用户名: 密码: 验证码:
太湖流域粳稻地方品种抗稻瘟病性的遗传与基因定位
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
水稻是全世界最重要的粮食作物,由子囊菌Magnaporthe grisea(Hebert)Barr[其无性世代为Pyricularia grisea(Cookc)Sacc]引起的稻瘟病是水稻生产上的主要病害之一。长期的生产实践证明,选育和利用抗病品种是控制和防治稻瘟病最为经济有效的措施。太湖流域稻区稻作历史悠久,蕴藏有丰富的变异类型,在与稻瘟病菌在长期的共同进化过程中,形成的抗性类型对病原菌有较宽的抗谱,抗病基因可能具有较好的持久抗性。研究太湖流域粳稻地方品种的抗稻瘟病性遗传和抗病基因定位对我国水稻尤其是粳稻抗稻瘟病育种有重要的现实意义。
     本研究用7个中国稻瘟病菌生理小种鉴别品种鉴定了江苏、浙江等6个省的26个稻瘟病菌菌株的小种属性,用12个日本稻瘟病单基因鉴别品种鉴定了7个日本稻瘟病菌鉴别菌系的抗、感反应,研究结果分别与各省农科院植保所和Kiyosawa(1983)的原鉴定结果进行比较,判断不同菌株(系)致病性的稳定性。进一步利用江苏、浙江等省的44个稻瘟病菌菌株和7个日本稻瘟病菌鉴别菌系,接种鉴定了黑壳子粳、薄稻、铁杆青、江南晚和缺儿糯等5个太湖流域粳稻地方品种的抗瘟性。结果表明:26个中国稻瘟病菌株经7个中国稻瘟病菌生理小种鉴别品种的鉴定,其小种属性与各省农科院植保所的原鉴定结果差异较大,变异频率高达53.8%,按反应型统计,变异率为14.8%;7个日本稻瘟病鉴别菌系在12个日本稻瘟病菌单基因鉴别品种上抗性反应与Kiyosawa(1983)的鉴定结果基本一致,按反应型统计的变异率为3.6%。5个太湖流域粳稻地方品种对51个中国或日本稻瘟病菌株(系)的抗性频率在88.6-97.7%之间,其中黑壳子粳和薄稻的抗性率在95%以上。
     将黑壳子粳、薄稻、铁杆青、江南晚及缺儿糯等5个太湖流域粳稻地方品种与感病品种苏御糯杂交,获得杂交F_1种子,自交获得F_2群体,部分F_2自交获得F_(2:3)家系,用中国稻瘟病菌生理小种ZG_1、ZE_3和日本稻瘟病菌鉴别菌系北1接种鉴定亲本、杂交F_1、F_2及部分F_(2:3)家系的抗性反应,根据杂交F_2代及F_(2:3)家系的抗、感分离,分析抗病品种对不同生理小种(菌系)的抗性遗传特性。结果表明:黑壳子粳、薄稻、铁杆青和缺儿糯对日本稻瘟病鉴别菌系北1的抗性均由一对显性基因控制,江南晚对日本稻瘟病鉴别菌系北1的抗性可能是由两对抑制基因互作控制的;黑壳子粳和铁杆青对中国稻瘟病菌生理小种ZG_1的抗性可能是由一对显性基因控制的,薄稻和江南晚对ZG_1小种的抗性可能是由两对抑制基因互作控制;黑壳子粳、铁杆青和缺儿糯对中国稻瘟病菌生理小种ZE_3的抗性均由一对显性基因控制,薄稻和江南晚对ZE_3小种的抗性可能分别由两对主基因和两对抑制基因互作控制。进一步将薄稻与12个日本稻瘟病鉴别品种杂交获得杂交F_1、F_2世代,用日本稻瘟病鉴别菌系北1接种鉴定,进行抗病基因的等位性测定。结果表明:薄稻对日本稻瘟病鉴别菌系北1的抗性基因与12个日本单基因鉴别品种中所含有的已知基因是不等位的,是否为新基因还需进一步的研究。
     以黑壳子粳与感病品种苏御糯杂交,获得F_1、F_2和F_(2:3)家系,从F_2分离世代开始,按单粒传法获得F_6重组自交系。用日本稻瘟病鉴别菌系北1和中国生理小种ZG_1接种鉴定亲本、杂交F_1、F_2、F_(2:3)家系及F_6重组自交系家系的抗性,根据F_(2:3)家系的抗、感反应推测杂交F_2代的基因型,并结合SSR分子标记对黑壳子粳中的抗病基因进行初定位。将黑壳子粳中对菌系北1的抗性基因定位在第11染色体长臂末端,位于SSR标记RM7654和RM144之间,该基因与这2个标记的遗传距离分别为7.2cM和10.5cM,暂定名为Pi-hk1(t);将黑壳子粳中对生理小种ZG_1的抗性基因定位在第12染色体的着丝粒附近,与SSR标记RM277、RM511和RM1261连锁,遗传距离分别为10.5cM、11.7cM和20.8cM,暂定名为Pi-hk2(t)。
     根据初定位的结果,将黑壳子粳的Pi-hk1(t)基因与定位于第11染色体末端的Pi-1、Pi-k、Pi-44(t)和Pi-lm2等已知基因的品种杂交获得F_1、F_2种子。用日本稻瘟病鉴别菌系北1接种鉴定亲本、杂交F_1、F_2代的抗性,进行等位性测定。结果表明,黑壳子粳对日本稻瘟病鉴别菌系北1的抗性基因Pi-hk1(t)与4个已知基因是不等位的。根据F_6重组自交系对菌系北1的抗、感反应,结合SSR分子标记,将黑壳子粳抗病基因Pi-hk1(t)定位在SSR标记RM7654和RM27381之间,遗传距离分别为0.9cM和1.6cM。利用F_6重组自交系将黑壳子粳中抗ZG_1小种的基因Pi-hk2(t)定位在SSR标记RM27940和RM28166之间,遗传距离分别为14.6cM和8.4cM。
Rice(Oryza sativa L.) is one of the important monocotyledonous crops in the world, and provides the staple food for more than half of the world's population.Rice blast, caused by Magnaporthe grisea(Hebert) Barr,is one of the most widespread and destructive diseases of rice.Breeding and utilizing resistant cultivars are the most effective and economical way of controlling blast disease.And the Japonica landraces in Taihu lake area is one of the special genetic resources treasury in China,and this region have a long history of rice cultivation,and possess many diverser type varieties. Rice landraces have broad spectrum and strong resistance to rice blast strains because of rice variety have been co-evolved with rice blast so a long time.The study work of genetic and mapping resistance genes of Japonica landrace varieties in Taihu lake area have really meaning in resistance breeding for Yangtze River area in China.
     The race classification of twenty-six blast isolates coming from various provinces regions in China were re-identified according to their reaction in seven Chinese blast differentials,and the seven Japanese differential rice blast strains also re-identified according to their reaction in twelve Japanese rice differentials.The results were compared with their previous classifications from Institute of Plant Protection of Jiangsu,Zhejiang,Guangdong,Fujian,Hunan or Sichuan Academy of Agricultural Sciences in China and Kiyosawa in Japanese,respectively.The five Japonica landrace varieties in Taihu lake area,including Hekezijing,Bodao,Tieganqing,Jiangnanwan and Queemuo,were inoculated with Chinese forty-four blast isolates and seven Japanese differential strains in order to illustrate their resistance to various blast strains.It was showed that the twenty-six Chinese blast isolates varied with a degree of 14.8%,much higher than Japaniese strains with only 3.6%.It suggested that Japaniese strains were more stable in their virulence due to continous selection and identification in differentials with single resistance gene,and suitable for research on the resistance resource selection and genetics to blast.Meanwhile it was found that there was a high frequency of resistance to rice blast isolates in five Japonica landraces in Taihu lake area, from 88.6%to 97.7%.Among them Hekezijing and Bodao were very good resources of resistance to blast,with 97.7%and 95.1%of resistance frequence.
     It was obtained that the seeds of F_1,F_2 and some F_(2:3) lines from the crosses of five Japonica landraces in Taihu lake area with resistance to blast and susceptible variety Suyunuo.The seedlings were further inoculated with Chinese blast races ZG_1 and ZE_3 and Japanese blast differential strain Hokul,to analysis the resistance genetic pattern of various landraces in Taihu lake area to blast.The results showed that the resistance to Hokul in Hekezijing,Bodao,Tieganqing and Queernuo may be controlled by one dominant gene,but Jiangnanwan may be by two interaction-inhibiting genes;to ZG_1 in Hekezijing and Tieganqing may be controlled by one dominant gene,and in Bodao and Jiangnanwan may be by two interaction-inhibiting genes;to ZE_3 in Hekezijing, Tieganqing and Queernuo may be controlled by one dominant gene,Bodao may be by two independently dominant gene,but Jiangnanwan may be controlled by interaction-inhibiting gene.Furthermore Bodao was crossed with twelve Japanese differential varieties carrying various resistance genes to blast to estimate whether the Bodao carried a new resistance unknown gene.The F_1,F_2 seeds as well parents were inoculated with Japanese blast differential strain Hoku1.The results showed that the resistance gene of Bodao to Hoku 1 was not allelic to twelve known blast resistance genes in Japanese differential varieties and further to study the resistance gene was or not a new gene.
     The seeds of F_1,F_2 and some F_(2:3) lines were obtained by crossing Heikezijing with Suyunuo,and the some F_6 recombined inbreed lines(RILs) obtained by means of SSD(single seed descendant) from generation of F_2.The two parents,F_1,F_2 and F_(2:3) families and F_6 recombined inbreed lines were inoculated with Japanese blast differential strain Hokul and Chinese blast race ZG_1.The F_2 individuals genotype was identified according to the reaction of F_(2:3) families to rice blast strains,and the resistance gene of Heikezijing was preliminary mapped by the reactions of F_2 individual genotype to rice blast strains and SSR molecule markers.The results showed that the resistance gene of Heikezijing to Japanese differential blast strain Hokul was mapped on the end of chromosome 11,and linked to SSR molecular marker RM7654 and RM144,and between the two markers with a genetic distance of 7.2cM and 10.5cM respectively,this gene was tentatively designated as Pi-hk1(t).The resistance gene of Heikezijing to Chinese rice blast race ZG_1 was mapped on the chromosome 12 near the centromere,and linked to SSR molecular marker RM277,RM511 and RM1261,and with a genetic distance of 10.5cM,11.7cM and 20.8cM,respectively,this gene was tentatively designated as Pi-hk2(t).
     According to the preliminary mapping,Hekezijing was crossed with four varieties with known resistance genes on the end of chromosome 11 and the F_1,F_2 seeds was inoculated with Japanese differential blast strain Hokul and the allelism tests conducted with different genes.The results showed that the resistance gene of Hekezijing to Hokul was not allelic to known blast resistance gene Pi-1,Pi-k,Pi-44(t) and Pi-lm2. The resistance gene Pi-hk1(t) of Heikezijing was fine mapped on the end of chromosome 11 according to the reactions of F_6 recombinant inbreed lines to rice blast isolates and SSR molecule markersand was linked to SSR molecular markers RM7654 and RM27381 with a genetic distance of 0.9cM and 1.6cM,respectively.According to the reactions of F_6 recombinant inbreed lines to Chinese blast isolates ZG_1 and SSR molecular markers,the resistance gene Pi-hk2(t) in Heikezijing to Chinese blast isolate ZG_1 was further mapped and linked to SSR molecular markers RM27940 and RM28166 with a genetic distance of 14.6cM and 8.4cM,respectively.
引文
1.白娟,周益军,程兆榜,等.2000和2001年江苏省稻瘟病菌的群体结构.南京农业大学学报,2004,27(2):43-46.
    2.柴荣耀,金敏忠.水稻稻瘟病菌小种间相对生存力研究.植物保护学报,1997,24(3):215-220.
    3.陈葆棠,彭仲明,徐运启.稻瘟病抗源Tetep的抗性遗传及其应用.植物保护学报,1993,20(3):233-236.
    4.陈罡,钟鸣,徐正进,等.SSR标记及其在水稻抗稻瘟病研究中的应用.西北农林科技大学学报(自然科学版),2005,33(增刊):230-232.
    5.陈友订,黄秋妹,张旭,编著.水稻株型育种.上海:上海科学技术出版社,2005,pp1-33.
    6.陈璋,陈启锋,侯晴牧.抗稻瘟病体细胞突变体的抗性遗传分析.遗传学报,1993,20(4):334-339.
    7.陈志伟,官华忠,吴为人,等.稻瘟病抗性基因Pi-1连锁SSR标记的筛选和应用.福建农林大学学报(自然科学版),2005,34(1):74-77.
    8.陈志伟,郑燕,吴为人,等.抗稻瘟病基因Pi-2(t)紧密连锁的SSR标记的筛选和应用.分子植物育种,2004,2(3):321-325.
    9.程兆榜,周益军,陆凡,等.1999年江苏省稻瘟病菌群体遗传结构分析.江苏农业学报,2001,17(4):223-226.
    10.董继新,董海涛,李德葆.水稻抗瘟性研究进展.农业生物技术学报,2000,8(1):99-102.
    11.段永嘉,李华.稻瘟病抗性基因分析.中国农业科学,1990,23(3):51-56.
    12.樊叶杨,吴建利,庄云杰,等.应用侯选基因定位抗稻瘟病QTL.中国水稻科学,2001,15(1):253-256.
    13.范静华,周惠萍,陈建斌,等.稻瘟病诱导抗性研究初报.云南农业大学学报,2002,17(4):325-327.
    14.方中达.植病研究方法.北京:中国农业出版社,1998,pp368-373.
    15.傅彬英,杨代常,朱国英,等.水稻抗稻瘟病基因Pi-2(t)物理图谱的构建.遗传学报,2000,27(9):787-791.
    16.葛秀春,耸风鸣,郑重,等.BTH诱发水稻对稻瘟病的系统获得抗性.浙江农业学报,1999,11(6):311-314.
    17.何月秋,唐文华,H Leung,等.CO39近等基因系抗稻瘟病性分析.作物学报,2001b,27(6):838-841.
    18.何月秋,唐文华.水稻稻瘟病菌研究进展:(一)、水稻稻瘟病菌多样性及其变异机制.云南农业大学学报,2001a,16(1):60-64.
    19.胡珍娣,陈瑾,王玲,等.稻瘟病菌群体的分子遗传学研究Ⅱ.菌物系统,2002,21(2):203-209.
    20.黄富,程开禄,罗庆明,等.稻瘟病菌致病性变异研究.西南农业学报,1999,12(4):69-73.
    21.黄志鹏,张学博.福建不同稻作类型稻瘟病菌生理小种研究.福建农业大学学报,1995,24(1):39-44.
    22.金敏忠,柴荣耀.我国稻瘟病菌生理小种研究的进展.植物保护,1990,16(3):37-41.
    23.雷财林,凌忠专,王久林,等.北方粳稻区稻瘟病菌生理小种与毒性及其变化动态的研究.作物学报,2000,26(6):769-776.
    24.雷财林,王久林,蒋琬如,等.我国北方部分稻瘟病菌群体遗传结构研究.植物病理学报,2002,32:219-226.
    25.雷财林,王久林,凌忠专,等.云南粳稻品种毫变-1和扎缅尼-1抗稻瘟病基因分析.中国农业科学,1995,28(4):66-71.
    26.雷财林,王久林,毛世宏,等.籼稻品种窄叶青8号抗稻瘟病基因分析.遗传学报,1997,24(1):36-41.
    27.李成云,李家瑞,沈锐,等.几种寄主植物上分离的梨胞菌研究.西南农业学报,1993,6(2):83-86.
    28.李成云,罗朝喜,李进斌,等.稻瘟病菌无毒基因的分子标记.中国农业科学,2000,33(3):49-53.
    29.李露,李成云,杨明,等.稻瘟病菌致病机制及无毒基因的研究进展.云南农业科技,2001,4:41-44.
    30.李落叶,井金学.稻瘟病抗性基因的分子定位及克隆.中国农学通报,2006,1:49-53.
    31.李培富,翟虎渠,张红生,等.两个太湖流域粳稻地方品种抗稻瘟病的遗传研究.中国水稻科学,1999,13(1):11-14.
    32.李仕贵,马玉清,王玉平,等.籼稻品种地谷抗稻瘟病基因的遗传分析和定位.自然科学进展,2000,10(1):44-48.
    33.李仕贵,王玉平,黎汉云,等。利用微卫星标记鉴定水稻的稻瘟病抗性。生物工程学报,2000,16(3):324-327.
    34.李晓方,毛兴学,邢丹英,等.水稻稻瘟病抗性基因研究综述.分子植物育种,2003,1(5):725-730.
    35.梁斌,余腾琼,徐福荣,等.云南省3个地方稻种的抗稻瘟病性遗传分析.中国农业科学,2002,35(7):784-788.
    36.林代福,余显权,詹相才,等.稻瘟病菌生理小种的研究与应用.山地农业生物学报,1998,17(4):200-204.
    37.凌忠专,T.Mew,王久林,等.中国水稻近等基因系的育成及其稻瘟病菌生理小种鉴别能力.中国农业科学,2000,33(4):1-8.
    38.凌忠专,潘庆华,王久林,等.云南粳型品种勐旺谷-1的抗稻瘟基因分析.见朱立宏主编:主要农作物抗病性遗传研究进展.南京:江苏科学技术出版社,1990b,105-109.
    39.凌忠专,王久林,李梅芳,等.我国北方稻区稻瘟病菌生理小种研究.中国农业科学,1989,22(3):7-13.
    40.凌忠专.水稻抗稻瘟病育种.福州:福建科学技术出版社,1990a.pp2-56.
    41.凌忠专.中国部分水稻品种的抗稻瘟性分类.中国农业科学,1984,2:19-28.
    42.刘二明,彭绍裘.水稻持久抗瘟性的研究现状与发展战略.湖南农业科学,1996,(增刊):6-9.
    43.刘二明,肖一龙,易有金,等.水稻品种抗瘟性表型与抗病基因同源序列相似性关系.中国水稻科学,2005,19(3):209-216.
    44.刘俊峰,张国珍,马秋娟,等.一个与稻瘟病无毒基因Avr-Pik~m连锁的SCAR标记的分离.植物病理学报,2003,33(2):151-155.
    45.刘士平,薛艳红.利用DNA微卫星标记定位水稻抗稻瘟病基因.三峡大学学报(自然科学版),2003,25(6):574-576.
    46.刘永峰,陈志谊,胡明,等.江苏省稻瘟病菌群体分布及优势小种的毒力研究.中国水稻科学,2004,18(4):351-354.
    47.鲁国东,王宗华,谢联辉.稻瘟病菌分子遗传学研究进展.福建农业大学学报,1997,26(1):56-63.
    48.陆凡,王法明,郑小波,等.江苏省稻瘟病菌生理小种的演变及与水稻品种的相互关系.南京农业大学学报,1999,22(41:31-34.
    49.陆凡,郑小波,陈志谊,等.江苏省稻瘟病菌小种的结构组成与变化趋势.南京农业大学学报,2002,25(1):39-42.
    50.罗宽,黄声仪,王国平,等.稻瘟菌致病力变异初探.植物病理学报,1984,14(2):91-94.
    51.罗宽,黄声仪,王国平,等.珍龙13和窄叶青8号抗稻瘟病遗传分析.植物病理学报,1985,15(2):115-119.
    52.毛建辉,何明,何忠全.抗感品种混植对水稻主要病害的效应.植物病理学报,1991,21(2):155-160.
    53.闵绍楷,申宗坦,熊振明,主编.水稻育种学.北京:中国农业出版社,1996,pp1-20.
    54.潘庆华,胡铁柱,王玲,等.稻瘟病菌群体的分子遗传学研究——广东地区特异性宗谱菌株的分子指纹和致病型分析.中国农业科学,2004,37(1):57-64.
    55.潘庆华,凌忠专,王久林,等.两个云南地方粳稻品种抗稻瘟病基因分析.中国水稻科学,1991,5(2):61-66.
    56.潘庆华,王玲,陈瑾,等.稻瘟病菌群体的分子遗传学研究Ⅲ.菌物系统,2003,22(1):62-68.
    57.彭国亮,罗庆明,冯代贵,等.四川稻瘟病菌致病性变异与病害流行的关系.西南农业大学学报,1996,18(6):561-564.
    58.彭洪江,张杰,饶宗文,等.不同生态区的稻瘟病调查.西南农业学报,1995,8(1):59-64.
    59.彭绍裘,黄费元,孙国昌,等.水稻品种在不同纬度下持久抗瘟性的研究.中国农业科学,1996,29(2):52-58.
    60.秦敏,何忠全,何明,等.RAPD鉴别稻瘟病生理小种的研究.西南农业大学学报,1998,20(5):493-496.
    61.清泽茂久,凌忠专.用日本菌系鉴定中国鉴别品种的稻瘟病抗性基因.中国科学,B辑,1984,(1):44-52.
    62.全国稻瘟病生理小种联合试验组.我国稻瘟病菌生理小种研究。植物病理学报,1980,10(2):71-81.
    63.饶志明,吴建利,庄杰云,等。水稻对叶瘟和穗瘟部分抗性的遗传分析.遗传学报,2005,32(6):555-565.
    64.山崎羲人,高坂卓尔,编著;凌忠专,孙昌其译.稻瘟病与抗病育种.北京:农业出版社.1990,pp34-453.
    65.邵国军,李玉福,邱福林,等.辽宁省水稻育种研究与进展.辽宁农业科学,1995,6:28-33.
    66.申宗坦,章旺根,何祖华,等.几个籼稻品种对稻瘟病抗性的遗传分析.中国水稻科学,1986,1(1):1-7.
    67.沈锦骅,倪丕冲,王久林.水稻品种抗瘟性遗传的研究.中国农业科学,1981,3:10-14.
    68.沈瑛,袁筱萍,王艳丽.分子探针在稻瘟病流行病学中的应用研究.西南农业大学学报,1998,20:401-408.
    69.沈瑛,朱培良,袁筱萍,等.我国稻瘟菌的遗传多样性及其地理分布.中国农业科学,1996,29(4):39-46.
    70.孙国昌.水稻与稻瘟病菌(Magnaporthe grisea)群体互作及病菌群体遗传结构研究.浙江大学博士学位论文,2002.
    71.孙国昌.稻瘟病产孢条件的研究.浙江农业大学学报,1990,16(1):51-54.
    72.孙漱沅,金敏忠,张志明,等.水稻稻瘟病及其防治.上海:上海科技出版社,1986,pp65-116.
    73.谭向红,陈学伟,李仕贵,等.籼稻品种地谷抗稻瘟病基因的遗传.遗传学报,2000,27(8):701-705.
    74.谭炎宁,易自力,蒋建雄,等.转基因改良水稻抗稻瘟病的策略及其进展.生物技术通讯,2005,16(3):347-349.
    75.汤圣祥,闵绍楷,佐藤洋一朗.中国粳稻起源的探讨.农业考古,1994,(1):59-67.
    76.王宝华,鲁国东,林伟明,等.稻瘟病菌无毒基因Avr-Pi1、Avr-pi2和Avr-Pi4a的遗传分析及其分子标记.遗传学报,2002,29(9):820-826.
    77.王宝华,郑武,鲁国东,等.稻瘟菌产孢培养基的筛选.福建农业科技,2000,(2):1-2.
    78.王建飞.两个粳稻地方品种抗瘟性遗传、抗病基因定位和稻瘟菌DNA指纹类型与致病型的关系研究.南京农业大学博士学位论文,2004.
    79.王建飞,何新建,张红生,等.太湖流域粳稻地方品种黑壳子粳对稻瘟病抗性的遗传分析.遗传学报,2002,29(9):803-807.
    80.王久林,凌忠专,雷财林,等.籼稻品种浙辐802抗稻瘟病基因的鉴定与分离.中国农业科学,2004,37(5):670-674.
    81.王坤,文玉能,邱治龙.氮磷钾硅的合理配施对稻瘟病的影响.耕作与栽培,2003,(4):40-41.
    82.王世全,张德春,李平,等.水稻中一个NBS-LRR抗病同源基因家族的克隆和分析.遗传学报,2005,32(7):704-711.
    83.王艳丽.稻瘟病菌无性重组、遗传图谱构建和无毒基因定位.南京农业大学博士学位论文,2004.
    84.王忠华,贾育林,Robert G F.粳稻品种Katy和Kaybonnet对稻瘟病抗性的遗传分析.江苏农业科学,2005,1:45-49.
    85.王忠华,贾育林,吴殿星,等.水稻抗稻瘟病基因Pi-ta的分子标记辅助选择.作物学报,2004,30(12):1259-1265.
    86.王忠华.水稻抗稻瘟病基因的标记辅助选择与定位克隆.生命科学,2005,17(2):183-187.
    87.吴建利,柴荣耀,樊叶杨,等.抗稻瘟病水稻材料谷梅2号中主效抗稻瘟病基因的成簇分布.中国水稻科学,2004,18(6):567-569.
    88.吴建利,庄云杰,柴荣耀,等.水稻抗穗瘟基因的分子定位.植物病理学报,2000,30(2):111-115.
    89.吴建利,庄云杰,李德葆,等.水稻对稻瘟病抗性的分子生物学研究进展.中国水稻科学,1999,13(2):123-128.
    90.吴金红,蒋江松,陈惠兰,等.水稻稻瘟病抗性基因Pi-2(t)的精细定位.作物学报,2002,28(4):505-509.
    91.伍尚忠,朱小源,刘斌,等.籼稻品种三黄占2号的稻瘟病持久抗性评价与遗传分析.中国农业科学,2004,3f(4):528-534.
    92.伍尚忠,朱小源,杨祁云,等.应用分子标记技术鉴证稻瘟病菌谱系与寄主遗传背景的亲缘关系.1999,32(6):56-62.
    93.奚文英,王法明,吴玲智,等.太湖流域粳稻资源抗稻瘟病鉴定.江苏农业学报,1986,(3):24-26.
    94.熊振明,蔡洪法.中国水稻.北京:中国农业科技出版社,1992,pp111-117.
    95.徐吉臣,王久林,凌忠专,等.利用QTL定位分析水稻的稻瘟病抗性基因.科学通报,2004,49(3):245-251.
    96.许文耀.六个籼稻抗源对稻瘟病菌三个生理小种的抗性遗传.福建农业科技,1986,1:16-21.
    97.严大富,花家禄,陆凡,等.吴江稻区稻瘟病菌小种更替规律及抗瘟品种的利用.江苏农业学报,1999,15(3):141-146.
    98.杨祁云,伍尚忠,朱小源,等.广东稻瘟病菌的遗传宗谱与致病性的关系.植物保护学报,2000,27(4):289-294.
    99.杨小英,肖崇刚,杨静,等.重庆稻瘟病菌遗传谱系与生理小种的关系研究.西南农业大学学报,2002,24(6):535-538.
    100.曾千春,叶华智,朱祯,等.稻瘟病分子生物学研究进展.生物技术通报,2000,3:1-7.
    101.曾士迈,张树榛,著.植物抗病育种的流行学研究.北京:科学出版社,1998,pp20-70.
    102.张海英,刘勇,刘冬成,等.差异显示法分离水稻抗稻瘟病相关基因.遗传学报,2005,32(7):719-725.
    103.张建福,凌忠专,王国英,等.利用SSR标记定位粳稻云引抗稻瘟病基因.分子植物育种,2006,4(3):359-364.
    104.张建福,王国英,谢华安,等。粳稻云引抗稻瘟病基因的遗传分析及其定位.农业生物技术学报,2003,11(3):241-244.
    105.张祥喜,罗林广.植物抗病基因研究进展.分子植物育种,2003,1(4):531-537.
    106.张重权,何霞红,王云月,等.Genetic structure of Magnaporthe grisea in the fields of different rice varieties in Yunnan Japonica rice planted area.中国水稻科学,2004,18(4):346-350.
    107.赵桢梅,赵美琦,马占鸿,等.氮肥对水稻品种-稻瘟菌小种相对寄生适合度的影响.植物病理学报,2001,3:193-198.
    108.郑凤萍,杨勤忠,赵志坚,等.稻瘟病菌致病性变异.云南农业大学学报,1998,13(1):20-24.
    109.郑康乐,钱惠荣,庄杰云,等.应用DNA标记定位水稻抗稻瘟病基因.植物病理学报,1995,25(4):307-313.
    110.郑武,阮志平,鲁国东,等.1995-2000年福建省稻瘟病菌生理小种组成与分布动态.福建农林大学学报(自然科学版),2003,32(1):46-49.
    111.周江鸿,王久林,蒋琬如,等.我国稻瘟病菌毒力基因的组成及地理分布.作物学报,2003,29(5):646-651
    112.朱立煌,徐吉臣,陈英,等.用分子标记定位一个未知的抗稻瘟病基因.中国科学(B辑),1994,24(10):1048-1052.
    113.朱献丰.水稻稻瘟病菌研究进展.江西农业学报,2002,14(3):51-55.
    114.朱小源,杨祁云,霍超斌,等.水稻品种对稻瘟病的质量抗性和数量抗性的初步研究.中国水稻科学,1996,10(3):181-184.
    115.Adachi K and Hamer JE.Divergent cAMP signaling pathways regulate growth and pathogenesis in the rice blast fungus Magnaporthe grisea.Plant Cell,1998,10:1361-1373.
    116.Agrawal G.Jwa N S,Han K S,et al.Isolation of a novel rice PR4 type gene whose mRNA expression is modulated by blast pathogen attack and signaling components.Plant Physiology and Biochemistry.2003,41(1):81-90.
    117.Ahn Sang-Nag,Kim Yeon-Kyu,Hong Ha-Cheol,et al.Molecular mapping of a new gene for resistance to rice blast(Pyricularia grisea Sacc.).Euphytica 2000,116:17-22.
    118.Araujo L G.Prabhu A S,Arraes P A.RAPD Marker Linked to a Gene Conferring Resistance to Race IB-9 of Pyricularia grisea in a Somaclone of the Rice Cultivar Araguaia.Plant Cell,Tissue and Organ Culture,2004,78(2):151-158.
    119.Atkins J G and Johnston T H.An international set of rice varieties for differentiating races of Pyricularia oryzae.Phytopathology,1967,57:297-301.
    120.Atkins J G and Johnston T H.Inheritance in rice of reaction to races 1 and 6 of Pyricularia oryzae.Phytopathology,1965,55:993-995.
    121.Atkinson H A,Daniels A,Read N D.Live-cell imaging of endocytosis during conidial germination in the rice blast fungus,Magnaporthe grisea.Fungal Genetics and Biology,2002,37,(3):233-244.
    122.Barman S R,Gowda M,Venu RC,et al.Identification of a major blast resistance gene in the rice cultivar 'Tetep'.Plant Breeding,2004,123(3):300-302.
    123.Beckerman J L and Daniel J E.MPG1,a gene encoding a hydrophobin of Magnaporthe grisea,is involved in surface recognition.Molecular Plant-Microbe Interactions,1996,9:450-456.
    124. Bernardo M A, Naqvi N, Leung H, et al. A rapid method for DNA fingerprinting of the rice blast fungus Pyricularia grisea. International Rice Research Notes, 1993,18(1):48-50.
    125. Berruyer R, Adreit H, Milazzo J, et al. Identification and fine mapping of Pi33, the rice resistance gene corresponding to the Magnaporthe grisea avirulence gene ACE1. Theor Appl Genet, 2003,107:1139-1147.
    126. Bhatt J C, Singh R A, Mani S C, et al. Inheritance of blast resistance in rice. Indian. J. Genet, 1994, 54(2):142-148.
    127. Bohnert H U, Fudal I, Dioh W, et al. A putative polyketide synthase/peptide synthetase from Magnaporthe grisea signals pathogen attack to resistance rice. Plant Cell, 2004,16:2499-2513.
    128. Bonman J M, Vergel de, Dios T I, et al. Physiologic specialization of Pyricularia oryzae in the Philippines. Plant Disease, 1986, 70:767-769.
    129. Bonman J M. Durable resistance to rice blast disease-environmantal influences. Euphytica, 1992,63:115-123.
    130. Bormans C A C, Marchetti M A, Johnson C W, et al. Molecular markers linked to the blast resistance gene Pi-z in rice for use in marker-assisted selection. Theor Appl Genet. 2003, 107:1014-1020.
    131. Braun E J, Howard R J. Adhesion of fungal spore and germlings to host surfaces. Protoplasme. 1994,181:202-212.
    132. Bryan G T, Wu K S, Farrall L, et al. A single amino acid difference distinguishes resistant and susceptible alleles of the rice blast resistance gene Pi-ta. Plant Cell, 2000, (12):2033-2045.
    133. Causse M A, Fulton T M, Cho Y G, et al. Saturated molecular map of the rice genome based on an interspecific backcross population. Genetics, 1994,138:1251-1274.
    134. Chen D H, Vina dela M, Inukai T, et al. Molecular mapping of the blast resistance gene, Pi-44(t), in a line derived from a durably resistant rice cultivar. Theor Appl Genet, 1999, 98:1046-1053.
    135. Chen D H, Zeigler R S, Ahn S W, et al. Phenotypic characterization of the rice blast resistance gene Pi-2(t). Plant disease. 1996, 80:52-56.
    136. Chen D H, Zeigler R S, Leung H, et al. Population structure of Pyricularia grisea at two screening sites in the Philippines. Phytopathology. 1995, 85:1011-1020.
    137. Chen H L, Chen B T, Zhang D P, et al. Pathotypes of Pyricularia grisea in rice fields of central and southern china. Plant disease, 2001, 85:843-850.
    138. Chen X W, Li S G, Xu J C, et al. Identification of Two Blast Resistance Genes in a Rice Variety, Digu. Journal of Phytopathology, 2004, 152 (2):77-85.
    139. Chen Xuewei, Junjun Shang, Dexi Chen, et al, A B-lectin receptor kinase gene conferring rice blast resistance. The Plant Journal, 2006, 26:65-71
    140. Choi W, and Dean R A. The adenylate cyclase gene MAC1 of Magnaporthe grisea controls appressorium formation and other aspects of growth and development. Plant Cell, 1997, 9:1973-1983.
    141. Dean R A, Lee Y H, Mitchell T K. Signalling systems and gene expression regulation of appressorium formation in Magnaporthe grisea. In: Zeigler R S, Leong S R, Teng P S. Rice blast disease. Wallingword, UK: CAB international, 1995, pp23-24.
    
    142. Deslandes L, Olivier J, Theulieres F. et al. Resistance to Rastonia solanacearum in Arabidopsis thaliana is conferred by the recessive RRS1-R gene, a member of novel family of resistance genes. PNAS, 2002,4:2404-2409.
    143. DeZwaan T M, Carroll A M, Valent B, et al. Magnaporthe grisea Pth11 is a novel plasma membrane protein that mediates appressorium differentiation in response to inductive substrate cues. Plant Cell, 1999,11:2013-2030.
    144. Dioh W, Tharreau D, Notteghem J L, et al. Mapping of avirulence genes in the rice blast fungus, Magnaporthe grisea with RFLP and RAPD markers. Mol Plant-Microbe Interact, 2000, 13:217-227.
    145. Donna P, Ali M S, Furutani T, et al. Identification and isolation of blast resistance genes in three indica-type rice varieties. Breeding science, 1996, 46:107-115.
    146. Farman M L and Leong S A. Chromsome walking to the AVR1-CO39 avirulence gene of Magnaporthe grisea: discrepancy between the physical and genetic maps. Genetics, 1998, 150:1049-1058.
    147. Flor H H. Current status of the gene-for-gene concept. Annu Rev Phytopathol. 1971, 9: 275-296.
    148. Fujimoto D, Shi Y, Christian D. et al. Tagging quantitative loci controlling pathogenicity in Magnaporthe grisea by insertional mutagenesis. Physiological and Molecular Plant Pathology, 2002, 61(2): 77-88.
    149. Fukuoka S, Okuno K, Kawase M,et al. Genes controlling field resistance to blast in Japanese upland rice detected using RFLP markers. IRRN, 1996, 21(2-3): 50-51.
    150. Fukuoka S, Okuno K. QTL analysis and mapping of pi-21, a recessive gene for field resistance to rice blast in Japanese upland rice. TheorAppl Genet. 2001,103: 185-190.
    151. Fukuoka S, Okuno K. QTL analysis for field resistance to rice blast using RFLP markers. Rice Genetics Newsletter, 1997,14: 98-99.
    152.George M,Nelson R J,Zeigler R S,et al.Rapid population analysis of Magnaporthe grisea by using rep-PCR and endogenous repetitive DNA sequences.Phytopathology,1998,88:223-229.
    153.Gu Keyu,Yang Bing,Tian Dongsheng,et al.R gene expression induced by a type-Ⅲ effector triggers disease resistance in rice.Nature,2005,435:1122-1125.
    154.Hamer J E and Talbott N J.Infection-related development in the rice blast fungus Magnaporthe grisea.Current Opinion in Microbiology,1998,1:693-697.
    155.Hamer J E,Givan S,Chumley F G,et al.Host species-specfic conservation of a family of repeated DNA sequences in the genome of a fungal plant pathogen.PNAS,1989,86:9981-9985.
    156.Hamer J E,Givan S.Genetic mapping with dispersed repeated sequences in the rice blast fungus:mapping the SMO locus.Mol Gen Genet,1990,223:487-495.
    157.Hamer J E,Howard R J,Chumley F G,et al.A mechanism for surface attachment in spores of a plant pathogenic fungus.Science,1989,239:288-290.
    158.Hayashi K,Hashimoto N,Daigen M,et al.Development of PCR-based SNP marker for rice blast resistance genes at the Piz locus.Theor Appl Genet,2004,108:1212-1220.
    159.Heise A,Lippok B,Kirsch C,et al.Two immediate-early pathogen-responsive members of the AtCNPG gene family in Arabidopsis thaliana and the W-box-containing elicitor-response element of AtCMPG1.PNAS.2002,99:9049-9054.
    160.Hiffalmani S,Foolad M R,Mew T,et al.Development of a PCR-based marker to identify rice blast resistance genes,Pi-2(t),in a segregating population.Theor Appl Genet,1995,91:9-14.
    161.Howard R J and Valent B.Breaking and entering:Host penetration by the fungal rice blast pathogen Magnaporthe grisea.Annu Rev Microbiology,1996,50:491-512.
    162.Imbe T,Oba S,Yanoria M J T,et al.A new gene for blast resistance in rice cultivar IR24.RGN,1997,14:60-62.
    163.Inukai T,Zeigler R S,Sarkarung S,et al.Genetic analysis of development of pre-isogenic lines for rice blast resistance by marker-aided selection from a recombination inbred population.Theor Appl Genet,1996,93:560-567.
    164.James A,Sweigard,Anne M,et al.Identification,cloning,and characterization of PWL2,a gene for host species specificity in the rice blast fungus.Plant Cell.1995,7:1221-1233.
    165.Jeon J S,Chen D,Yi G H,et al.Genetic and physical mapping of Pi-5(t),a locus associated with broad-spectrum resistance to rice blast.Mol Gen Genomics,2003,269:280-289.
    166.Jia Y L,Bryan G T,Farrall L,et al.Natural variation at the Pi-ta rice blast resistance locus.Phytopathology,2003,93(11):1452-1459.
    167.Jia Y L,Sean A,McAdans,et al.Direct interaction of resistance gene and avirulence gene products confers rice blast resistance.EMBO,2000,19(15):4004-4014.
    168.Jiang J,Wang S.Identification of a 118-kb DNA fragment containing the locus of blast resistance gene Pi-2(t) in rice.Mol Genet Genomics,2002,268:249-252.
    169.Jonathan D and G Jones.Putting knowledge of plant disease resistance genes to work.Current Opinion in Plant Biology,2001,4:281-287.
    170.Jwa N S,Kumar A G,Rakwal R,et al.Molecular Cloning and Characterization of a Novel Jasmonate Inducible Pathogenesis-Related Class 10 Protein Gene,JIOsPR10,from Rice(Oryza sativa L.) Seedling Leaves.Biochemical and Biophysical Research Communications,2001,286(5):973-983.
    171.Kang S H,Sweigard J A,Valent B.The PWL host specificity gene family in the blast fungus Magnaporthe grisea.Molecular Plant-M-crobe Interaction,1995,8:939-948.
    172.Kershaw M J,Wakley G and Talbot N J.Complementation of the Mpg1 mutant phenotype in Magnaporthe grisea reveal functional relationships between fungal hydrophobins.EMBO,1998,17,(14):3838-3849.
    173.Kim D J.cDNA encoding a putative SPF1-type DNA-binding protein from cucumber.Gene,1997,185,265-269.
    174.Kiyosawa S,Orimoto Y,He Y K,et al.Estimation of genotypes for blast resistance of rice varieties by testing with differential varieties.Oryza,1983,20:216-222.
    175.Kiyosawa S.Identification of blast-resistance genes in some rice varieties.Japan J Breeding.1978,28(4):287-296.
    176.Kumar J,Nelson R J,Zeigler R S.Population structure and dynamics of Magnaporthe grisea in the Indian Himalayas.Genetics,1999,152:971-984.
    177.Latterell F M,Marchetti M A,and Grove B R.Co-ordination of effort to establish an international system for race identification in Pyricularia oryzae.In:The rice blast disease.Baltimore Maryland,Johns Hopkins Press,1965,pp257-274.
    178.Lau G and Hamer J E.Regulatory Genes Controlling MPG1 Expression and Pathogenicity in the Rice Blast Fungus Magnaporthe grisea.Plant Cell,1996,5:771-781.
    179.Lee Y H,Dean R A.Hydrophobicity of contact surface induces appressorium.FEMS Microbiol Lett,1994,115:71-76.
    180.Leister D,Kurth J,Laurie D A,et al.Rapid reorganization of resistance gene homologues in cereal genomes.PNAS,1998,95:370-375.
    181. Levy M, Correa-Victor F J, Zeigler R S, et al. Genetic diversity of the rice blast fungus in a disease nursery in Colombia. Phytopathology, 1993,83:1427-1433.
    182. Levy M, Romao J, Marchetti M A, et al. DNA fingerprinting with a dispersed repeated sequence resolves pathotype diversity in the rice blast fungus. Plant Cell, 1991, 3:95-102.
    183. Li Xiaofang, Mao Xingxue, Xing Danying, et al, Research Progress in Rice Blast Resistance Genes. Molecular Plant Breeding, 2003,1(5/ 6):725-730.
    184. Ling, Z.Z. Lei C L, Wang J L, et al. Development of near-isogenic-lines as international differentials of the blast pathogen. International Rice Res. Notes, 1995,20(1):13-14.
    185. Liu G, Lu G, Zeng L, et al. Two broad-spectrum blast resistance genes, Pi-9(t) and Pi-2(t), are physically linked on rice chromosome 6. Mol Genet Genomics. 2002,267:472-480.
    186. Liu X Q, L Wang, S Chen, et al, Genetic and physical mapping of Pi36(t), a novel rice blast resistance gene located on rice chromosome 8. Mol Gen genomics, 2005, 274(4):394-401.
    187. Luo C X, Fujita Y, Yasuda N, et al. Identification of Magnaporthe oryzae Avirulence Genes to Three Rice Blast Resistance genes. Plant Disease. 2004,88 (3):265-270.
    188. Lyer A S and McCouch S R. The rice bacterial blight resistance gene xa5 encodes a novel form of disease resistance. Molecular Plant-Microbe Interactions, 2004,17(12):1348-1354.
    189. Mackill D J and Bonman J M. Inheritance of blast resistance in near-isogenic lines of rice. Phytopathology, 1992,82(7):746-749.
    190. Marc J, Orbach. A Telomeric Avirulence Gene Determines Efficacy for the Rice Blast Resistance Gene Pi-ta. Plant Cell. 2000,1:2019-2032.
    191. Mark L Farman, and Leong S A. Analysis of structure of the Avr1-CO39 avirulence locus in virulent rice-infecting isolates of Magnaporthe grisea.MPMI. 2002,15:6-16.
    192. McCouch S R, Nelson R J, Tohme J, et al, Mapping of blast resistance genes in rice. In Zeigler R S, S A Leong, and P S Teng, (ed). Rice Blast Disease, Cambridge University Press, UK, 1994, pp. 167-186
    193. Miyamoto M, Ando I, Rybka K, et al. High resolution mapping of the indica-derived rice blast resistance gene Pi-b. MPMI, 1996, 9(1):6-13.
    194. Moffat AS. Mapping the sequence of disease resistance. Science, 1994, 265:1804-1805.
    195. Moldenhauer KAK, Bastawisi A O and Lee F N. Inheritance of resistance in rice to races IB-49 and IC-17 of Pyricularia grisea rice blast. Crop science, 1992, 32:584-588.
    196. Monna L, Miyao A, Zhong H S, et al. Saturation mapping with subclones of YACs: DNA marker production targeting the rice blast disease resistance gene, Pi-b. Theor Appl Genet, 1997, 94:170-176.
    197. Naqvi N I, Bonman J M, Mackill D J, et al. Identification of RAPD markers linked to a major gene for blast resistance in rice. Molecular breeding, 1995,1:341-348.
    
    198. Nguyen T T T, Koizumi T N La, Zenbayashi K S, et al. Pi35(t), a new gene conferring partial resistance to leaf blast in the rice cultivar Hokkai 188. Theor Appl Genet, 2006, 113(4):697-704.
    199. Orbach M J, Farrall L, Sweigard J A, et al. Telomeric avirulence gene determines efficacy for the rice blast resistance gene Pi-ta. Plant Cell, 2000,12:2019-2032.
    200. Ou S H. Rice diseases (2nd eds). Commonwealth Mycological Rev. Institute, Kew, Surrey, England, 1985, ppl09-201.
    201. Pan Q H, Hu Z D, Tanisaka et al. Fine mapping of the blast resistance gene Pi-15, linked to Pi-i, on rice chromosome 9.Acta Batonica Sinica, 2003,45(7):871-877.
    202. Pan Q H, Wang L, and Tanisaka T. A new blast resistance gene identified in the Indian native rice cultivar Aus373 through allelism and linkage tests. Plant pathology, 1999, 48:288-293.
    203. Pan Q H, Wang L, Ikehashi H, et al. Identification of a new blast resistance gene in the indica rice cultivar Kasalath using Japanese differential cultivars and isozyme markers. Phytopathology, 1996, 86:1071-1075.
    204. Prashanth G B, Hittalmani S, Srinivasachary K, et al. Genetic markers associated with field resistance to leaf and neck blast across locations in rice (Oryza sativa L.) . Rice Genetics Newsletter, 1998,15:128-131.
    205. Qu S H, Liu G F, Zhou B, et al. The Broad-Spectrum Blast Resistance Gene Pi9 Encodes a Nucleotide-Binding Site-Leucine-Rich Repeat Protein and Is a Member of a Multigene Family in Rice. Genetics, 2006,172:1901-1914.
    206. Rauyaree P, Choi W, Fang E. Genes expressed during early stages of rice infection with the rice blast fungus Magnaporthe grisea. Molecular Plant Pathology, 2001, 2(6):347-354.
    207. Richard L and Pierre J G. Review fungal avirulence genes: structure and possible functions. Fungal genetics and biology, 1998, 24:285-297.
    208. Ronald P C. The molecular basis of disease resistance in rice. Plant Molecular Biology 1997, 35:179-186.
    209. Roumen E, Levy M and Notteghem J L. Characterization of the European pathogen population of Magnaporthe grisea by DNA fingerprinting and pathotype analysis. European Journal of Plant Pathology, 1997,103:363-371.
    210. Rushton PJ. Synthetic plant promoters containing defined regulatory elements provide novel insights into pathogen- and wound-induced signaling. Plant Cell. 2002,14:749-762.
    211. Sallaud C, Lorieux M, Roumen E, et al. Identification of five new blast resistance genes in the highly blast-resistant rice variety IR64 using a QTL mapping strategy. Theor Appl Genet, 2003, 106:794-803.
    212. Sanguinetti C J, Dias N E and Simpson A J G Rapid silver staining and recover of PCR products separated on polyacrylamide gels. Biotechniques. 1994,17:915-919.
    213. Sharma T R, Chauhan R S, Singh B M, et al. RAPD and pathotype analyses of Magnaporthe grisea population from the North western Himalayan region of India. Journal of Phytopathology, 2002,150:649-656.
    214. Sharma T R, M. S. Madhav, B. K. Singh B M, et al, High-resolution mapping, cloning and molecular characterization of the Pi-k~h gene of rice, which confers resistance to Magnaporthe grisea, Mol Gen Genomics, 2005,274:569-578.
    215. Smith H B. More than just a surface thing: rice infection by Magnaporthe grisea. Plant Cell. 1999,11:1815-1817.
    216. Somssich I E and Hahlbrock K. Pathogen defense in plants: a paradigm of biological complexity. Trends Plant Sci, 1998,3:86-90.
    217. Song W Y, Wan G L, Chen L L, et al. A receptor kinase-like protein encoded by the rice disease resistance gene, X a-21. Science, 1995, 270:1804-1806.
    218. Sweigard J A, Carroll A M, Kang S, et al. Identification, Cloning, and Characterization of PWL2, a Gene for Host Species Specificity in the Rice Blast Fungus. Plant Cell, 1995, 7:1221-1233.
    219. Tabien R E, Li Z, Paterson A H, et al. Mapping QTLs for field resistance to rice blast pathogen and evaluating of their individual and combined utility in improved varieties. Theor Appl Genet, 2002,105:313-324.
    220. Tabien R E, Li Z, Paterson A H, Marchetti M A, et al. Mapping of four rice blast resistance genes from 'Teqing' and 'Lemont' and evaluation of their combinatorial effect for field resistance. Theor Appl Genet, 2000,101:1215-1225.
    221. Tabien R E, Pinson S R M, Marchetti M A, et al. Blast resistance genes from Teqing and Lemont. Rice Genetics Newsletter, 1996,13:451-452.
    222. Talbot N J, Nicholas J, Michael J, et al. Identification and characterization of MPG1, a gene involoved in pathogenicity from the rice blast fungus Magnaporthe grisea. Plant Cell, 1993, 5:1575-1590.
    223. Talbot N J, Nicholas J, Michael J, et al. MPG1 encodes a fungal hydrophobin involved in surface interactions during infection-related development of Magnaporthe grisea. Plant Cell, 1996, 8:985-999.
    224. Taramino G, Allen J, Miao G H, Shen Y. Gene expression in response to bacterial blight infection in rice. Chinese Rice Research Newsletter. 2001,9:2-3.
    225. Thines E, Eilbert F, Sterner 0, et al. Signal transduction leading to appressorium formation in germinating conidia of Magnaporthe grisea: Effects of second messenger diacylglycerols, ceramides and sphingomyelin. FEMS Microbiol. Lett, 1997,156:91-94.
    
    226. Thomas Lahaye. The Arabidopsis RRS1-R disease resistance gene -uncovering the plant's nucleus as the new battlefield of plant defense. Trends Plant Sci, 2002,7(10):425-427.
    227. Till C. Role of external signals in regulating the pre-penetration phase of infection by the rice blast fungus, Magnaporthe grisea. Plant cell, 1994,194:471-477.
    228. Ulla Bonas and Thomas Lahaye. Plant disease resistance triggered by pathogen-derived molecules: refined models of specific recognition. Host-microbe interactions. Bacteria, 2002, 5:44-50.
    229. Valent B and Chumley F G. A virulence genes and mechanisms of genetic instability in the rice blast fungus. In: Zeigler R S, Leong S A, Teng P S (eds). Rice Blast Disease, Wallingford, UK: CAB International, 1994, pp111-134.
    230. Venkataswamy T. Inheritance of resistance in rice to three races of the blast fungus. Rice Genetics and Cytogenetics, Elsevier Publishing Company. 1964, pp237.
    231. Wang G L, Mackill D J, Bonman J M, et al. RFLP mapping of genes conferring complete and partial resistance to blast in a durably resistance rice cultivar. Genetics, 1994,136:1421-1434.
    232. Wang Z M, Mackill D J, Bonman J M. Inheritance of partial resistance to blast in indica rice cultivars. Crop Science, 1989, 29(4):848-853.
    233. Wang Z X, Masahire Yano, Masao Iwamoto, et al. The Pi-b gene for rice blast resistance belongs to the nucleotide binding and leucine-rich repeat class of plant disease resistance gene. PlantJ, 1999,19:55-64.
    234. Wu J L, Sinha P K, Variar M et al. Association between molecular markers and blast resistance in an advanced backcross population of rice. Theor Appl Genet, 2004,108:1024-1032.
    235. Wu K S, Tanksley S D, Abundance, polymorphism and genetic mapping of microsatellite in rice, Mol Gen Genet, 1993, 241:225-235.
    236.Xia J Q,Correll J C,Lee F N,et al.DNA fingerprinting to examine micro-geographic variation in the Magnaporthe grisea(Pyricularia grisea) population in two rice fields in Arkansas.Phytopathology,1993,83:1029-1035.
    237.Xiao J Z,Watanabe T,Kamakura T,et al.Studies on the cellular differentiation of magnaporthe grisea:Physico-chemical aspects of substratum surfaces in relation to appressorium formation.Physiol Mol Plant Pathol,1994,44:227-236.
    238.Xu J R,Martin U,James A S,et al.The CPKA gene of Magnaporthe grisea is essential for appressorial penetration.Molecular Plant-Microbe Interaction.1997,10:187-194.
    239.Xu J R,Staiger C J,and Hamer J E.Inactivation of the mitogen-activated protein kinase Mps1from the rice blast fungus prevents penetration of host cells but allows activation of plant defense responses.PNAS.1998,95:12713-12718.
    240.Yasuda,Y F and Masako N.Identification of avirulence genes in the rice blast fungus corresponding to three resistance genes in Japanese differentials.J General Plant Pathology,2004,70(4):202.
    241.Yi G,Lee S K,Hong Y K,et al.Use of Pi-5(t) markers in marker-assisted selection to screen for cultivars with resistance to Magnaporthe grisea.Theor Appl Genet.2004,109:978-985.
    242.Yoshimura S,Yamanouchiu,Katayose Y,et al.Expression of Xa-1,a bacterial blight-resistance gene in rice,is induced by bacterial inoculation.PNAS.1998,95:1663-1668.
    243.Yu J,Hu S,Wang J,et al.A draft sequence of the rice genome(Oryza sativa L.ssp.Indica).Science,2002,296:79-92.
    244.Yu Z H,Mackill D J and Bonman J M.Inheritance of resistance to blast in some traditional and improved rice cultivars.Genetics,1987,77:323-326.
    245.Yu Z H,Mackill D J,Bonman J M,et al.Molecular mapping of genes for resistance to rice blast.Theor Appl Genet,1996,93:859-863.
    246.Yu Z H,Mackill D J,Bonman J M,et aL Tagging genes for blast resistance in rice via linkage to RFLP markers.Theor Appl Genet,1991,81:471-476.
    247.Zeigler R S,Leong S A and Teng P S,Eds.Rice blast disease.UK:Cambridge university press,1994,pp3-293.
    248.Zeigler R So Recombination in Magnaporthe grisea.Annu Rev Phytopathology,1998,36:249-275.
    249.Zenbayashi K,Ashizawa T,Koizumi S.Pi34-AVRpi34:a new gene-for-gene interaction for partial resistance in rice to blast caused by Magnaporthe grisea.J Gen Plant Pathol,2005,71:395-401.
    250.Zenbayashi K,Ashizawa T,Tani T,et al.Mapping of the QTL(quantitative trait locus)conferring partial resistance to leaf blast in rice cultivar Chubu 32.Theor Appl Genet,2002,104:547-552.
    251.Zhang M X,Xu J L,Luo R T,et al.Genetic analysis and breeding use of blast resistance in a japonica rice mutant R917.Euphytica,2003,130:71-76.
    252.Zhou B,Qu S,Liu G,et al.The eight amino acid differences within three leucine-rich repeats between Pi2 and Piz-t resistance proteins determine the resistance specificity to Magnaporthe grisea.Mol Plant Microbe In,2006,19:1216-1228.
    253.Zhou J H,Wang J L,Xu J C,et al.Identification and mapping of a rice blast resistance gene Pi-g(t) in the cultivar Guangchangzhan.Plant Pathology,2004,53(2):191-196.
    254.Zhu Y Y,Chen H R,Fan J H,et al.Genetic diversity and disease control in rice.Nature,2000,406(6797):718-722.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700