用户名: 密码: 验证码:
单分散磁性聚合物复合微球的制备及表面亲水性聚合物的修饰
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着制备技术的发展,聚合物乳液及微球的应用范围日益广泛,从最早的应用于涂料、纸张、胶粘剂、塑料添加物、建筑材料等一直到近几十年来的医疗和医药领域、生物化学领域。聚合物微球通常可通过乳液聚合方法直接制备,但这些微球往往不能直接满足应用要求,通常需要对聚合物微球进行表面修饰。在本论文中,我们首先采用无皂乳液聚合法制备了不同尺寸的表面带环氧基团的聚(甲基丙烯酸甲酯-甲基丙烯酸缩水甘油酯-二乙烯基苯)P(MMA-GMA-DVB)(P(MGD))聚合物共聚微球,然后在微球表面接枝树枝状聚酰胺胺(d-PAMAM),利用d-PAMAM的氨基键合荧光素后得到了不同尺寸的荧光微球。在此基础上,用无皂乳液聚合的方法制备了磁性聚合物微球,然后在微球表面接枝d-PAMAM,利用d-PAMAM的氨基键合荧光素得到了磁性、PH敏感和荧光多功能的复合微球。最后,初步研究了用可生物降解的聚天冬酰胺衍生物对聚合物微球的修饰,以增加聚合物微球的生物相容性。具体研究内容如下:
     (1)采用无皂乳液聚合及种子聚合方法制备了200~800 nm四种不同尺寸的单分散PMGD复合微球,用扫描电镜(SEM)和动态光散射(DLS)对其进行了表征。实验中发现单体滴加速度是影响种子滴加聚合过程二次成核的关键因素。用乙二胺对微球表面的环氧基团开环后,在微球表面接枝d-PAMAM,增加了微球表面的官能团密度及提高了微球水中的分散稳定性。元素分析(EA)和红外光谱(FTIR)实验证明了微球表面d-PAMAM的存在。最后利用d-PAMAM的氨基键合荧光素四甲基异硫氰酸罗丹明(TRITC)后得到四种尺寸的水分散性的红色荧光微球。
     (2)用两步法制备了双层油酸稳定的Fe_3O_4纳米粒子,然后在纳米粒子的存在下进行甲基丙烯酸甲酯(MMA)和二乙烯基苯(DVB)的无皂乳液聚合制备了聚合物磁性微球Fe_3O_4@P(MMA-DVB),综合考察了聚合单体中DVB的用量、磁流体分散液中氨水、油酸的量对磁性微球粒径大小以及形态的影响。接着以Fe_3O_4@P(MMA-DVB)为种子,进行甲基丙烯酸羟乙酯(HEMA)、甲基丙烯酸缩水甘油酯(GMA)、甲基丙烯酸叔丁酯(t-BMA)、苯乙烯(St)和N-异丙基丙烯酰胺(NIPAM)的种子乳液聚合,得到了表面为羟基、环氧基、叔丁酯基、表面疏水和具有温敏特性的磁性聚合物复合微球。以表面为环氧基的磁性聚合物微球为模板,在微球表面接枝d-PAMAM,最后利用d-PAMAM的氨基同荧光素FITC键合制备了磁性、PH敏感和荧光多功能的复合微球。
     (3)用无皂乳液聚合的方法制备了PMGD复合微球,以磷酸为催化剂,1,3,5-三甲苯/环丁砜为溶剂制备了聚琥珀酰亚胺(PSI):分别在PSI的良溶剂(DMF)和不良溶剂(H_2O)中在PMGD微球表面接枝PSI。(a)在DMF中接枝:我们分别制备了交联度为20、30、40、50 Wt%的PMGD微球,然后在DMF中在各种交联度的PMGD微球表面接枝PSI。(b)在H_2O中接枝:制备了交联度为10wt%的PMGD微球,用羟乙胺对PSI进行部分开环后得到了溶于水的PSI-OH,然后在水中在PMGD微球表面接枝PSI-OH。接枝完后,用过量的乙二胺将微球表面PSI中剩余的丁酰亚胺环打开。
With the development of the technique in preparation of polymer latex,the applications of latex and microspheres have been broadened from earlier industry field such as coatings,papers,adhesive,plastic additives and architecture materials to biomedical and biochemical fields.Polymer microspheres were usually prepared by emulsion polymerization,but when the polymer micrsopheres directly prepared by emulsion polymerization can not be satisfied with the requirment,surface modification of the as-prepared microspheres was necessary to prepare functional polymer micropheres.In this thesis,we prepared three kinds of multifunctional polymer microspheres:(1) We prepared different-sized P(MMA-GMA-DVB) (PMGD)micropsheres modified by dendritic PAMAM(d-PAMAM) at first,and then red fluorescent microspheres were achieved by attachment of TRITC to the surface of microspheres;(2) The magnetic microspheres modified by d-PAMAM were prepared, and then FITC was attached to give the micropsheres fluorescent property;(3) The microspheres modified by polyasparagine derivatives were prepared to enhance the biocompatibility.The results of each part were listed as follows:
     (1) Mono-dispersed PMGD microspheres with size ranging from 200 to 800 nm were synthesized by soap-free emulsion polymerization and seeded polymerization. The as-prepared microspheres were aminated by ethylenediamine.Afterwards, different generations of d-PAMAM were grafted onto the surface of the microspheres by repeated Michael additions and amination reactions,at last different-sized water-dispersible microspheres with red fluorescence could be prepared by covalently coupling tetramethyl rhodamine isothiocyanate(TRITC).
     (2) Different kinds of magnetic fluids were firstly prepared through changing the content of oleic acid and ammonia solution to disperse the monolayer-oleic acid-stabilized magnetite particles.Then magnetic polymer microspheres were prepared by soap-free emulsion copolymerization of methyl methacrylate and divinylbenzene in the presence of above magnetic fluids.The effects of various polymerization parameters such as the content of oleic acid,ammonia solution in the dispersion solution and the content of divinylbenzene on the morphology and size of the magnetic microspheres were investigated in detail.The magnetic functional microspheres were obtained by seeded emulsion polymerization of 2-Hydroxyethyl methacrylate(HEMA),tert-butyl methacrylate(t-BMA),N-isopropylacrylamide (NIPAM),glycidyl methacrylate(GMA) and styrene(St) using the Fe_3O_4@P(MMA-DVB) microspheres as seeds.At last,multifunctional microspheres with superparamagnetic,pH-sensitive,and photoluminescence properties were achieved by the following procedure:(a) the chemical modification of the PMGD shells with ethylenediamine(EDA) to yield amino groups;(b) the dendritic poly(amidoamine)(PAMAM) shells were coated on the magnetic particles on the basis of the Michael addition of methyl acrylate and amidation of the resulting ester with large excesses of EDA,which could achieve generational growth under such uniform stepwise reactions;(c)(FITC),which is a popular organic dye,was reacted with the terminal -NH2 groups from the dendritic PAMAM shells
     (3) Mono-dispersed PMGD microspheres were prepared by soap-free emulsion polymerization and polysuccinimide(PSI) were prepared by polycondensation of L-aspartic acid(L-ASP) using phosphoric acid as a catalyst in sulfolane/mesitylene. Then,PSI was attached to the surface of PMGD microspheres in N,N-dimethylformamide(DMF) and deionized water,respectively.(a) Grafting in DMF solution:PMGD microspheres with different content of DVB were prepared first and then was aminated by EDA,then PSI was attached to the surface of PMGD microspheres through the reaction between the amino groups of mcirospheres and highly chemical reactive loops of PSI;(b) Grafting in water:PMGD microspheres with 10 wt%of DVB were prepared at first,then these microspheres were aminated by EDA,finally,the PMGD microspheres modified by polyasparagine derivatives were achieved.Element analysis was used to characterize the finial microspheres.
引文
1. Ugelstad, J.; Kaggerud, K. H.; Hansen, F. K.; Berge, A., Absorption of Low-Molecular Weight Compounds in Aqueous Dispersions of Polymer-Oligomer Particles .2. Step Swelling Process of Polymer Particles Giving an Enormous Increase in Absorption Capacity[J]. Makromol. Chem. 1979, 180(3): 737-744.
    2. Ugelstad, J.; Mork, P. C.; Kaggerud, K. H.; Ellingsen, T.; Berge, A., Swelling of oligomer-polymer particles. New methods of preparation of emulsions and polymer dispersions[J]. Adv. Colloid Interface Sci. 1980, 13(1-2): 101-140.
    3. Ugelstad, J.; Mfutakamba, H. R.; Mork, P. C., Preparation and application of monodisperse polymer particles[J]. J. Polym. Sci., Part A: Polym. Chem. 1985, 72(2): 225-236.
    4. Ugelstad, J.; Mork, P. C.; Schmid, R.; Ellingsen, T.; Berge, A., Preparation and Biochemical and Biomedical Applications of New Monosized Polymer Particles[J]. Polym. Int. 1993,30(2): 157-168.
    5. Okubo, M.; Katayama, Y.; Yamamoto, Y., Preparation of micron-size monodisperse polymer microspheres having crosslinked structures and vinyl groups[J]. Colloid Polym. Sci. 1991, 269(3): 217-221.
    6. Okubo, M.; Shiozaki, M.; Tsujihiro, M.; Tsukuda, Y., Preparation of micron-size monodisperse polymer particles by seeded polymerization utilizing the dynamic monomer swelling method[J]. Colloid Polym. Sci. 1991, 269(3): 222-226.
    7. Okubo, M.; Shiozaki, M., Production of micron-size monodisperse polymer particles by seeded polymerization utilizing dynamic swelling method with cooling process[J]. Polym. Int. 1993, 30(4): 469-474.
    8. Okubo, M.; Fujii, S.; Minami, H., Production of electrically conductive, core/shell polystyrene/polyaniline composite particles by chemical oxidative seeded dispersion polymerization[J]. Colloid Polym. Sci. 2001, 279(2): 139-145.
    9. Omi, S.; Katami, K.; Taguchi, T.; Kaneko, K.; Iso, M., Synthesis of uniform PMMA microspheres employing modified SPG(shirasu porous glass) emulsification technique[J]. J. Appl. Polym. Sci. 1995, 57(8): 1013-1024.
    10. Ma, G. H.; Nagai, M.; Omi, S., Synthesis of uniform microspheres with higher content of 2-hydroxyethyl methacrylate by employing SPG(Shirasu porous glass) emulsification technique followed by swelling process of droplets[J]. J. Appl. Polym. Sci. 1997,66(7): 1325-1341.
    11. Omi, S.; Taguchi, T.; Nagai, M.; Ma, G. H., Synthesis of 100 μm uniform porous spheres by SPG emulsification with subsequent swelling of the droplets[J]. J. Appl. Polym. Sci. 1997, 63(7): 931-942.
    12. Liu, B. L.; Zhang, B. T.; Cao, S. S.; Deng, X. B.; Hou, X.; Chen, H., Preparation of the stable core-shell latex particles containing organic-siloxane in the shell[J]. Progress in Organic Coatings 2008, 61(1): 21-27.
    13. Charreyre, M. T.; Boullanger, P.; Delair, T.; Mandrand, B.; Pichot, C., Preparation and characterization of polystyrene latexes bearing disaccharide surface groups[J]. Colloid Polym. Sci. 1993, 271(7): 668-679.
    14. Charleux, B.; Fanget, P.; Pichot, C., Radical initiated copolymers of styrene and p-formylstyrene, 2. Preparation and characterization of emulsifier-free copolymer latices[J]. Makromol. Chem. 1992, 193(1): 205-220.
    15. Kim, J. H.; El-Aasser, M. S.; Klein, A.; Vanderhoff, J. W., Sulfonated latex particle as acid catalysts for the continuous inversion of sucrose[J]. J. Appl. Polym. Sci. 1988, 35(8): 2117-2131.
    16. Ahmad, H.; Hossain, M. M.; Rahman, M. M.; Miah, M. A. J., Monodispersed Carboxylated Composite Polymer Microspheres and Physical Immobilization of Biomolecules[J]. Polym. J. 2007, 39(5): 428-434.
    17. Unsal, E.; Irmak, T.; Durusoy, E.; Tuncel, M.; Tuncel, A., Monodisperse porous polymer particles with polyionic ligands for ion exchange separation of proteins[J]. Anal. Chim. Acta 2006, 570(2): 240-248.
    18. Unsal, E.; amli, S. T.; Teksen, T.; Tuncel, M.; Tuncel, A., Hydroxyl Functionalized Uniform-Porous Beads, Synthesis and Chromatographic Use[J]. J. Macromol. Sci., Pure Appl. Chem. 2005, 42(5): 607-621.
    19. Unsal, E.; aml, S. T.; Tuncel, M.; enel, S.; Tuncel, A., Monodisperse-porous particles with different polarities by "modified seeded polymerization" and their use as chromatographic packing in HPLC[J]. React. Funct. Polym. 2004, 61(3): 353-368.
    20. Kang, K.; Kan, C.; Du, Y.; Liu, D., Synthesis and properties of soap-free poly (methyl methacrylate-ethyl acrylate-methacrylic acid) latex particles prepared by seeded emulsion polymerization[J]. Eur. Polym. J. 2005, 41(3): 439-445.
    21. Szwarc, M.; Levy, M.; Milkovich, R., Polymerization Initiated by Electron Transfer to Monomer. A New Method of Formation of Block Polymers[J]. J. Am. Chem. Soc. 1956, 78(11): 2656-2657.
    22. Webster, O. W.; Hertler, W. R.; Sogah, D. Y.; Farnham, W. B.; RajanBabu, T. V., Group-transfer polymerization. 1. A new concept for addition polymerization with organosilicon initiators[J]. J. Am. Chem. Soc. 1983, 105(17): 5706-5708.
    23. Miyamoto, M.; Sawamoto, M.; Higashimura, T., Synthesis of monodisperse living poly (vinyl ethers) and block copolymers by the hydrogen iodide/iodine initiating system[J]. Macromolecules 1984, 17(11): 2228-2230.
    24. Miyamoto, M.; Sawamoto, M.; Higashimura, T., Living polymerization of isobutyl vinyl ether with hydrogen iodide/iodine initiating system[J]. Macromolecules 1984, 17(3): 265-268.
    25. Wang, J. S.; Jerome, R.; Teyssie, P., Anionic Polymerization of Acrylic Monomers. 19. Effect of Various Types of Ligands Other Than Lithium Chloride on the Stereochemistry of Anionic Polymerization of Methyl Methacrylate[J]. Macromolecules 1994, 27(18): 4902-4907.
    26. Doi, Y.; Ueki, S.; Keii, T., " Living" Coordination Polymerization of Propene Initiated by the Soluble V (acac)_3-Al (C_2H_5)_2Cl System[J]. Macromolecules 1979, 12(5): 814-819.
    27. Grubbs, R. H.; Tumas, W., Polymer synthesis and organotransition metal chemistry[J]. Science 1989, 243(4893): 907-915.
    28. Schrock, R. R., Living ring-opening metathesis polymerization catalyzed by well-characterized transition-metal alkylidene complexes[J]. Acc. Chem. Res. 1990, 23(5): 158-165.
    29. Fulghum, T. M.; Patton, D. L.; Advincula, R. C., Fuzzy ternary particle systems by surface-initiated atom transfer radical polymerization from layer-by-layer colloidal core-shell macroinitiator particles[J]. Langmuir 2006, 22(20): 8397-8402.
    30. Zheng, G. D.; Halard, D. H., S. Grafting of poly (alkyl meth acrylates) from swellable poly (DVB80-co-HEMA) microspheres by atom transfer radical polymerization[J]. Macromolecules 2002, 35(20): 7612-7619.
    31. Zheng, G. D.; Stover, H. D. H., Grafting of poly (epsilon-caprolactone) and poly (epsilon-caprolactone-block-(dimethylamino) ethyl methacrylate) from polymer microspheres by ring-opening polymerization and ATRP[J]. Macromolecules 2003, 36(20): 7439-7445.
    32. Tsuji, S.; Kawaguchi, H., Temperature-sensitive hairy particles prepared by living radical graft polymerization[J]. Langmuir 2004, 20(6): 2449-2455.
    33. Tsuji, S.; Kawaguchi, H., Effect of graft chain length and structure design on temperature-sensitive hairy particles[J]. Macromolecules 2006, 39(13): 4338-4344.
    34. Wang, F.; Hu, J.; Yang, W.; Wang, C., Tailored Surface Properties of Monodispersed Polymer Particles with PCL Hairy Chains Synthesized by Hydroxyl-Initiated Ring-Opening Polymerization[J]. J. Polym. Sci., Part A: Polym. Chem. 2007, 45(20): 4552-4563.
    35. Decher, G.; Hong, J. D., Buildup of ultrathin multilayer films by a self-assembly process. 1. Consecutive adsorption of anionic and cationic bipolar amphiphiles on charged surfaces[J]. Makromolekulare Chemie-Macromolecular Symposia 1991, 46: 321-327.
    36. Donath, E.; Sukhorukov, G. B.; Caruso, F.; Davis, S. A.; Mohwald, H., Novel Hollow Polymer Shells: Fabrication, Characterization, and Potential Applications [J]. Angew. Chem. Int. Ed 1998, 37(16): 2201-2205.
    37. Caruso, F.; Susha, A. S.; Giersig, M.; Moehwald, H., Magnetic Core-Shell Particles: Preparation of Magnetite Multilayers on Polymer Latex Microspheres[J]. Adv. Mater. 1999, 11(11): 950-953.
    38. Okubo, M.; Lu, Y.; Wang, Z., Analysis of stepwise heterocoagulation for the preparation of soft core/hard shell composite polymer particles[J]. Colloid Polym. Sci. 1999, 277(1): 77-82.
    39. Okubo, M.; Lu, Y.; Wang, Z., Production of soft core/hard shell composite polymer particles by the stepwise heterocoagulation method with heat treatment[J]. Colloid Polym. Sci. 1998, 276(9): 833-837.
    40. Okubo, M.; Lu, Y., Estimation of surface morphology of composite polymer particles prepared by the stepwise heterocoagulation method with?-potential measurement[J]. Colloid Polym. Sci. 1998, 276(3): 282-285.
    41. Tomalia, D. A.; Baker, H.; Dewald, J.; Hall, M.; Kallos, G.; Martin, S.; Roeck, J.; Ryder, J.; Smith, P., A New Class of Polymers: Starburst-Dendritic Macromolecules[J]. Polym. J. 1985,17(1): 117-132.
    42. Tomalia, D. A.; Baker, H.; Dewald, J.; Hall, M.; Kallos, G.; Martin, S.; Roeck, J.; Ryder, J.; Smith, P., Dendritic macromolecules: synthesis of starburst dendrimers[J]. Macromolecules 1986, 19(9): 2466-2468.
    43. Tsubokawa, N.; Ichioka, H.; Satoh, T.; Hayashi, S.; Fujiki, K., Grafting of dendrimer-like'highly branched polymer onto ultrafine silica surface[J]. React. Funct. Polym. 1998, 37(1): 75-82.
    44. Tsubokawa, N.; Satoh, T.; Murota, M.; Sato, S.; Shimizu, H., Grafting of hyperbranched poly(amidoamine) onto carbon black surfaces using dendrimer synthesis methodology[J]. Polym. Adv. Technol. 2001, 12(10): 596-602.
    45. Okazaki, M.; Murota, M.; Kawaguchi, Y.; Tsubokawa, N., Curing of epoxy resin by ultrafine silica modified by grafting of hyperbranched polyamidoamine using dendrimer synthesis methodology[J]. J. Appl. Polym. Sci. 2001, 80(4): 573-579.
    46. Pan, B.; Gao, F.; Gu, H., Dendrimer modified magnetite nanoparticles for protein immobilization[J]. J. Colloid Interface Sci. 2005, 284(1): 1-6.
    47. Abu-Reziq, R.; Alper, H.; Wang, D.; Post, M. L., Metal supported on dendronized magnetic nanoparticles: Highly selective hydroformylation catalysts[J]. J. Am. Chem. Soc. 2006, 128(15): 5279-5282.
    48. S., P. S. Method for preparation of stable magnetic fluid[P]. US P3215572, 1965.
    49. Resler, E. L.; Rosensweig, R. E., Magnetocaloric Power[J]. Aiaa Journal 1964, 2(8): 1418-1422.
    50. Lefort, M. J., Memoire sur les oxydes ferroso-ferriques et leurs combinasions[J]. Compt. Rend. Acad 1852, 34: 488-491.
    51. Lee, J.; Isobe, T.; Senna, M., Magnetic properties of ultrafine magnetite particles and their slurries prepared via in-situ precipitation[J]. Colloids Surf., A 1996, 109: 121-127.
    52. Bee, A.; Massart, R.; Neveu, S., Synthesis of Very Fine Maghemite Particles [J]. J. Magn. Magn. Mater. 1995, 149(1-2): 6-9.
    53. Murray, C. B.; Norris, D. J.; Bawendi, M. G., Sythesis and Characterization of Nearly Monodisperse CdE(E=S, Se, Te) Semiconductor Nanocrystallites[J]. J. Am. Chem. Soc. 1993, 115(19): 8706-8715.
    54. Peng, X. G.; Wickham, J.; Alivisatos, A. P, Kinetics of Ⅱ-Ⅵ and Ⅲ-Ⅴ colloidal semiconductor nanocrystal growth: "Focusing" of size distributions [J]. J. Am. Chem. Soc. 1998, 120(21): 5343-5344.
    55. Park, J.; An, K. J.; Hwang, Y. S.; Park, J. G.; Noh, H. J.; Kim, J. Y.; Park, J. H.; Hwang, N. M.; Hyeon, T., Ultra-large-scale syntheses of monodisperse nanocrystals[J]. Nat. Mater. 2004, 3(12): 891-895.
    56. Sun, S. H.; Zeng, H.; Robinson, D. B.; Raoux, S.; Rice, P. M.; Wang, S. X.; Li, G.X., Monodisperse MFe_2O_4 (M = Fe, Co, Mn) nanoparticles [J]. J. Am. Chem. Soc. 2004, 126(1): 273-279.
    57. Feltin, N.; Pileni, M. P., New technique for synthesizing iron ferrite magnetic nanosized particles[J]. Langmuir 1997, 13(15): 3927-3933.
    58. Woo, K.; Lee, H. J.; Ann, J. P.; Park, Y. S., Sol-Gel Mediated Synthesis of Fe_2O_3 Nanorods[J]. Adv. Mater. 2003, 15(20): 1761-1764.
    59. Wang, X.; Zhuang, J.; Peng, Q.; Li, Y. D., A general strategy for nanocrystal synthesis[J]. Nature 2005, 437(7055): 121-124.
    60. Deng, H.; Li, X. L.; Peng, Q.; Wang, X.; Chen, J. P.; Li, Y. D., Monodisperse magnetic single-crystal ferrite microspheres[J]. Angew. Chem. Int. Ed. 2005, 44(18): 2782-2785.
    61. Boyen, H. G.; Kastle, G.; Zurn, K.; Herzog, T.; Weigl, F.; Ziemann, P.; Mayer, O.; Jerome, C.; Moller, M.; Spatz, J. P.; Garnier, M. G.; Oelhafen, P., A micellar route to ordered arrays of magnetic nanoparticles: From size-selected pure cobalt dots to cobalt-cobalt oxide core-shell systems[J]. Adv. Funct. Mater. 2003, 13(5): 359-364.
    62. Decuyper, M.; Joniau, M., Mechanistic Aspects of the Adsorption of Phospholipids onto Lauric Acid Stabilized Fe_3O_4 Nanocolloids[J]. Langmuir 1991, 7(4): 647-652.
    63. Tartaj, P.; Morales, M. P.; Gonzalez-Carreno, T.; Veintemillas-Verdaguer, S.; Serna, C. J., Advances in magnetic nanoparticles for biotechnology applications[J]. J. Magn. Magn. Mater. 2005, 290: 28-34.
    64. Wooding, A.; Kilner, M.; Lambrick, D. B., Stripped Magnetic Particels-Applications of the Double Surfactant Layer Principle in the Preparation of Water-Based Magnetic Fluids[J]. J. Colloid Interface Sci. 1992, 149(1): 98-104.
    65. Park, J. I.; Cheon, J., Synthesis of "solid solution" and "core-shell" type cobalt-platinum magnetic nanoparticles via transmetalation reactions[J]. J. Am. Chem. Soc. 2001, 123(24): 5743-5746.
    66. Ban, Z. H.; Barnakov, Y. A.; Golub, V. O.; O'Connor, C. J., The synthesis of core-shell iron@gold nanoparticles and their characterization[J]. J. Mater. Chem. 2005, 15(43): 4660-4662.
    67. Lu, Z. H.; Prouty, M. D.; Guo, Z. H.; Golub, V. O.; Kumar, C.; Lvov, Y. M., Magnetic switch of permeability for polyelectrolyte microcapsules embedded with Co@Au nanoparticles[J]. Langmuir 2005, 21(5): 2042-2050.
    68. Philipse, A. P.; Vanbruggen, M. P. B.; Pathmamanoharan, C., Magnetic silica dispersions-preparation and stability of surface-modified silica particles with a magnetic core[J]. Langmuir 1994, 10(1): 92-99.
    69. Lu, Y.; Yin, Y. D.; Mayers, B. T.; Xia, Y. N., Modifying the surface properties of superparamagnetic iron oxide nanoparticles through a sol-gel approach[J]. Nano Lett. 2002,2(3): 183-186.
    70. Tago, T.; Hatsuta, T.; Miyajima, K.; Kishida, M.; Tashiro, S.; Wakabayashi, K., Novel synthesis of silica-coated ferrite nanoparticles prepared using water-in-oil microemulsion[J]. J. Am. Ceram. Soc. 2002, 85(9): 2188-2194.
    71. Graf, C.; Vossen, D. L. J.; Imhof, A.; van Blaaderen, A., A general method to coat colloidal particles with silica[J]. Langmuir 2003, 19(17): 6693-6700.
    72. Zhao, W. R.; Gu, J. L.; Zhang, L. X.; Chen, H. R.; Shi, J. L., Fabrication of uniform magnetic nanocomposite spheres with a magnetic core/mesoporous silica shell structure[J]. J. Am. Chem. Soc. 2005, 127(25): 8916-8917.
    
    73.谢钢;张秋禹;李铁虎,聚合物通报2001,6:38-45.
    
    74. Bahar, T.; Celebi, S. S., Immobilization of glucoamylase on magnetic poly(styrene) particles[J]. J. Appl. Polym. Sci. 1999, 72(1): 69-73.
    
    75. Denkbas, E. B.; Kilicay, E.; Birlikseven, C.; Ozturk, E., Magnetic chitosan microspheres: preparation and characterization[J]. Reactive and Functional Polymers 2002, 50(3): 225-232.
    
    76. Liang, Y. Y.; Zhang, L. M.; Jiang, W.; Li, W., Embedding magnetic nanoparticles into polysaccharide-based hydrogels for magnetically assisted bioseparation[J]. Chemphyschem 2007, 8(16): 2367-2372.
    
    77. Huang, J. S.; Wan, S. R.; Guo, M.; Yan, H. S., Preparation of narrow or mono-disperse crosslinked poly((meth)acrylic acid)/iron oxide magnetic microspheres [J]. J. Mater. Chem. 2006, 16(46): 4535-4541.
    
    78. Ma, Z. Y.; Guan, Y. P.; Liu, H. Z, Synthesis and characterization of micron-sized monodisperse superparamagnetic polymer particles with amino groups [J]. J. Polym. Sci., Part A: Polym. Chem. 2005, 43(15): 3433-3439.
    
    79. Wu, T. M.; Yen, S. J.; Chen, E. C.; Sung, T. W.; Chiang, R. K., Conducting and magnetic behaviors of monodispersed iron oxide/polypyrrole nanocomposites synthesized by in situ chemical oxidative polymerization[J]. J. Polym. Sci., Part A: Polym. Chem. 2007, 45(20): 4647-4655.
    
    80. Wang, Y. M.; Pan, C. Y., Dielectric behavior and magnetic properties of poly(styrene-co-acrylic acid)metal microspheres [J]. Eur. Polym. J. 2001, 37(4): 699-704.
    
    81. Horak, D., Magnetic polyglycidylmethacrylate microspheres by dispersion polymerization[J]. J. Polym. Sci., Part A: Polym. Chem. 2001, 39(21): 3707-3715.
    
    82. Horak, D.; Benedyk, N., Magnetic poly(glycidyl methacrylate) microspheres prepared by dispersion polymerization in the presence of electrostatically stabilized ferrofluids[J]. J. Polym. Sci, Part A: Polym. Chem. 2004, 42(22): 5827-5837.
    
    83. Horak, D.; Rittich, B.; Spanova, A., Carboxyl-functionalized magnetic microparticle carrier for isolation and identification of DNA in dairy products[J]. J. Magn. Magn. Mater. 2007, 311(1): 249-254.
    84. Altintas, E. B.; Tuezmen, N.; Candan, N.; Denizli, A., Use of magnetic poly(glycidyl methacrylate) monosize beads for the purification of lysozyme in batch system[J]. J. Chromatogr. B 2007, 853(1-2): 105-113.
    85. Kim, Y. H.; Park, B. J.; Choi, H. J.; Seo, Y., Coating of magnetic particle with polystyrene and its magnetorheological characterization[J]. Phys. Status Solidi A 2007, 204(12): 4178-4181.
    86. Yanase, N.; Noguchi, H.; Asakura, H.; Suzuta, T., Preparation of magnetic latex-particles by emulsion polymerization of styrene in the presence of a ferrofluid[J]. J. Appl. Polym. Sci. 1993, 50(5): 765-776.
    87. Kondo, A.; Kamura, H.; Higashitani, K., Development and application of thermosensitive magnetic immunomicrospheres for antibody purification[J]. Appl. Microbiol. Biotechnol. 1994, 41(1): 99-105.
    88. Gu, S. C.; Shiratori, T.; Konno, M., Synthesis of monodisperse, magnetic latex particles with polystyrene core[J]. Colloid Polym. Sci. 2003, 281(11): 1076-1081.
    89. Gu, S. C.; Onishi, J. Y.; Kobayashi, Y.; Nagao, D.; Konno, M., Preparation and colloidal stability of monodisperse magnetic polymer particles[J]. J. Colloid Interface Sci. 2005, 289(2): 419-426.
    90. Xu, Z. Z.; Xia, A.; Wang, C. C.; Yang, W. L.; Fu, S. K., Synthesis of raspberry-like magnetic polystyrene microspheres[J]. Mater. Chem. Phys. 2007, 103(2-3): 494-499.
    91. Shen, L. F.; Laibinis, P. E.; Hatton, T. A., Bilayer surfactant stabilized magnetic fluids: Synthesis and interactions at interfaces[J]. Langmuir 1999, 15(2): 447-453.
    92. Wang, P. C.; Chiu, W. Y.; Lee, C. F.; Young, T. H., Synthesis of iron oxide/poly(methyl methacrylate) composite latex particles: Nucleation mechanism and morphology[J]. J. Polym. Sci., Part A: Polym. Chem. 2004, 42(22): 5695-5705.
    93. Ugelstad, J.; Elaasser, M. S.; Vanderho, J., Emulsion polymerization-initiation of polymerization in monomer[J]. Journal of Polymer Science Part C-Polymer Letters 1973, 11(8): 503-513.
    94. Liu, X. Q.; Guan, Y. P.; Ma, Z. Y.; Liu, H. Z., Surface modification and characterization of magnetic polymer nanospheres prepared by miniemulsion polymerization[J]. Langmuir 2004, 20(23): 10278-10282.
    95. Faridi-Majidi, R.; Sharifi-Sanjani, N.; Agend, F., Encapsulation of magnetic nanoparticles with polystyrene via emulsifier-free miniemulsion polymerization[J]. Thin Solid Films 2006, 515(1): 368-374.
    96. Lu, S. H.; Forcada, J., Preparation and characterization of magnetic polymeric composite particles by miniemulsion polymerization[J]. J. Polym. Sci., Part A: Polym. Chem. 2006, 44(13): 4187-4203.
    97. Nunes, J. S.; de Vasconcelos, C. L.; Cabral, F. A. O.; de Araujo, J. H.; Pereira, M. R.; Fonseca, J. L. C., Synthesis and characterization of poly(ethyl methacrylate-co-methacrylic acid) magnetic particles via miniemulsion polymerization[J]. Polymer 2006, 47(22): 7646-7652.
    98. Xu, H.; Cui, L. L.; Tong, N. H.; Gu, H. C., Development of high magnetization Fe3O4/polystyrene/silica nanospheres via combined miniemulsion/emulsion polymerization[J]. J. Am. Chem. Soc. 2006, 128(49): 15582-15583.
    99. Cui, L. L.; Xu, H.; He, P.; Sumitomo, K. K.; Yamaguchi, Y.; Gu, H. C., Developing a hybrid emulsion polymerization system to synthesize Fe3O4/polystyrene latexes with narrow size distribution and high magnetite content[J]. J. Polym. Sci., Part A: Polym. Chem. 2007, 45(22): 5285-5295.
    100. Faridi-Majidi, R.; Sharifi-Sanjani, N., Preparation of magnetic latexes functionalized with chloromethyl groups via emulsifier-free miniemulsion polymerization[J]. J. Magn. Magn. Mater. 2007, 311(1): 55-58.
    101. Qiu, G. H.; Wang, Q.; Wang, C.; Lau, W.; Guo, Y. L., Polystyrene/Fe_3O_4 magnetic emulsion and nanocomposite prepared by ultrasonically initiated miniemulsion polymerization[J]. Ultrason. Sonochem. 2007, 14(1): 55-61.
    102. Sun, Y.; Wang, B.; Wang, H. P.; Jiang, J. M., Controllable preparation of magnetic polymer microspheres with different morphologies by miniemulsion polymerization[J]. J. Colloid Interface Sci. 2007, 308(2): 332-336.
    103. Zhang, Q. Y.; Zhang, H. P.; Xie, G.; Zhang, J. P., Effect of surface treatment of magnetic particles on the preparation of magnetic polymer microspheres by miniemulsion polymerization[J]. J. Magn. Magn. Mater. 2007, 311(1): 140-144.
    104. Freeman, M. W.; Arrott, A.; Watson, J. H. L., Magnetism in medicine[J]. J. Appl. Phys. 1960, 31(5): S404-S405.
    105. Joubert, J. C., Magnetic microcomposites as vectors for bioactive agents: The state of art[J]. Anales De Quimica 1997, 93(1): S70-S76.
    106. Goodwin, S.; Peterson, C.; Hoh, C.; Bittner, C., Targeting and retention of magnetic targeted carriers (MTCs) enhancing intra-arterial chemotherapy[J]. J. Magn. Magn. Mater. 1999, 194(1-3): 132-139.
    107. Chouly, C.; Pouliquen, D.; Lucet, I.; Jeune, J. J.; Jallet, P., Development of superparamagnetic nanoparticles for MRI: Effect of particle size, charge and surface nature on biodistribution[J]. Journal of Microencapsulation 1996, 13(3): 245-255.
    108. Chatterjee, J.; Haik, Y.; Chen, C. J., Size dependent magnetic properties of iron oxide nanoparticles[J]. J. Magn. Magn. Mater. 2003, 257(1): 113-118.
    109. Pratsinis, S. E.; Vemury, S., Particle formation in gases: A review[J]. Powder Technol. 1996, 88(3): 267-273.
    110.Poole, C. F.; Schuette, S. A., Isolation and concentration techniques for capillary column gas-chromatographic analysis[J]. J. High. Resolut. Chromatogr. & Chromatogr. Commun. 1983, 6(10): 526-549.
    
    111.Hagen, D. F.; Markell, C. G.; Schmitt, G. A.; Blevins, D. D., Membrane approach to solid-phase extractions[J]. Anal. Chim. Acta 1990, 236(1): 157-164.
    
    112.Briscoe, D. M.; Henault, L. E.; Geehan, C.; Alexander, S. I.; Lichtman, A. H., Human endothelial cell costimulation of T cell IFN-gamma production[J]. J. Immunol. 1997, 159(7): 3247-3256.
    
    113.Chatterjee, J.; Haik, Y.; Chen, C. J., Modification and characterization of polystyrene-based magnetic microspheres and comparison with albumin-based magnetic microspheres[J]. J. Magn. Magn. Mater. 2001, 225(1-2): 21-29.
    
    114.Bjerke, T.; Nielsen, S.; Helgestad, J.; Nielsen, B. W.; Schiotz, P. O., Purification of human blood basophils by negative selection using immunomagnetic beads[J]. J. Immunol. Methods 1993, 157(1-2): 49-56.
    115.Rembaum, A.; Yen, R. C. K.; Kempner, D. H.; Ugelstad, J., Cell labeling and magnetic separation by means of immunoreagents based on polyacrolein microspheres[J]. J. Immunol. Methods 1982, 52(3): 341-351.
    
    116.Arica, M. Y.; Yavuz, H.; Patir, S.; Denizli, A., Immobilization of glucoamylase onto spacer-arm attached magnetic poly(methylmethacrylate) microspheres: characterization and application to a continuous flow reactor [J]. J. Mol. Catal. B: Enzym. 2000, 11(2-3): 127-138.
    
    117.Akgol, S.; Kacar, Y.; Denizli, A.; Arica, M. Y., Hydrolysis of sucrose by invertase immobilized onto novel magnetic polyvinylalcohol microspheres[J]. Food Chem. 2001, 74(3): 281-288.
    
    118.Rittich, B.; Spanovda, A.; Ohlashennyy, Y.; Lenfeld, J.; Rudolf, I.; Horak, D.; Benes, M. J., Characterization of Deoxyribonuclease I Immobilized on Magnetic Hydrophilic Polymer Particles - Presented at the 2nd International Symposium on Separations in the Biosciences, Prague, September 17-20, 2001[J]. J. Chromatogr., B: Anal. Technol. Biomed. Life Sci. 2002, 774(1): 25-31.
    
    119.Bilkova, Z.; Slovakova, M.; Lycka, A.; Horak, D.; Lenfeld, J.; Turkova, J.; Churacek, J., Oriented immobilization of galactose Oxidase to bead and magnetic bead cellulose and poly(HEMA-co-EDMA) and magnetic poly(HEMA-co-EDMA) microspheres[J]. J. Chromatogr., B: Anal. Technol. Biomed. Life Sci. 2002, 770(1-2): 25-34.
    
    120. Timko, M.; Koneracka, M.; Kopcansky, P.; Ramchand, C. N.; Vekas, L.; Bica, D., Application of magnetizable complex systems in biomedicine[J]. Czechoslovak Journal of Physics 2004, 54: D599-D606.
    1.Henrytoulme,N.;Decout,A.;Lalanne,J.;Nemati,F.;Dubernet,C.;Dufourcq,J.,Probing the interactions of the anticancer drug doxorubicin with polymeric nanopariticles using fluorescence sperctroscopy[J].J.Colloid Interface Sci.1994,162(1):236-243.
    2.Herrick,J.;Michalet,X.;Conti,C.;Schurra,C.;Bensimon,A.,Quantifying single gene copy number by measuring fluorescent probe lengths on combed genomic DNA[J].A.Proc.Natl.Acad.Sci.U.S.A.2000,97(1):222-227.
    3.Mullaney,J.M.;Thompson,R.B.;Gryczynski,Z.;Black,L.W.,Green fluorescent protein as a probe of rotational mobility within bacteriophage T4[J].J.Virol.Methods 2000,88(1):35-40.
    4.Lukowiak,B.;Vandewalle,B.;Riachy,R.;Kerr-Conte,J.;Gmyr,V.;Belaich,S.,et al.,Identification and purification of functional human beta-cells by a new specific zinc-fluorescent probe[J].J.Histochem.Cytochem.2001,49(4):519-527.
    5.Horinaka,J.;Ito,S.;Yamamoto,M.;Tsujii,Y.;Matsuda,T.,Influence of a fluorescent probe on the local relaxation times for a polystyrene chain in the fluorescence depolarization method[J].Macromolecules 1999,32(7):2270-2274.
    6.Shi,X.Y.;Caruso,F.,Release behavior of thin-walled microcapsules composed of polyelectrolyte multilayers[J].Langmuir 2001,17(6):2036-2042.
    7.Charreyre,M.T.;Zhang,P.;Winnik,M.A.;Pichot,C.;Graillat,C.,Adsorption of rhodamine-60 onto polystryene latex-particles with sulfate groups at the surface[J].J.Colloid Interface Sci.1995,170(2):374-382.
    8.Meallet-Renault,R.;Denjean,P;Pansu,R.B.,Polymer beads as nano-sensors[J].Sens.Actuators,B 1999,59(2-3):108-112.
    9.Bosma,G.;Pathmamanoharan,C.;de Hoog,E.H.A.;Kegel,W.K.;van Blaaderen,A.;Lekkerkerker,H.N.W.,Preparation of monodisperse,fluorescent PMMA-latex colloids by dispersion polymerization[J].J.Colloid Interface Sci.2002,245(2):292-300.
    10.Campbell,A.I.;Bartlett,P.,Fluorescent hard-sphere polymer colloids for Confocal microscopy[J]. J. Colloid Interface Sci. 2002,256(2): 325-330.
    11. Yang, Y. H.; Wen, Z. K.; Dong, Y. P.; Gao, M. Y., Incorporating CdTe nanocrystals into polystyrene microspheres: Towards robust fluorescent beads[J]. Small 2006, 2(7): 898-901.
    12. Schuetz, P.; Caruso, F., Electrostatically assembled fluorescent thin films of rare-earth-doped lanthanum phosphate nanoparticles[J]. Chem. Mater. 2002, 14(11): 4509-4516.
    13. Tomalia, D. A.; Baker, H.; Dewald, J.; Hall, M.; Kallos, G.; Martin, S., et al., A new class of polymers-starburst-dendritic macromolecules [J]. Polym. J. 1985, 17(1): 117-132.
    14. Tomalia, D. A.; Baker, H.; Dewald, J.; Hall, M.; Kallos, G.; Martin, S., et al., Dendritic macromolecules-synthesis of starburst dendrimers[J]. Macromolecules 1986, 19(9): 2466-2468.
    15. Tsubokawa, N.; Ichioka, H.; Satoh, T.; Hayashi, S.; Fujiki, K., Grafting of 'dendrimer-like' highly branched polymer onto ultrafine silica surface[J]. React. Funct. Polym. 1998, 37(1-3): 75-82.
    16. Tsubokawa, N.; Satoh, T.; Murota, M.; Sato, S.; Shimizu, H., Grafting of hyperbranched poly (amidoamine) onto carbon black surfaces using dendrimer synthesis methodology[J]. Polym. Adv. Technol. 2001,12(10): 596-602.
    17. Pan, B. F.; Gao, F.; Ao, L. M., Investigation of interactions between dendrimer-coated magnetite nanoparticles and bovine serum albumin[J]. J. Magn. Magn. Mater. 2005,293(1): 252-258.
    18. Pan, B. F.; Gao, F.; Gu, H. C., Dendrimer modified magnetite nanoparticles for protein immobilization[J]. J. Colloid Interface Sci. 2005, 284(1): 1-6.
    19. Abu-Reziq, R.; Alper, H.; Wang, D. S.; Post, M. L., Metal supported on dendronized magnetic nanoparticles: Highly selective hydroformylation catalysts[J]. J. Am. Chem. Soc. 2006,128(15): 5279-5282.
    20. Liu, Y. Y.; Su, X.; Tang, M. F.; Kong, J., A facile method to prepare hydrophobic nanoparticle dispersions for controlled release[J]. Macromol. Chem. Phys. 2007, 208(4):415-422.
    21.Qiu,L.Z.;Qu,B.J.,Preparation and characterization of surfactant-free polystyrene/layered double hydroxide exfoliated nanocomposite via soap-free emulsion polymerization[J].J.Colloid Interface Sci.2006,301(2):347-351.
    22.Kang,K.;Kan,C.Y.;Du,Y.;Liu,D.S.,Synthesis and properties of soap-free poly(methyl methacrylate-ethyl acrylate-methacrylic acid) latex particles prepared by seeded emulsion polymerization[J].Eur.Polym.J.2005,41(3):439-445.
    23.Kang,K.;Kan,C.Y.;Du,Y.;Yeung,A.;Liu,D.S.,Morphology control of soap-free seeded P(St-EA-AA) latex particles[J].Eur.Polym.J.2005,41(7):1510-1518.
    24.Sherman,R.L.;Ford,W.T.,Small core/thick shell polystyrene/poly(methyl methacrylate) latexes[J].Ind.Eng.Chem.Res.2005,44(23):8538-8541.
    1.Kim,D.K.;Zhang,Y.;Kehr,J.;Klason,T.;Bjelke,B.;Muhammed,M.,Characterization and MRI study of surfactant-coated superparamagnetic nanoparticles administered into the rat brain[J].J.Magn.Magn.Mater.2001,225(1-2):256-261.
    2.Mornet,S.;Vasseur,S.;Grasset,F.;Veverka,P.;Goglio,G.;Demourgues,A.;Portier,J.;Pollert,E.;Duguet,E.,Magnetic nanoparticle design for medical applications[J].Prog.Solid State Chem.2006,34(2-4):237-247.
    3.Gupta,A.K.;Curtis,A.S.G.,Surface modified superparamagnetic nanoparticles for drug delivery:Interaction studies with human fibroblasts in culture[J].J.Mater.Sci.-Mater.Med.2004,15(4):493-496.
    4.Ritter,J.A.;Ebner,A.D.;Daniel,K.D.;Stewart,K.L.,Application of high gradient magnetic separation principles to magnetic drug targeting[J].J.Magn.Magn.Mater.2004,280(2-3):184-201.
    5.Dagdeviren,K.;Unak,R;Bekis,R.;Biber,F.Z.;Akdurak,S.;Ulker,O.;Ergur,B.;Ertay,T.;Durak,H.,Radioiodinated magnetic targeted carriers(I-131-MTC)[J].J.Radioanal.Nucl.Chem.2007,273(3):635-639.
    6.Plank,C.;Schillinger,U.;Scherer,F.;Bergemann,C.;Remy,J.S.;Krotz,F.;Anton,M.;Lausier,J.;Rosenecker,J.,The magnetofection method:Using magnetic force to enhance gene delivery[J].Biol.them 2003,384(5):737-747.
    7.Liu,X.Q.;Guan,Y.P.;Yang,Y.;Ma,Z.Y.;Wu,X.B.;Liu,H.Z.,Preparation of superparamagnetic immunomicrospheres and application for antibody purification[J].J.Appl.Polym.Sci.2004,94(5):2205-2211.
    8.Gupta,A.K.;Gupta,M.,Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications[J].Biomaterials 2005,26(18):3995-4021.
    9.Kohler,N.;Sun,C.;Fichtenholtz,A.;Gunn,J.;Fang,C.;Zhang,M.Q.,Methotrexate-immobilized poly(ethylene glycol) magnetic nanoparticles for MR imaging and drug delivery[J].Small 2006,2(6):785-792.
    10.Jordan,A.;Scholz,R.;Wust,P.;Schirra,H.;Schiestel,T.;Schmidt,H.;Felix,R.,Endocytosis of dextran and silan-coated magnetite nanoparticles and the effect of intracellular hyperthermia on human mammary carcinoma cells in vitro[J]. J. Magn. Magn. Mater. 1999, 194(1-3): 185-196.
    11. Tsafnat, N.; Tsafnat, G.; Lambert, T. D.; Jones, S. K., Modelling heating of liver tumours with heterogeneous magnetic microsphere deposition[J]. Phys. Med. Biol. 2005, 50(12): 2937-2953.
    12. Berry, C. C.; Curtis, A. S. G., Functionalisation of magnetic nanoparticles for applications in biomedicine[J]. J. Phys. D: Appl. Phys. 2003, 36(13): R198-R206.
    13. Lu, A. H.; Salabas, E. L.; Schuth, F., Magnetic nanoparticles: Synthesis, protection, functionalization, and application[J]. Angew. Chem. Int. Ed. 2007, 46(8): 1222-1244.
    14. Bahar, T.; Celebi, S. S., Immobilization of glucoamylase on magnetic poly(styrene) particles[J]. J. Appl. Polym. Sci. 1999, 72(1): 69-73.
    15. Chatterjee, J.; Haik, Y.; Chen, C. J., Modification and characterization of polystyrene-based magnetic microspheres and comparison with albumin-based magnetic microspheres[J]. J. Magn. Magn. Mater. 2001, 225(1-2): 21-29.
    16. Huang, J. S.; Wan, S. R.; Guo, M.; Yan, H. S., Preparation of narrow or mono-disperse crosslinked poly((meth)acrylic acid)/iron oxide magnetic microspheres[J]. J. Mater. Chem. 2006, 16(46): 4535-4541.
    17. Liang, Y. Y.; Zhang, L. M.; Jiang, W.; Li, W., Embedding magnetic nanoparticles into polysaccharide-based hydrogels for magnetically assisted bioseparation[J]. Chemphyschem 2007, 8(16): 2367-2372.
    18. Horak, D., Magnetic polyglycidylmethacrylate microspheres by dispersion polymerization[J]. J. Polym. Sci., Part A: Polym. Chem. 2001, 39(21): 3707-3715.
    19. Horak, D.; Benedyk, N., Magnetic poly(glycidyl methacrylate) microspheres prepared by dispersion polymerization in the presence of electrostatically stabilized ferrofluids[J]. J. Polym. Sci., Part A: Polym. Chem. 2004, 42(22): 5827-5837.
    20. Gu, S. C.; Shiratori, T.; Konno, M., Synthesis of monodisperse, magnetic latex particles with polystyrene core[J]. Colloid Polym. Sci. 2003, 281(11): 1076-1081.
    21. Wang, P. C.; Chiu, W. Y.; Lee, C. F.; Young, T. H., Synthesis of iron oxide/poly(methyl methacrylate) composite latex particles: Nucleation mechanism and morphology[J].J.Polym.Sci.,Part A:Polym.Chem.2004,42(22):5695-5705.
    22.Xu,Z.Z.;Xia,A.;Wang,C.C.;Yang,W.L.;Fu,S.K.,Synthesis of raspberry-like magnetic polystyrene microspheres[J].Mater.Chem.Phys.2007,103(2-3):494-499.
    23.Liu,X.Q.;Guan,Y.P.;Ma,Z.Y.;Liu,H.Z.,Surface modification and characterization of magnetic polymer nanospheres prepared by miniemulsion polymerization[J].Langmuir 2004,20(23):10278-10282.
    24.Lu,S.H.;Forcada,J.,Preparation and characterization of magnetic polymeric composite particles by miniemulsion polymerization[J].J.Polym.Sci.,Part A:Polym.Chem.2006,44(13):4187-4203.
    25.Xu,H.;Cui,L.L.;Tong,N.H.;Gu,H.C.,Development of high magnetization Fe3O4/polystyrene/silica nanospheres via combined miniemulsion/emulsion polymerization[J].J.Am.Chem.Soc.2006,128(49):15582-15583.
    26.Cui,L.L.;Xu,H.;He,P.;Sumitomo,K.K.;Yamaguchi,Y.;Gu,H.C.,Developing a hybrid emulsion polymerization system to synthesize Fe3O4/polystyrene latexes with narrow size distribution and high magnetite content[J].J.Polym.Sci.,Part A:Polym.Chem.2007,45(22):5285-5295.
    27.Shen,L.F.;Laibinis,P.E.;Hatton,T.A.,Bilayer surfactant stabilized magnetic fluids:Synthesis and interactions at interfaces[J].Langmuir 1999,15(2):447-453.
    28.Ysubokawa,N.;Satoh,T.;Murota,M.;Sato,S.;Shimizu,H.,Grafting of hyperbranched poly(amidoamine) onto carbon black surfaces using dendrimer synthesis methodology[J].Polym.Adv.Technol.2001,12(10):596-602.
    29.Shen,L.F.;Stachowiak,A.;Hatton,T.A.;Laibinis,P.E.,Polymerization of olefin-terminated surfactant bilayers on magnetic fluid nanoparticles[J].Langmuir 2000,16(25):9907-9911.
    30.Montagne,F.;Mondain-Monval,O.;Pichot,C.;Elaissari,A.,Highly magnetic latexes from submicrometer oil in water ferrofluid emulsions[J].2006,44(8):2642-2656.
    31.Song,J.S.;Winnik,M.A.,Cross-linked,monodisperse,micron-sized polystyrene particles by two-stage dispersion polymerization[J].Macromolecules 2005,38(20): 8300-8307.
    32.Gao,F.;Pan,B.F.;Zheng,W.M.;Ao,L.M.;Gu,H.C.,Study of streptavidin coated onto PAMAM dendrimer modified magnetite nanoparticles[J].J.Magn.Magn.Mater.2005,293(1):48-54.
    33.Pan,B.;Gao,F.;Gu,H.,Dendrimer modified magnetite nanoparticles for protein immobilization[J].J.Colloid Interface Sci.2005,284(1):1-6.
    34.Tomalia,D.A.;Baker,H.;Dewald,J.;Hall,M.;Kallos,G.;Martin,S.;Roeck,J.;Ryder,J.;Smith,P.,A New Class of Polymers:Starburst-Dendritic Macromolecules[J].Polym.J.1985,17(1):117-132.
    35.Tomalia,D.A.;Baker,H.;Dewald,J.;Hall,M.;Kallos,G.;Martin,S.;Roeck,J.;Ryder,J.;Smith,P.,Dendritic macromolecules:synthesis of starburst dendrimers[J].Macromolecules 1986,19(9):2466-2468.
    36.Wang,D.J.;Imae,T.,Fluorescence emission from dendrimers and its pH dependence[J].J.Am.Chem.Soc.2004,126(41):13204-13205.
    1.Li,S.M.;Rashkov,I.;Espartero,J.L.;Manolova,N.;Vert,M.,Synthesis,characterization,and hydrolytic degradation of PLA/PEO/PLA triblock copolymers with long poly(L-lactic acid) blocks[J].Macromolecules 1996,29(1):57-62.
    2.Rashkov,I.;Manolova,N.;Li,S.M.;Espartero,J.L.;Vert,M.,Synthesis,characterization,and hydrolytic degradation of PLA/PEO/PLA triblock copolymers with short poly(L-lactic acid) chains[J].Macromolecules 1996,29(1):50- 56.
    3.Coudane,J.;UstarizPeyret,C.;Schwach,G;Vert,M.,More about the stereodependence of DD and LL pair linkages during the ring-opening polymerization ofracemic lactide[J].J.Polym.Sci.,Part A:Polym.Chem.1997,35(9):1651-1658.
    4.Uhrich,K.E.;Gupta,A.;Thomas,T.T,;Laurencin,C.T.;Langer,R.,Synthesis and charaterization of degradable poly(anhydride-co-imides)[J].Macromolecules 1995,28(7):2184-2193.
    5.Gopferich,A.;Schedl,L.;Langer,R.,The precipitation of monomers during the erosion of a class of polyanhydrides[J].Polymer 1996,37(17):3861-3869.
    6.Mathiowitz,E.;Jacob,J.S.;Jong,Y.S.;Carino,G.P.;Chickering,D.E.;Chaturvedi,P.,et al.,Biologically erodable microsphere as potential oral drug delivery system[J].Nature 1997,386(6623):410-414.
    7.Daniels,A.U.;Chang,M.K.O.;Andriano,K.P.;Heller,J.,Mechanical-Properties of Biodegradable Polymers And Composites Proposed For Internal-Fixation of Bone[J].Journal of Applied Biomaterials 1990,1(1):57-78.
    8.Barrera,D.A.;Zylstra,E.;Lansbury,P.T.;Langer,R.,Synthesis And Rgd Peptide Modification of A New Biodegradable Copolymer-Poly(Lacti Acid-Co-Lysine)[J].J.Am.Chem.Soc.1993,115(23):11010-11011.
    9.Edwards,D.A.;Hanes,J.;Caponetti,G.;Hrkach,J.;BenJebria,A.;Eskew,M.L.,et al.,Large porous particles for pulmonary drug delivery[J].Science 1997,276(5320):1868-1871.
    10.Amass,W.;Amass,A.;Tighe,B.,A review of biodegradable polymers:Uses,current developments in the synthesis and characterization of biodegradable polyesters,blends of biodegradable polymers and recent advances in biodegradation studies[J].Polym.Int.1998,47(2):89-144.
    11.Yokoyama,M.;Inoue,S.;Kataoka,K.;Yui,N.;Sakurai,Y.,Preparation of adriamycin-conjugated poly(etheylene glycol)-poly(aspartic acid) block copolymer-a new type of polymeric[J].Macromol.them,Rapid Commun 1987,8(9):431-435.
    12.Schwamborn,M.,Chemical synthesis of polyaspartates:a biodegradable alternative to currently used polycarboxylate homo-and copolymers[J].Polym.Degrad.Stab.1998,59(1-3):39-45.
    13.Koskan,K.;K.C.,L.Polyaspartic acid as a calcium carbonate and a calcium phosphate inhibitor[P].US5152902,Oct.6,1992.
    14.Neri,P.;Antoni,G.;Benvenut.F;Cocola,F.;Gazzei,G.,Sythesis of α,β-poly[(2-hydroxyethyl)-DL-aspartamide],a new plasma expander[J].J.Med.Chem.1973,16(8):893-897.
    15.Kakuchi,T.;Shibata,M.;Matsunami,S.;Nakato,T.;Tomida,M.,Synthesis and characterization of poly(succinimide-co-6-aminocaproic acid) by acid-catalyzed polycondensation of L-aspartic acid,and 6-aminocaproic acid[J].J.Polym.Sci.,Part A:Polym.Chem.1997,35(2):285-289.
    16.Antoni,G.;Arezzini,C.;Cocola,F.;Gazzei,G.;Neri,P.,Pharmacol and toxicological evaluation of polyhydroxyethylaspartamide(PHEA) as a plasma substitute[J].Farmaco-Edizione Pratica 1979,34(4):146-156.
    17.Giammona,G.;Carlisi,B.;Cavallaro,G.;Pitarresi,G.;Spampinato,S.,A new water-soluble synthetic-polymer,αβ-polyasparthydrazide,as potential plasma expander and drug carrier[J].J.Controlled Release 1994,29(1-2):63-72.
    18.Jeong,J.H.;Byun,Y.;Park,T.G.,Synthesis and characterization of poly(L-lysine)-g-poly(D,L-lactic-co-glycolic acid) biodegradable micelles[J].J.Biomater.Sci.,Polym.Ed.2003,14(1):1-11.
    19.Jeong,J.H.;Kang,H.S.;Yang,S.R.;Kim,J.D.,Polymer micelle-like aggregates of novel amphiphilic biodegradable poly(asparagine) grafted with poly(caprolactone)[J].Polymer 2003,44(3):583-591.
    20.Lee,H.J.;Yang,S.R.;An,E.J.;Kim,J.D.,Biodegradable polymersomes from poly(2-hydroxyethyl aspartamide) grafted with lactic acid oligomers in aqueous solution[J].Macromolecules 2006,39(15):4938-4940.
    21.Giammona,G.;Pitarresi,G.;Tomarchio,V.;Cavallaro,G.;Mineo,M.,Crosslinked alpha,beta-polyasparthydrazide hydrogels:Effect of crosslinking degree and loading method on cytarabine release rate[J].J.Controlled Release 1996,41(3):195-203.
    22.Spadaro,G.;Dispenza,C.;Giammona,G.;Pitarresi,G.;Cavallaro,G.,Cytarabine release from beta,alpha-poly(N-hydroxyethyl)-DL-aspartamide matrices cross-linked through gamma-radiation[J].Biomaterials 1996,17(10):953-958.
    23.Castelli,F.;Pitarresi,G.;Tomarchio,V.;Giammona,G.,Effect of pH on the transfer kinetics of an anti-inflammatory drug from polyaspartamide hydrogels to a lipid model membrane[J].J.Controlled Release 1997,45(1):103-111.
    24.Kang,H.S.;Shin,M.S.;Kim,J.D.;Yang,J.W.,Self-aggregates of poly(aspartic acid) grafted with long alkyl chains[J].Polym.Bull.2000,45(1):39-43.
    25.Nakato,T.;Tomida,M.;Suwa,M.;Morishima,Y.;Kusuno,A.;Kakuchi,T.,Preparation and characterization of dodecylamine-modified poly(aspartic acid) as a biodegradable water-soluble polymeric material[J].Polym.Bull.2000,44(4):385-391.
    26.Tomida,M.;Nakato,T.;Matsunami,S.;Kakuchi,T.,Convenient synthesis of high molecular weight poly(succinimide) by acid-catalysed polycondensation of L-aspartic acid[J].Polymer 1997,38(18):4733-4736.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700