用户名: 密码: 验证码:
钻孔γ场理论与核测井分层解释方法研究与应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
γ测井是主要的核地球物理技术,是三类核测井的基础方法,很多核测井技术都基于γ测井。例如,自然γ测井是测量地层岩石自身产生的γ射线;γ-γ测井是利用人工γ源照射地层岩石,测量其产生的散射γ射线;中子俘获测井是利用中子照射地层岩石使其俘获低能中子,测量其产生的特征能量γ射线;中子活化测井是利用中子照射地层岩石,测量其产生的活化γ射线。γ测井分为总量型和能谱型两类γ测井,通常将自然γ测井直接简称为γ测井。
     γ测井主要探测地层岩石所产生的自然γ射线,研究地层岩石中的铀、钍、钾等放射性元素含量,识别或推断地层的岩性分布范围,寻找富含某些矿产的地层,求解岩石密度等某些地质问题。本文主要研究γ测井涉及的钻孔γ场理论、钻孔γ场计算的正反演技术、以及放射性元素含量定量的分层解释方法。
     γ测井分层解释方法建立在钻孔γ场理论基础上,本文通过研究现有钻孔γ场理论和直孔γ场场强计算的表达函数,推导并提出了斜孔γ场场强计算的D函数。借助场源互换原理,推导并给出了非点状探测器接收时的直孔和斜孔γ场井轴任意点的场强计算公式,扩展了现有钻孔γ场场强计算的适用范围。
     分层解释理论建立在两类假设基础上,一类是将沿井轴的地层岩石划分为一定厚度的有限个薄层,即单元层,以形态系数描述单元层的钻孔γ场;另一类是将沿井轴的地层岩石划分为无数个无限薄的薄层,即面状辐射体,以地质脉冲函数描述面状辐射体的钻孔γ场。本文从钻孔γ场理论出发,推导了两类钻孔γ场场强计算的分层解释正演方程,基于面状辐射体的正演方程称为第一基本方程,基于单元层的正演方程称为第二基本方程,并建立了它们之间的关系表达式。
     为了简化面状辐射体所表达的钻孔γ场场强计算公式,国内外学者采用负指数函数来表示地质脉冲函数,即本文所称的实用地质脉冲函数。本文首先按钻孔γ场理论推导了地质脉冲函数的表达公式,再经理论分析和实验验证,探讨了实用地质脉冲函数的简化依据。通过分析和比较,论证了实用地质脉冲函数的准确性和实用性,并借助分层解释正演计算的两个基本方程之间的表达关系,提出了实用形态系数的概念,并推导了实用形态系数的表达公式。
     特征参数α是实用地质脉冲函数和实用形态系数的唯一参数,本文为此进行了较深入的理论探讨和实验探索。因分层解释的正演问题或反演问题必依赖于信号的离散取样,须遵行取样定理,因而它们的数值解将产生截断误差,该截断误差是分层解释负值含量的主要来源。特征参数α的取值取决于地层环境、钻井条件、能谱成分和测量仪器等诸多因素,取值不合适将引起解释含量的严重偏差,甚至产生负值含量。本文论证了不可通过改变特征参数α的取值来人为地消除负值含量,相反可利用微小的负值含量来确定特征参数α的合适取值。
     在铀矿勘探的定量铀含量解释中,为摒弃传统的平均含量法,我国通过引进分层解释法而展开了广泛的基础研究和生产实践。本文在研究多种分层解释方法的基础上,提出了多点式反褶积法和数字信号法。
     反褶积法通过实用地质脉冲函数来创建分层解释正演方程(第一基本方程),利用连续信号反滤波技术(反褶积)得到了定量核素含量的反演方程,该反演方程的通解是一个微分表达式,三点式反褶积法是按照线性插值方法对该微分表达式求取数值解。本文提出了利用插值多项式对该微分表达式求取数值解的思想,并推导了多点式反褶积法的定量核素含量计算公式,还重点探讨了五点式反褶积法含量计算公式及其截断误差。通过研究模型井的解释结果,提出了基于负值含量确定特征参数α的方法——相对判别因子法,并将其应用于生产实践中。
     本文提出的数字信号法是一种离散反褶积法,它采用形态系数创建分层解释正演方程(第二基本方程),利用离散信号反滤波技术(反褶积)求得反演方程及定量核素含量的数值解通式。本文还采用实用形态系数推导了所谓的精确三点式反褶积法及定量核素含量的公式,以及采用由钻孔γ场理论计算(或模型井实测)的形态系数求解核素含量的计算公式,进一步发展了反褶积技术。
     通过模型井的大量实验和野外井的生产实践,并与引进的三点式反褶积法、比值迭代法和差值迭代法、逆矩阵法等方法的对比研究,验证了本文提出的多点式反褶积法(特别是五点式反褶积法)和数字信号法(特别是加长算子的数字信号法)所具有参数确定方法简单、解释精度高、分层能力强等优点,可在生产实践中采用这些新分层解释方法,且五点式反褶积法被我国核行业标准采用。
     本文还初步探讨了能谱型γ测井的分层解释技术,提出了“等效含量”的概念,并利用该概念简化了能谱型γ测井的剥谱方法,实现了铀、钍、钾等放射性核素的分离解释。对比传统的能谱型γ测井剥谱方法,可通过γ射线特征能量谱创建计数率的测井曲线,采用分层解释技术求取各测点的放射性核素含量。该研究还获得了国家863计划的资助,有望在进一步研究中取得更大成绩。
Theγlogging is a major nuclear geophysical technology,and also a basic method of three types of nuclear logging.Many nuclear logging techniques are based onγlogging.For example,the naturalγlogging is to measure theγ-ray of rock itself;theγ-γlogging is to measure the scatteringγ-ray by a artificialγsource radiation to rock; the neutron capture logging is to measure the characteristic-energyγ-ray from low-energy neutron capture by the neutron irradiation of rock;and the neutron activation logging is to measure the activationγ-ray by the neutron irradiation of rock. Theγlogging is divided into two types,the total and spectrum-γlogging.Usually,the naturalγlogging is referred to asγlogging.
     Theγlogging is mainly to measure the naturalγ-ray from rock itself,to study the radioactive element contents such as uranium,thorium and potassium,to inference or identify the distribution of rock formation,to find the mineral-rich strata,and to solve some geological problems such as rock density.This study is to discuss theγfield theory inside borehole duringγlogging,the forward and inversion technology of theγfield in borehole,and the subdivision interpretation methods for quantitative contents of radioactive elements.
     The subdivision interpretation methods ofγlogging are based on theγfield theory of borehole.In this study,the existingγfield theory of borehole,and the expression formula ofγfield strength calculation in straight-hole are used to deduce the D function for the calculation ofγfield strength in slant-hole.According to the principle of exchange of theγfield and source,theγfield strength calculation formulas of any point in the well-axis with non-point detector to receiveγ-ray in straight-hole and slant-hole,are derived and given.Their application is extended beyond the existing calculation formulas ofγfield strength in borehole.
     The subdivision interpretation theory is based on two assumptions.One of the assumptions is to divide the rock formation into many thin layers with limited number along the well-axis,i.e.,unit layer.Theγfield of unit-layer is described with its shape-factor.The other assumption is to divide the rock formation into unlimited thin layers along the well-axis,i.e.,surface-radiation-body.Theγfield of surface-radiation-body is described with its geological pulse function.In this study, according to theγfield theory of borehole,the two forward calculation equations ofγ field strength in borehole are derived for the subdivision interpretation,the first basic equation based on surface-radiation-body,and the second one based on unit-layer.And the relationship expressions between two assumptions are established.
     In order to simplify the expression formula of strength calculation ofγfield of surface-radiation-body,the geological pulse function is streamlined into a negative exponential function by scholars,the practical geological pulse function.The expression formula of geological pulse function from theγfield theory of borehole is deduced in this study.Then,the simplification of the practical geological pulse function is discussed in terms of theoretical analysis and experimental validation. Through the analysis and comparison,the accuracy and usefulness of practical geological pulse function is proved.Using relationship between the two basic equations of subdivision interpretation,this study proposes the concept of practical shape-factor and the expression formula.
     The characteristic parameterαis the only coefficient of the practical geological pulse function and practical shape-factor.It is discussed more theoretically and experimentally.Both forward and inverse problems of subdivision interpretation depend on the discrete signal sampling.So,they are subject to sampling theorem. Therefore,their numerical solution causes a truncation error.It is the major source for the negative content of subdivision interpretation.Theαvalue depends on the environments of rock formation,drilling conditions,compositions of energy spectrum, measuring instruments and others.The inappropriate value forαwill cause a big error for interpreting content,or even a negative content.This study demonstrates that the negative content cannot be artificially eliminated through changingα.On the contrary, the negative content can be used to determineα.
     For quantitative uranium content interpretation,the subdivision interpretation methods are introduced and a wide range of basic research and production practice is launched in order to abandon the traditional average method in China.Based on various subdivision interpretation methods,the multi-point deconvolution and digital signal methods are developed in this study.
     The practical geological pulse function is used for the deconvolution to create the forward equation of subdivision interpretation(the first basic equation) and to get the inversion equation of quantitative radionuclide content by continuous signal anti-filtering technology(deconvolution).The General solution of the inversion equation is a differential expression.The three-point deconvolution is based on the linear interpolation to strike a numerical solution of differential expression.This study proposes using polynomial interpolation to strike the numerical solution of differential expression,and deduces the calculation formula for the multi-point deconvolution method for quantitative content,especially discusses the five-point deconvolution method and its truncation error.Based on the interpretation for the logging models,αcan be determined by negative content,i.e.,relative discrimination factor method. This method has found use in production practice.
     The digital signal method is a discrete deconvolution technology.It uses the shape-factor to create the forward equation of subdivision interpretation(the second basic equation),and the discrete signal anti-filtering technology(deconvolution) to get the inversion equation and the general formula for numerical solution of quantitative radionuclide content.The so-called accurate three-point deconvolution method and calculating formula of quantitative radionuclide content have also been deduced by the practical shape-factor.And the calculating formula is derived by using the shape-factor from theγfield theory of borehole(or the measuringγfield of logging models) for quantitative radionuclide content.The deconvolution technique has further been developed.
     Through many tests of model wells and production practice of field wells,and the comparison with the three-point deconvolution method,the ratio and the margin iteration method,the inverse matrix method and other methods.The multi-point deconvolution method(in particular the five-point deconvolution method) and digital signal method(in particular the longer digital signal operator) have been verified to be simple to determine parameter,high in interpretation accuracy,and strong in subdivision of rock formation.These methods can be used for production,and the five-point deconvolution method has been used as a nuclear industry standard in China.
     The study also discusses the subdivision interpretation technology for energy spectrumγ-logging.The "equivalent content" concept has been brought up to simplify the stripping spectrum method ofγ-spectrum logging,and to separate uranium,thorium, potassium and other radionuclides.Compared with the traditional stripping spectrum method ofγlogging,according the characteristic energy to create the logging curve of count rates,the quantitative radionuclide content of every measuring point can be realized by subdivision interpretation.The study also won the national 863 project fund. The new achievements are expected in the future study.
引文
[1]埃利斯(Ellis,Darwin V美)著,张守谦,顾纯学等译.地球物理测井基础及应用[M].北京:石油大学出版社,1993.
    [2]黄隆基.核测井原理[M].北京:石油工业出版社,2000.
    [3]B.L.劳森等著,孙济元,王文祥,雍世和等译.自然伽马、中子和密度测井[M].北京:石油工业出版社,1987.
    [4]黄隆基.放射性测井原理[M].北京:石油工业出版社,1985.
    [5]丁次乾.矿场地球物理[M].北京:石油大学出版社,1992.
    [6]庞巨丰,迟云鹏,钟振伟.现在核测井技术与仪器[M].北京:石油工业出版社,1998.
    [7]钱建设,李惠.斯伦贝谢最新测井仪概况[J].国外测井技术,2001,16(4):43-47.
    [8]原宏壮,陆大卫,张辛耘等.测井技术新进展综述[J].地球物理学进展,2005,20(3):786-795.
    [9]张元中.新世纪第一个五年测井技术的若干进展[J].地球物理学进展,2004,19(4):828-836.
    [10]秦绪英.测井技术现状与展望[J].勘探地球物理进展,2002,25(1):26-34.
    [11]李斌凯,马海州,谭红兵.测井技术的应用及其在科学钻探研究中的意义[J].地球物理学进展,2007,22(5):1493-1501.
    [12]牛一雄,潘和平,王文先等.中国大陆科学钻探主孔(0~2000m)地球物理测井[J].岩石学报,2004,20(1):165-178.
    [13]程业勋.我国核地球物理的发展与展望[J].物探与化探,2002,26(4):247-249.
    [14]汤彬.地球信息科学及其我国核地学中的信息科学问题探讨[J].南华大学学报(理工版),2001,15(4):1-7,21.
    [15]吴慧山,谈成龙.我国核地球物理勘查的若干新进展[J].地球物理学报,1997,(S1):317-324.
    [16]金勇,陈福利.核测井技术的发展与应用[J].原子能科学技术,2004,38(S1):201-207.
    [17]彭琥.20世纪90年代核测井进展[J].测井技术,2001,25(1):5-11.
    [18]赵平,张美玲,刘甲辰等.2004~2005年国内外测井技术现状及发展趋势[J].测井技术,2006,30(5):385-389.
    [19]袁祖贵.用地层元素测井(ECS)资料研究沉积环境[J].核电子学与探测技术,2005,25(4):347-352,357.
    [20]程华国,袁祖贵.用地层元素测井(ECS)资料评价复杂地层岩性变化[J].核电子学与探测技术,2005,25(3):233-238.
    [21]吴剑锋,曹文丽,王昌学.核测井解释方法及地质应用[J].国外测井技术,2004,19(2):35-39,50.
    [22]周蓉生,马英杰,侯新生等.可地浸砂岩型铀矿地球物理测井工作站的研究:核工业总公司“九五”科技项目研究成果报告[R],1998.
    [23]王仁波,汤彬.基于三维GIS图形的盆地综合测井专家系统研究[J].物探化探计算技术,2000,22(4):302-305.
    [24]汤彬,王仁波等.砂岩盆地沉积体系综合测井专家系统简介[M]╱╱核资源与环境研究成就与展望,北京:原子能出版社,2001.
    [25]汤彬,王仁波等.砂岩盆地沉积体系综合测井专家系统的数据库设计技术[M]╱╱核资源与环境研究成就与展望,北京:原子能出版社,2001.
    [26]秦积庚,傅祥麟,赵廷业,汤彬等.铀矿γ测井分层解释方法研究:核工业总公司“七五”科技项目研究成果报告[R],1990.
    [27]汤彬,段波,陆玲.γ测井分层解释理论、技术与软件系统:核工业总公司“七五”科技项目研究成果报告[R],1988.
    [28]Tang Bin,etc.A study of The basic theory and the designing of software for the subdivision interpretation by gamma-ray logs[A]:International Symposium On Exploration Geophysics[C],1989.
    [29]Tang Bin,etc.Research on the workstation radioactivity-logging[A]:International Symposium on Computer Applications in Geosciences[C],1991.
    [30]Tang Bin,etc.Information processing technique on uranium exploration:Report of International Atomic Energy Agency[R],1990.
    [31]Tang Bin,etc.Uranium exploration software system and application:Report of International Atomic Energy Agency[R],1993.
    [32]Tang Bin,etc.Software development report of regional isotope hydrology database for thermal manifestations for IAEA:Report of International Atomic Energy Agency[R],1998.
    [33]汤彬.γ测井分层解释法[M].北京:原子能出版社,1993.
    [34]中国核工业总公司地质总局.中华人民共和国核行业标准:EJ/T 611-1991γ测井规范[S].中国核工业总公司,1992.
    [35]中国核工业集团公司核工业地质局.中华人民共和国核行业标准:EJ/T 611-2005 γ测井规范[S].国防科学技术工业委员会,2005.
    [36]瓦冈诺夫,周蓉生.核方法原理及应用[M].北京:地质出版社,1994.
    [37]章晔,华荣洲,石柏慎.放射性方法勘查[M].北京:原子能出版社,1990.
    [38]贾文懿等.放射性测量(应用地球物理教程)[M].北京:地质出版社,1991.
    [39]成都地质学院三系.放射性勘探方法[M].北京:原子能出版社,1978.
    [40]卢贤栋,吴慧山等.铀矿物探[M].北京:原子能出版社,1981.
    [41]于铭强,周镭庭等.放射性测量新技术(第一集)[M].北京:地质出版社,1983.
    [42]卢存恒.放射性勘探中的几个γ场函数[J].地球物理学报,1982,25(S):670-676.
    [43]卢存恒.铀矿物探γ场理论计算和应用[M].北京:原子能出版社,1991.
    [44]段波.钻孔伽玛场理论及形态系数计算的进一步研究[J].铀矿地质,1991,7(1):49-58.
    [45]卢存恒,刘庆成,韩长青.空间γ场的弹性变化及应用[M].北京:原子能出版社,2006.
    [46]汤彬.γ测井反褶积特征参数α的初步探讨[J].华东地质学院学报,1984,10(1):95-105.
    [47]狄觉斋.改进型反招积分层解释法—一种应用于PC—1500计算机处理γ测井资料的新 方法[J].铀矿地质,1987,3(3):95-103.
    [48]汤彬,陆玲,沈慧芬.γ测井多点式反褶积法及负值问题的讨论[J].铀矿地质,1991,7(2):99-107.
    [49]汤彬,陆玲.伽马测井形态系数的实测方法[J].华东地质学院学报,1988,14(4):351-361.
    [50]A V 奥本海姆著,董士嘉译.数字信号处理[M].北京:科学出版社,1980.
    [51]Conaway J G.Deconvalution of temperature logs[J].Geophysics,1977,42:823-837.
    [52]Conaway J G,Killeen P G.Quantitative uranium determination from gamma-ray logs by application of digital time series analysis[J].Geophysics,1978,43(2):1204-1221.
    [53]Killeen P G.Gamma-ray spectrometric methods in uranium exploration-application and interpretation[A]:Geophysics and Geochemistry in the Search for Metallic Ores.Canada:Geological Survey of Canada Economic Geology Report 31[C],1979,163-229.
    [54]Conaway J G,Bristow Q,Killeen P G.Optimization of gamma-ray logging techniques for uranium[J].Geophysics,1980,45(2):292-311.
    [55]Conaway J G.Deconvalution of gamma-ray logs in the case of dipping radioactive zones[J].Geophysics,1981,46:198-202.
    [56]Sheng P.Bayesian deconvolution of gamma ray logs[J].Geophysics,1987,52:1535-1546.
    [57]黄隆基,胡庆东,杨荣礼,栾士文.自然伽马能谱测井薄层研究[J].测井技术,1996,20(5):3-9.
    [58]黄隆基,胡庆东.自然伽马能谱测井薄层响应[J].地球物理学报,1997,40(2):272-279.
    [59]秦积庚,方励,谭庆江.γ测井反褶积分层解释法若干问题的讨论[J]_铀矿地质,1987,3(2):281-291.
    [60]Scott J H,Dodd P H,Droullard R F,Mudra P J.Quantitative interpretation of logs[J].Geophysics,1961,26:182-191.
    [61]Scott J H.Computer analysis of gamma-ray logs[J].Geophysics,1963,28:457-465.
    [62]赵元洪,陈岚.用电子计算机对放射性测井结果进行定量分析[J].浙江大学学报,1980,14(5):58-106.
    [63]Czubek J A.Quantitative interpretation of gamma-ray logs in the presence of random noise[A]:27th Annual Logging Symposium[C].Spwla,1986.
    [64]汤彬.数字信号分析技术在伽玛测井资料处理中的初步应用[J].华东地质学院学报,1985,11(1):57-65.
    [65]段波,汤彬.三种逆矩阵型分层解释方法对比[J].华东地质学院学报,1990,16(1):41-50.
    [66]汤彬,段波.γ测井分层解释的单一系数分辩法[J].物化探计算技术,1989,11(4):341-350.
    [67]陆玲,汤彬.反褶积—差值迭代法[J].华东地质学院学报,1991,17(1):50-56.
    [68]北京第三研究所.野外γ能谱测量[M].北京:原子能出版社,1977.
    [69]方方.野外地面伽玛射线全谱测量研究[D].成都:成都理工大学博士论文,2001.
    [70]苗放.地面放射性测量工作站的研究与应用[D].成都:成都地质学院博士论文,1990.
    [71]贾文懿,周蓉生,方方等.野外伽玛射线全谱测量技术及应用研究:国土资源部九五重点科技项目“核方法全谱测量快速分析及其应用研究”之课题研究成果报告[R],1999.
    [72]贾文懿,葛均伟.地面γ能谱测量中连续测量的理论基础和实验结果[J].地球物理学报,1991,34(4):527-530.
    [73]方方,贾文懿,周蓉生,马英杰,周建斌.地学应用中的便携式微机多道能谱仪[J].核电子学与探测技术,1999,19(4):44-47.
    [74]庞巨丰.γ全能谱测井技术代表核测井的发展方向[J].核电子学与探测技术,1993,13(1):40-49.
    [75]黄隆基.自然伽马能谱测井原理及应用[M].北京:石油工业出版社,1995.
    [76]庞巨丰,陈军,杨懿峰,王才志,郭清滨..快中子非弹性散射γ全能谱测井实验与谱分析[J].测井技术,1993,27(5):349-356,380.
    [77]吴三省.自然伽马能谱测井译文选[M].北京:石油工业出版社,1989.
    [78]庞巨丰.岩心自然伽马射线NaⅠ(T1)谱的解析[J].测井技术,1996,20(6):9-17.
    [79]汤彬等.一种新的γ能谱测量曲线分离方法[A]:第三十界国际地质大会核工业专辑[C].北京,1996.
    [80]庞巨丰,李敏.地层元素测井中中子-伽马能谱解析理论和方法[J].同位素,2006,19(2):70-74.
    [81]汤彬,乐仁昌,周蓉生,刘玲,周书民.一种新的伽玛能谱测井定量解释方法研究[J].地球物理学进展,2006,21(2):594-597.
    [82]汤彬,刘玲,周书民,周蓉生.能谱型核测井的逐点剥谱反褶积解释方法[J].核技术,2006,29(12):909-912.
    [83]庞巨丰.C/Oγ能谱测井新的解析理论和方法[J].原子核物理评论,2005,22(1):72-75.
    [84]陈中红,查明,金强.自然伽玛及自然伽玛能谱测井在沉积盆地古环境反演中的应用[J].地球物理学报,2004,47(6):1145-1150.
    [85]刘泽纯,陈晔,袁林旺等.应用自然伽玛测井曲线反演2.85 Ma B.P.来古气候变化[J].中国科学D辑,2000,30(6):609-618.
    [86]孙建孟,李召成.应用自然伽马能谱测井确定粘土矿物类型和含量[J].石油大学学报(自然科学版),1999,23(4):29-32.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700