and its geological significance. Geochimica et Cosmochimica Acta, 63(11-12): 1815-1818.
    Meng Q R. 2003. What drove Late Mesozoic extension of the northern China-Mongolia tract?. Tectonophysics, 369:155-174.
    Mishra B, Pal N, Sarbadhikari A B. 2005. Fluid inclusion characteristics of the Uti gold deposit, Hutti-Maski greenstone belt, southern India. Ore Geology Reviews, 26: 1-16.
    Niu B G, He Z J, Song B, et al. 2004. SHRIMP geochronology of volcanics of the Zhangjiakou and Yixian Formations,Northern Hebei Province, With a discussion on the age of the Xing'anling Group of the Great Hinggan Mountains and volcanic strata of the southeastern coastal area of China. Acta Geologica Sinica (English Edition), 78: 1214-1288.
    Niu B G, He Z J, Song B and Ren J S. 2003. SHRIMP dating of the Zhangjiakou volcanic series and its significance. Geol. Bull. China, 22,140-141.
    O'Neil J R and Taylor H P. 1969. Oxygen fractionation in divalent metal carbonates. J. Geophys. Res, 51: 5547.
    Ohmoto H, Goldhaber M B. 1997. Sulfur and carbon isotopes. In: Barnes, H L ed. Geochemistry of hydrothermal Ore deposits. 3~(rd) ed. New York: John Wiley and Sons. 517-611.
    Pan Y M and Dong P. 1999. The lower Changjiang (Yangzi/Yangtze River) metallogenic belt, east central China: intrusion and wall rock hosted Cu-Fe-Au, Mo, Zn, Pb, Ag deposits. Ore Geology Reviews, 15: 177-242.
    Raith J G, Stein H J. 2000. Re-Os dating and sulfur isotpoe composition of molybdenite from tungsten deposits in western Namaqualand South Africa: implications for ore genesis and the timing of metamorphism. Mineralium Deposita, 35:741-753.
    Robert F and Kelly WC. 1987. Ore-forming fluids in Archean gold-bearing quartz vein at the Sigma mine, Abitibi greenstone belt, Quebec Canada. Economic Geology, 82: 1464-1482.
    Roedder E and Bodnar R J. 1997. Fluid inclusion studies of hydrothermal ore deposits. In: Barnes, H.L. (Ed.), Geochemistry of Hydrothermal Ore Deposits. Wiley, New York, 657-697
    Roedder E and Bodnar RJ. 1980. Geologic pressure determinations from fluid inclusion studies. Ann. Rev. Earth Planet Science, 8: 263-301.
    Roedder E. 1971. Fluid inclusion studies on porphyry type ore deposits at Bingham, Utan, Butte, Montana and Climax, Colorado. Economic Geology, 66:110-114.
    
    Roedder E. 1984. Fluid inclusions. Reviews in Mineralogy, Mineralogical Society of America, 12:1-644.
    Roedder E.1979. Fluid inclusions as samples of ore fluids. In: Barnes H L.(Eds), Geochemistry of hydrothermal ore deposits. 2nd edition. Wiley, New York, 684-737.
    Ross P S, Jebrak M and Walker B M. 2002. Discharge of Hydrothermal Fluids from a Magma Chamber and Concomitant Formation of a Stratified Breccia Zone at the Questa Porphyry Molybdenum Deposit, New Mexico. Economic Geology, 97(8): 1679-1699.
    Selby D and Creaster R A. 2004. Macroscale NTIMS and microscale LA-MC-ICP-MS Re-Os isotopic analysis of molybdenite: Testing spatial restrictions for reliable Re-Os age determinations, and implications for the decoupling of Re and Os within molybdenite. Geochimica et Cosmochimica Acta, 68(19): 3897-3908.
    Shepherd TJ, RaKin A and Alderton DHM. 1985. A practical guide to fluid inclusion studies. Blackie & Son Limited, 1-154.
    Shirey S B and Walker R J. 1995. Carius tube digestion for low-blank rhenium- osmium analysis. Anal. Chem, 67: 2136-2141.
    Smoliar M I, Walker R J, Morgan J W. 1996. Re-Os ages of group IIA, IIIB, IVA, IVB iron meteorites. Science, 271:1099-1102.
    Stein H J, Schersten A, Hannah J and Markey R. 2003. Subgrain-scale decoupling of Re and ~(187)Os and assessment of laser ablation ICP-MS spot dating in molybdenite. Geochimica et Cosmochimica Acta, 67(19): 3673-3686.
    Stein H.J., Markey R.J., Morgan M.J, Du A., Sun Y., 1997. Highly precise and accurate Re-Os ages for molybdenite from the East Qinling - Dabie molybdenum belt, Shaanxi province, China. Econ. Geol. 92, 827-835.
    Stein HJ, Markey RJ, Morgan JW, Hannah JL, Scherst_en A. 2001. The remarkable Re-Os chronometer in molybdenite: how and why it works. Terra Nova 13:479-486.
    Suzuki K, Shimizu H, Masuda A. 1996. Re-Os dating of molybdenites from ore deposits in Japan: implication for the closure temperature of the Re-Os system formolybdettite and the cooling history of molybdenum ore deposits. Geochimica et Cosmochimica Acta, 60:3151-3159.
    Taylor B E. 1992. Degassing of H_2O from rhyolite magma during eruption and shallow intrusion, and the isotopic composition of magmatic water in hydrothermal systems. In Hedenquist J W(eds). Magmatic contributions to hydrothermal systems: Geological Survey of Japan, 190-194.
    Tbrahim MS and Kyser TK. 1991. Fluid Inclusion and Isotope Systematics of the High-T Protorzoic Star Lake Lode Gold Deposit,Transvaal,South Arica. Eur.J.Mineral, 4: 933-948.
    Walker R J, Carlson R W, Shirey S B, et al. 1989. Os, Sr, Nd and Pb isotope systematics of southern African peridotite xenoliths: Implications for the chemical evolution of subcontinental mantle. Geochim. Cosmochim. Acta, 53: 1583-1595.
    Walker R J, Morgan J W, Horan M F, et al. 1994. Re-Os isotopic evidence for an enriched-mantle source for the Noril'sk-type, ore-bearing intrusions, Siberia. Geochimica et Cosmochimica Acta, 58: 4179-4197.
    
    Wang H and Mo X. 1995. .An outline of tectonic evolution of China. Episodes, 18:6-16.
    White D E. 1981. Active geothermal systems and hydrothermal ore deposits. In Economic Geology 75~(th) Anniv., 392-423.
    Yan G H, Mou B L, Xu G L, He G Q, Tang L K, Zhao H, He Z P, Zhang R H, Qiao G S. 2000. Geochronology and Sr, Nd, and Pb isotopes of the Triassic alkaline intrusions in the Yanliao-Yinshan belt, and their implications. Sci. China 30,384-387.
    Yang J H, Chuang S L, Zhai M G and Zhou X H. 2004. Geochemical and Sr-Nd-Pb isotopic compositions of mafic dikes from the Jiaodong Peninsula, China: Evidence for vein-plus-peridotite melting in the lithospheric mantle. Lithos, 73: 145-160.
    Yang, J.H., Wu, F.Y., Chung, S.L., Wilde, S.A., Chu, M.F., Lo, C.H., Fan, H.R., 2005. Petrogenesis of post-orogenic syenites in the Sulu Orogenic Belt, East China: geochronological, geochemical and Nd-Sr isotopic evidence. Chem. Geol. 214,99-125.
    Yin A,Nie S.1996.A Phanerozoic palinspastic reconstruction of China and its neighboring regions.In:Yin A and Harrison T M ed.Tectonic Evolution of Asia.Cambridge:Cambridge University Press,442-485.
    Zhao Y M,Dong Y G,Li Daxin and Bi C S.2003.Geology,mineralogy,geochemistry,and zonation of the Bajiazi dolostone-hosted Zn-Pb-Ag skam deposit,Liaoning Province,China.Ore Geology Reviews,23:153-182.
    Zheng J P,Griffin W L,O'Reilly S Y,et al.2004.3.6 Ga lower crust in central China:new evidence on the assembly of the North China craton.Geology,32:229-232.
    Zorin Y A.1999.Geodynamics of the western part of the Mongolia-Okhotsk collisional belt,Trans-Baikal region(Russia) and Mongolia.Tectonophysics 306:33-56.
    艾永富,冯瑞志.1985.杨家杖子-兰家沟地区含钼花岗岩类物质来源及成因类型.全国钼矿学术讨论论文集,河南地质(增刊),198-204.
    敖颖锋,国铁成,袁国平.2001.肖家营子斑岩体地质特征及找矿标志.矿产与地质,15(4):233-237.
    曹从用.1982.辽西地区侏罗纪火山岩特征.沈阳地质矿产所所刊,3:49.
    陈文,季强,刘敦一,张彦,宋彪,刘新宇.2004.内蒙古宁城地区道虎沟化石层同位素年代学.地质通报,23(12):1165-1169.
    陈衍景,李超,张静,等.2000.秦岭钼矿带斑岩体铝氧同位素特征与岩石成因机制和类型.中国科学:D辑,30(增刊):64-72.
    池际尚,路凤香.1996.华北地台金伯利岩及古生代岩石圈地幔特征.北京:科学出版社,1-292.
    崔盛芹,李锦蓉,孙家树,王建平,吴珍汉,朱大岗.2000.华北陆块北缘构造运动序列及区域构造格局.地质出版社,122-155.
    崔文元,王长秋,张承志,张禹业.1991.辽西-赤峰一带太古代变质岩中锆石U-Pb年龄.北京大学学报,27(2):229-237.
    邓晋福,苏尚国,赵海玲.2003.华北地区燕山期岩石圈减薄的深部过程.地学前缘,10(3):41-50.
    邓晋福,苏尚国,赵国春,刘翠.2004.华北燕山造山带结构要素组合.高校地质学报,10(3):315-323.
    邓晋福,赵国春,苏尚国,刘翠,陈亦寒,李芳凝,赵兴国.2005.燕山造山带燕山期构造叠加及其大地构造背景.大地构造与成矿学,29(2):157-165.
    邓晋福,赵海玲,莫宣学.1996.中国大陆根.柱构造:大陆动力学的钥匙.北京:地质出版社,1-110.
    董得茂,李殿奎,崔彬.1985.北京市延庆县大庄科爆破角砾岩型钼矿床地质特征.1-94.
    段焕春,秦正永,林晓辉,张宝华,刘学武,张晓,郭鹏志,韩芳,秦磊,代军治.2007a.河北丰宁县大草坪钼矿区岩体锆石U-Pb年龄研究.矿床地质,26(6):634-642.
    段焕春.2007b.冀北上黄旗构造岩浆岩带北段钼多金属成矿规律及找矿远景研究.博士后出站报告,合作导师:毛景文,39-70.
    葛肖虹.1989.华北板内造山带的形成史.地质论评,35(3):254-261.
    韩秀丽,尹力军.1999.小寺沟铜钼矿床控矿因素及成矿规律.河北理工学院学报,21(2):62-66.
    胡健民,刘晓文,赵越,徐刚,刘健,张栓宏.2004.燕山板内造山带早期构造变形演化-以辽西凌源太阳沟地区为例.地学前缘,11(3):255-271.
    胡健民,赵越,刘晓文,石玉若,赵国春.2005.辽西凌源地区水泉沟组辉石安山岩锆石SHRIMP U-Pb 定年及其意义.地质通报,24(2):104-109.
    胡学文,张满江,权恒.1996.冀北红旗营子群同位素年龄及其时代归属.中国区域地质,2:186-192.
    华仁民,毛景文.1999.试论中国东部中生代成矿大爆发.矿床地质,18(4):300-308.
    黄典豪,丁孝石,吴澄宇,张长江.1992.蔡家营铅.锌.银矿床.北京:地质出版社,15-17.
    黄典豪,董群英,甘志贤.1989.中国钼矿床.见:宋叔和主编.中国矿床,上册,第八章.北京:地质出版社,493-536.
    黄典豪,杜安道,吴澄宇,刘兰笙,孙亚莉,邹晓秋.1996.华北地台钼(铜)矿铼-锇年龄及其地质意义.矿床地质,15(4):289-297.
    季强.2004.中国辽西中生代热河生物群.北京:中国地质出版社,1-375.
    江思宏,聂凤军.2000.冀西北水泉沟杂岩体及与其有关金矿床的~(40)Ar-~(39)Ar同位素年代学研究.地质论评,46(6):621-627.
    康书泽.1979.辽宁省喀左县肖家营子钼多金属矿床第一期地质勘探报告.朝阳:辽宁朝阳地质勘查院,24-38.
    李厚民,叶会寿,毛景文,王登红,陈毓川,屈文俊,杜安道.2007.小秦岭(钼)金矿床中辉铝矿的铼-锇定年及其地质意义.矿床地质,26(4):417-424.
    李锦轶.1998.中国东北及邻区若干地质构造问题的新认识.地质论评,44(4):339-347.
    李俊建,沈保丰,骆辉,翟安民,曹秀兰.2002.华北地台北缘中段金矿床成矿年代学研究.前寒武纪研究进展,25(3):233-239.
    李诺,陈衍景,张辉,赵太平,邓小华,王运,倪智勇.2007.东秦岭斑岩钼矿带的地质特征和成矿构造背景.地学前缘,14(5):186-198.
    李伍平,赵越,李献华,路风香,梁细荣,涂湘林.2007.燕山造山带中.晚侏罗世髫髻山期(蓝旗期)火山岩的成因及其动力学意义.岩石学报,23(3):557-564.
    李晓勇,范蔚茗,郭锋,王岳军,李超文.2004.古亚洲洋对华北陆缘岩石圈的改造作用:来自于西山南大岭组中基性火山岩的地球化学证据.岩石学报,20(3):557-566.
    李永峰.2005.豫西熊耳山地区中生代花岗岩时空演化与钼(金)成矿作用(博士论文).导师:毛景文,王志光.1-120.
    李永刚,翟明国,杨进辉,苗来成,关鸿.2003.内蒙古赤峰安家营子金矿成矿时代以及对华北中生代爆发成矿的意义.中国科学(D辑).33(10):960-966.
    刘斌,沈昆.1999.流体包裹体热力学.北京:地质出版社.1-290.
    刘春燕,林畅松,吴茂炳,巩固,郑孟林.2006.银根-额济纳旗中生代盆地构造演化及油气勘探前景.中国地质,33(6):1328-1335.
    刘福来,许志琴,宋彪.2003.苏鲁地体超高压和退变质时代的厘定:来自片麻岩锆石微区SHRIMP U-Pb定年的证据.地质学报,77(2):229-237.
    柳永清,刘燕学,李佩贤,张宏,张立君,李寅,夏浩东.2004.内蒙古宁城盆地东南缘含道虎沟生物群岩石地层序列特征及时代归属.地质通报,23(12):1180-1187.
    卢欣祥,盛吉虎.1985.东秦岭含钼斑岩的稀土元素组成与成矿关系.河南地质(增刊).291-294.
    卢欣样,于在平,冯有利,等.2002.东秦岭深源浅成型花岗岩的成矿作用及地质构造背景.矿床地质,21(2):168-178.
    卢欣祥.1999.秦岭花岗岩大地构造图.西安:西安地图出版社.
    罗镇宽,关康,裘有守,苗来成.2001.冀东金厂峪金矿区钠长岩脉及青山口花岗岩体SHRIMP锆石U-Pb定年及其意义.地质找矿论丛,16(4):226-231.
    马国玺.1995.河北涞源锌钼矿床地质特征.华北地质矿产杂志,10(1):64-76.
    马建德,徐天波,敖颖峰,李祥才,张志伟,国铁成.2002.辽宁肖家营子钼多金属矿床地质特征及成因.桂林工学院学报,22(1):5-10.
    马寅生,吴满路,曾庆利.2002.燕山及邻区中新生代挤压与伸展的转换和成矿作用.地球学报,23(2):115-122
    马永昌,王长刚,冯国清,李友权,宋雨春,贾广宁.2002.杨家杖子矿区再找矿.矿床地质,21:434-438.
    毛景文,华仁民,李晓波.1999.浅议大规模成矿作用与大型矿集区.矿床地质,18(4):291-299.
    毛景文,谢桂青,张作衡,李晓峰,王义天,张长青,李永峰.2005.中国北方中生代大规模成矿作用的期次及其地球动力学背景.岩石学报,21(1):169-188.
    毛景文,张作衡,余金杰,王义天,牛宝贵.2003.华北中生代大规模成矿的地球动力学背景:从金属矿床年龄精测得到启示.中国科学(D辑),33(4):289-300.
    苗来成.2000.华北克拉通北缘花岗岩类时空演化及与金矿关系.博士学位论文,中国地质大学(北京)
    牟保磊,邵济安.1999.矾山碱性杂岩体中发现碳酸岩.北京大学学报(自然科学版),35(2):243-247.
    牟保磊,阎国翰.1992.燕辽三叠纪碱性偏碱性杂岩体地球化学特征及意义.地质学报,66(2):189-192.
    聂凤军,张万益,江思宏,刘妍.2007.论河北丰宁牛圈银(金)矿床的成矿时限问题.地学前缘,14(5):167-176.
    牛宝贵,和政军,任纪舜,宋彪,肖藜薇.2004.冀北张家口组、义县组火山岩SHRIMP定年兼论中国东部大兴安岭兴安岭群和东南沿海火山岩地层时代.地质学报,78(6):751-751.
    裴荣富,吕凤翔,范继璋,方如恒,齐朝顺.1998.华北地块北缘及其北侧金属矿床成矿系列与勘查.北京:地质出版社,1-237.
    权恒,韩庆云,艾永富,林彦春,魏菊英.1992.燕辽地区多金属、金、银成矿与远景.北京:地质出版社,1-134.
    权恒.1994.冀北-辽西中生代活化区有色金属矿床.见:芮宗瑶等主编,华北陆块北缘及邻区有色金属矿床地.383-471.
    曲兴华、裴喜番、高毓华.1985.辽宁省锦西市兰家沟钼矿床第一期详细勘探地质报告.1-57.
    任纪舜,姜春发,张正坤,秦德余.1981.中国大地构造及其演化.北京:科学出版社,29-80.
    任纪舜,牛宝贵,和政军,等.1998.中国东部的构造格局和动力演化.见:任纪舜,杨巍然主编:中国东部岩石圈结构与构造岩浆演化.北京:原子能出版社,1-12.
    邵济安,韩庆军,张履桥,等.1999.内蒙古东部早中生代堆积杂岩捕虏体的发现.科学通报,44(5):478-485.
    邵济安,何国琦,张履桥.2005.燕山陆内造山作用的深部制约因素.地学前缘,20(3):137-148.
    邵济安,牟保磊,何国琦,等.1997.华北北部在古亚洲域与古太平洋域构造叠加过程中的地质作用. 中国科学,27(5):390-394.
    邵济安,牟保磊,张履桥,等.2000.华北东部中生代构造格局转换过程中的深部作用与浅部响应.地质论评,46(1):32-40.
    沈保丰,李俊建,翟安民,曹秀兰.2001.地壳演化和成矿耦合-以华北陆块北缘中段为例.前寒武纪研究进展,24(1):9-16.
    沈渭洲.1987.稳定同位素地质.北京:原子能出版社.
    宋彪,张玉海,万渝生,简平.2002.锆石SHRIMP样品靶制作,年龄测定及有关现象讨论.地质论评,48(增刊):26-30.
    宋鸿林.1999.燕山式板内造山带基本特征与动力学探讨.地学前缘,6(4):309-316.
    孙家树,张淑坤,汪西海.1994.燕山地区构造运动及成岩成矿同位素地质研究.北京:地震出版社,11.
    孙晓明,任启江,杨荣勇,徐兆文,刘孝善.1998.金堆城超大型钼矿床水-岩~δD-δ~(18)O同位素交换体系理论模型及成矿流体来源.地质地球化学,26(2):16-21.
    唐克东,邵济安.1997.中亚褶皱区构造演化问题一俄罗斯学者近年研究成果评价.现代地质,11(1):21-28.
    唐克东,王莹,何国琦等.1995.中国东北及邻区大陆边缘构造.地质学报,69:16-30.
    田豫才.1999.辽西兰家沟铒矿区域成矿构造、岩浆演化及成矿作用.矿产与地质,13(3):135-140.
    涂光炽.1984.地球化学.上海:上海科学技术出版社,90-97.
    汪洋,姬广义,邓晋福.2003.燕山地区侏罗纪-白垩纪岩浆活动特征及其与造山演化的关系.矿物岩石地球化学通报,22(4):344-348.
    王可勇,姚书振,吕新彪.2001.川西北马脑壳金矿床流体相分离作用及其成矿意义.地球学报,21(1):35-38.
    王瑜.1996.中国东部内蒙古 燕山造山带晚古生代晚期-中生代的造山作用过程.北京:地质出版社,1-142.
    翁文灏.1929.中国东部中生代造山运动.地质通报,8:33-44.
    吴福元,孙德有.1999.中国东部中生代岩浆作用与岩石圈减薄.长春科技大学学报,29(4):313-318.
    吴福元,孙德有.1999.Re-Os同位素体系理论及其应用.地质科技情报,18(3):43-46.
    吴福元,杨进辉;柳小明;李铁胜;谢烈文;杨岳衡.2005.冀东3.8 Ga锆石Hf同位素特征与华北克拉通早期地壳时代.科学通报,50(18):1996-2003.
    吴珍汉,孟宪刚.1998.燕山陆内造山带金-多金属成矿作用与构造-成矿关系.北京:地质出版社,1-140.
    杨庚,柴育成,吴正文.2001.燕山造山带东段--辽西地区薄皮逆冲推覆构造.地质学报,75(3):322-332
    杨农,陈正乐,雷伟志.1996.冀北燕山地区印支构造特征研究.北京:地质出版社,90.
    余和勇,王吉珺.1985.辽宁下兰家沟钼矿含钼岩体的地质年龄.全国钼矿学术讨论论文集,河南地质(增刊),204-205.
    余和勇,王吉珺.1985.辽宁下兰家沟钼矿含钼岩体的地质年龄].全国钼矿学术讨论论文集,河南地质(增刊),204-205.
    曾广策.1990.河南省嵩县南部碱性正长岩类的岩石特征及构造环境.地球科学,15(6):635-641.
    张本仁,高山,张宏飞,等.2002.秦岭造山带地球化学.北京:科学出版社.1-187.
    张本仁,骆庭川,高山,欧阳建平,陈德兴,马镇东,韩吟文,谷晓明.1994.秦巴岩石圈、构造及成矿规律地球化学研究.武汉:中国地质大学出版社,257-364.
    张长厚,王根厚,王果胜,吴正文,张路锁,孙卫华.2002.辽西地区燕山板内造山带东段中生代逆冲推覆构造.地质学报,76(1):64-76.
    张德会.1997.成矿流体中金属沉淀机制研究综述.地质科技情报,16(3):53-58.
    张德全,孙桂英.1988.中国东部花岗岩.武汉:中国地质大学出版社,15.
    张国伟,孟庆任,赖少聪.1995.秦岭造山带的结构与构造.中国科学(B辑),25(9):994-1003.
    张国伟,孟庆任,于在平,孙勇,周鼎武,郭安林.1996.秦岭造山带的造山过程及其动力学特征.中国科学(D辑),26(3):193-200.
    张国伟,张本仁,袁学诚,等.2001.秦岭造山带与大陆动力学.北京:科学出版社,1-855.
    张炯飞,庞庆邦,朱群,金成洙.2003.内蒙古孟恩陶勒盖银铅锌矿床白云母Ar-Ar年龄及其意义.矿床地质,22(3):253-256.
    张理刚.1989.成岩成矿理论及找矿.北京:北京工业大学出版社,1-240.
    张旗,钱青,王二七,等.2001.燕山中晚期的”中国东部高原”:埃达克岩的启示.地质科学,36(2):248-255.
    张文淮,陈紫英.1993.流体包裹体地质学.武汉:中国地质大学出版社.1-246.
    张晓晖,李铁胜,蒲志平.2002.辽西医巫闾山两条韧性剪切带的~(40)Ar-~(39)Ar年龄:中生代构造热事件的年代学约束.科学通报,47(9):697-701.
    张正伟,邓军.2001.东秦岭钼成矿带成矿背景与含矿岩体特征.陈衍景,张静,赖勇主编.大陆动力学与成矿作用.北京:地震出版社,100-109.
    张宗清,张国伟,唐索寒,等.1999.秦岭沙河湾奥长环斑花岗岩的年龄及其对秦岭造山带主造山期时间的限制.科学通报,44(9):981-983.
    张作衡,柴凤梅,杜安道,张招崇,闫升好,杨建民,屈文俊,王志良.2005.新疆喀拉通克铜镍硫化物矿床Re-Os同位素测年及成矿物质来源示踪.岩石矿物学杂志,24(7):285-293.
    章百明,赵国良,马国玺,毕伏科.1996.河北省主要成矿区带矿床成矿系列及成矿模式.北京:石油工业出版社,1-273.
    赵越,张拴宏,徐刚,杨振宇,胡健民.2004.燕山板内变形带侏罗纪主要构造事件.地质通报,23(9-10):854-863.
    赵一鸣,林文蔚,毕承思,李大新,蒋崇俊.1990.中国矽卡岩矿床.北京:地质出版社,1-354.
    赵一鸣,吴家善,韩发,罗镇宽.1982.陕西洛南地区镁矽卡岩型铁矿床的矿化蚀变特征和找矿标志.中国地质科学院矿床地质研究所所刊,1:29-50.
    赵一鸣,张轶男,毕承思,唐开健,孙庆安.1999.安徽淮北三铺地区镁矽卡岩金(铜、铁)矿床生成地质环境、分带和流体演化.矿床地质,18(1):1-10.
    赵越,崔盛芹,郭涛,徐刚.2002.北京西山侏罗纪盆地演化及其构造意义.地质通报,21(4):211-217.
    赵越,宋彪,张拴宏,刘健.2006.北京西山侏罗纪南大岭组玄武岩的继承锆石年代学及其含义.地学前缘,13(2):184-189.
    赵越,徐刚,张拴宏,杨振宇,张岳桥,胡健民.2004.燕山运动与东亚构造体制的转变.地学前缘,11(3):319-328.
    赵越.1990.燕山地区中生代造山运动及构造演化.地质论评.36(1):1-13
    郑亚东,Davis G A,王琮,oarby B J,华永刚.1998.内蒙古大青山大型逆冲推覆构造.中国科学(D 辑),28(4):289-295.
    郑亚东,Davis G A,王琮,Darby B J,张长厚.2000.燕山带中生代主要构造事件与板块构造背景问题.地质学报,74(4):289-302.
    朱大岗,吴珍汉,崔盛芹.1999.燕山地区中生代岩浆活动特征及其陆内造山作用关系.地质论评,45(2):163-171.
    华北有色地质勘探公司514队.1985.河北省丰宁县撒岱沟门钼矿地质评价报告.1-65.
    辽宁省区域地质志.1989.北京:地质出版社,467-472.
    原冶金部华北地质勘探公司514队.1965.河北兴隆县寿王坟矿区成矿地质条件及远景研究报告.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700