用户名: 密码: 验证码:
玉米光周期敏感性及相关性状的QTL定位及杂种优势机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
光周期是影响植物生长发育的关键环境因素之一,植物开花的光周期敏感反应一直是人们研究的热点。玉米是短日照植物,光周期敏感性是不同纬度和不同海拔地区间玉米种质资源交流的主要限制因子。因此研究热带玉米的光周期反应的分子机理,弱化玉米的光周期敏感性,不但有利于玉米种质的扩增与创新、提高玉米品种对不同地理纬度和播种季节的适应性,而且还能在玉米开花时间的光周期调控方面进行有益的探索。
     本试验室以对光周期钝感的温带自交系黄早4和对光周期敏感的热带自交系CML288为亲本配置了温热组合黄早4×CML288,本研究在前人工作基础上,通过单粒传法,构建了包含201个家系的重组自交系群体(F10代)。在此基础上,本研究以F10重组自交系群体为基础群休,通过成对交配设计,构建了一套包含278个杂交组合的永久F2群体。2007年分别对RILs群体及“永久F2”在三亚、河南郑州、河南洛阳、北京顺义和北京昌平等5个地点3个不同的光周期环境下进行了田间鉴定,考察了散粉期积温、株高、叶片数等光周期敏感性相关的性状。通过遗传连锁图谱的构建,分别利用重组自交系群体和“永久F2”群体的表型值,对光周期敏感性及相关性状QTL定位及上位性分析;同时利用中亲优势值对杂种优势位点进行了定位和上位性互作分析,主要结果如下:
     1、构建了玉米温热组合的重组自交系群体。家系个体基因型组成来源于母本黄早4的纯合染色体片段在28.27%-72.15%之间,平均是46.04%;家系个体基因型组成来源于父本CML288的纯合染色体片段在23.63%-65.40%之间,平均为45.61%。在整个群体中,基于分子标记的基因型分析,双亲染色体同源片段分离符合1∶1的理论分离比例,双亲对子代的遗传贡献基本上是平衡的。群体的基因型组成分布呈正态分布,由此也可以认为,本实验采用的玉米RIL群体是一个随机群体,适合于遗传作图、基因定位等基因组分析和育种应用。
     2、构建了永久F2群体。个体基因型组成中来源于母本黄早4的纯合染色体片段在10.14-44.55%之间,平均为25.22%;个体基因型组成中来源于父本CML288的纯合染色体片段在7.45-48.79%之间,平均为24.64%;双亲的杂合片段在32.52-66.34%之间,平均为50.14%。结果表明整个群体中基于分子标记的双亲染色体同源片段分离符合1:2:1的理论分离比例,与F2群体的基因型频率相似,因此在遗传组成和基因频率上该永久F2群体与同一来源的F2群体基本相似,可以用永久F2群体代替F2群体进行遗传分析。
     3、选用玉米基因组的713对SSR引物对亲本进行多态性筛选,以重组近交系为基础材料,构建了一个包含237个SSR标记的重组近交系遗传连锁图,覆盖了玉米的10条染色体,总长度1974.7cM,平均间距8.33cM。
     4、分别利用重组自交系群体和永久F2群体,三个不同的光周期环境下,共检测到151个玉米光周期敏感性及相关性状的QTL,分布在所有10条染色体上。其中重组自交系群体检测到64个,永久F2群体检测到87个,两个群体共同检测到28个。许多QTL在不同的环境下同时检测到,实际上检测到87个不同的光周期敏感性及其相关性状的QTL,其中重组自交系群体实际检测到32个不同的QTL,永久F2群体实际检测到55个不同的QTL,两个群体共同检测到16个不同的QTL。
     5、将光周期敏感性主效QTL定位在第10染色体上。不同环境中检测到的QTL不同,散粉期积温QTL qDPS4-2、株高QTLqPH1-2、叶片数QTL qLN4-3在不同群体中三个环境下均能检测到;散粉期积温QTL qDPS10-1、株高QTL qPH10-1和叶片数QTL qLN9、qLN10在重组自交系群体和永久F2群体中均在2个长日照环境中检测到,而在三亚短日照环境中未检测到;散粉期积温QTL qDPS3、株高QTLqPH3、叶片数QTL qLN3-1和qLN4-2在重组自交系群体和永久F2群体中均在短日照环境下检测到,而在2个长日照环境下并未检测到。表明控制光周期敏感性及相关性状的数量性状位点在不同光周期环境中特异表达。控制长日照环境下光周期敏感相关性状的QTL集中在第10染色体的10.04区域,控制短日照环境下光周期敏感相关性状的QTL集中在第3染色体的3.05区域。
     6、利用双向方差分析法,对重组自交系群体和永久F2群体的光周期敏感性相关性状表现进行上位性分析,结果表明上位性互作在整个基因组中大量存在,大部分互作发生在两个单位点效应不显著的位点之间。永久F2群体在不同环境下,所有考察的性状中,检测到的互作类型中均为AA互作最多,AD/DA互作次之,DD互作最少。
     7、利用改良的复合区间作图法,在3个环境中共检测到19个株高杂种优势位点(HL),分别位于第1、2、3、4、6、7、9和第10染色体上。有些杂种优势位点在多个环境中同时检测到,或位于紧密相邻的位点,实际检测到的单个杂种优势位点(HL)为13个。这些杂种优势位点多数表现为部分显性,少数表现为超显性效应。
     8、利用永久F2群体,通过双向方差分析,在全基因组水平上对玉米株高中亲优势值进行两位点互作分析,检测到大量显著上位互作。上位性互作具有一定的环境稳定性,且具有环境特异表达的特点。在三亚短日照环境下,检测到的杂种优势上位性互作中,AA互作最多,AD/DA互作次之,DD互作最少。而在河南和北京长日照环境下,检测到的杂种优势上位性互作中,AD/DA互作最多,AA互作次之,DD互作最少。
     9、在三种光周期环境下,不论是特殊杂合性还是一般杂合性,与株高表现及杂种优势虽然具有一定的相关性,但相关系数较低,不足以用来预测玉米的杂种优势。进一步分析表明,从单个共显性侧邻标记的检测结果看,各标记杂合子并不总表现出比纯合子更高的性状水平,杂合子表现超亲优势的标记比例仅为31.6%。多数标记的杂合子表型值介于两种纯合子之间,表明杂合性对性状的表现并不总是有利的,显性基因的互补或累加可能对本永久F2群体的杂种优势表现的作用更大。单位点水平上的显性、超显性、以及两位点之间的上位性互作是玉米株高杂种优势形成的重要遗传机理。
Photoperiod is a major environment factor affecting plant development, and photoperiod sensitivity of flowering time is an important consideration in plant cultivation and breeding. Maize is short day plant and flowering time is affected by photoperiod, what’more, some tropical varieties do not flower under temperate environmental regimes. Sensitivity to photoperiod limits the potential for successful exchange of germplasm across different latitudes. Therefore, it is vital for maize breeders to understand the genetic basis of photoperiod sensitivity in their efforts to integrate tropical germplasm into temperate zone maize breeding. For resolving the geneticbasis of photoperiod sensitivity in maize, in this research , a population of 207 recombinant inbred lines (RIL) derived from a temperate and tropical inbred line cross were developed, and an immortalized F2 population of 278 F1 cross was constrcted by intercrossing of RILs. The“immortalized F2”and the RIL population were evaluated in five location of three photoperiod environment. The performinance data of photoperiod sensitivity and related traits in RIL population and immortalized F2 popultion were used for QTL mapping and digenic interaction analysis; the values of heterosis were used for dissecting the genetic basis of heterosis per se at single-and two-locus level. The main results obtained in this study were concluded as follow:
     1. A RIL population derived from a temperate and tropical inbred line cross was constructed. the molecular genotypes deriving from parent Huangzao4 were 28.27%-72.15%, the average homozygous genotypes of Huangzao4 was 46.04%; the molecular genotypes of CML288 were 23.63%-65.40%, and the average genotypes of CML288 was 45.61%; The genotypes of the two parents at the marker loci followed 1: 1 theoretical ratio, so the RIL population was a random one and was fit to be used in conduct genentic linkage map and QTL analysis.
     2. A set of“immortalized F2”population including 278 single crosses was constructed through three round of intermating of 207 RILs. The molecular genotypes of“immortalized F2”population were deduced based on the RILs population according to the mating design. In the“immortalized F2”population, the molecular genotypes deriving from parent Huangzao4 were 10.14-44.55%%, the average homozygous genotypes of Huangzao4 was 25.22%; the molecular genotypes of CML288 were 7.45-48.79%, and the average genotypes of CML288 was 24.64%; whereas the heterozygous genotypes were 32.52-66.34%%, and the average heterozygous genotypes was 50.14%. The genotypes of Huangzao4, heterozygosity and CML288 at the marker loci followed 1:2:1 theoretical ratio, so the genetic components and gene frequency in“immortalized F2”population were similar as a F2 population.
     3. A genetic linkage map containing 237 SSR polymorphic markers was constructed using RIL population, spanned a total of 1974.3 cM with an average space between two makers of 8.33 cM.
     4. A total of 151 QTL were detected in three photoperiod environment for photoperiod sensitivity and related traits using RIL population and immortalized F2 population by composite interval mapping. Out of these QTL, 64 QTL were detected in RIL population; 87 were detected in immortalized population and 28 were detected in both population. Many QTL were detected in different photoperiod environment, as a result, a total of 87 different QTL for photoperiod sensitivity and related traits were detected. Out of these QTL, 32 and 55 QTL were detected in RIL population and immortalized F2 population, respectively, and 16 were detected in both populations.
     5. Different QTL were detected in different photoperiod environment. qDPS4-2、qPH1-2 and qLN4-3 were detected in three photoperiod environment; QTL for flowering time, plant height and leaf number, under long-day conditions, were found clustered on chromosome 10, while QTL for short day conditions resided on chromosome 3. The QTL in the bin 10.04 region of chromosome 10 were detected associated with photoperiod sensitivity and related traits during long-days. These results indicated that this region might contain an important photoperiod sensitivity element.
     6. Digenic interactions (epistasis) were detected using all possible loci pairs by two-way analysis (ANOVA) between 237 co-dominant molecular markers, and assessed by 1000 times permutaiton tests. A large number of two-locus combinations involving the entire genome were detected for photoperiod sensitivity and related traits. Most interactions occurred between two loci both showing non-significant effects to traits. It clearly demonstrated that epistasis play an important role in the maize genetics basis of heterosis. In the three interaction types (AA, AD/DA and DD) detected in IF2 population, the AA interactions had highest frequency, followed by AD/DA interactions, and the DD interactions had lowest frequency.
     7. There were 19 (HL) detected for plant height values of heterosis per se in three photoperiod environment. Some heterotic loci were detected in different photoperiod environment. Most of HL showed part-dominance and some showed over dominance effect.
     8. A lot of digenic interactions of the heterosis for plant height were identified by using two-way analysis (ANOVA). In short day environment, the AA interactions had highest frequency, followed by AD/DA interactions, and the DD interactions had lowest frequency,while the AD/DA interactions had highest frequency and the DD interactions had lowest frequency in long days.
     9. Neither genome heterozygosity nor special heterozygosity showed strong relationship with plant height in IF2 population under three photoperiod environments. Comparison of trait Performanee among different genotypes in flanking markers of these QTL showed that heterozygosity did not always show higher Performanee than corresponding homozygosity; only 31.6 % of the markers showed overdominanee,and the phenotype value of most of heterozygosity was between the two kind of homozygosity. These results indicated that the complementation and accumulation of dominance gene may play more important roles in the heterosis of plant height. So the overdominance, partial dominance at the single locus and the interaction effects at two loci were the important contributor to plant height heterosis in the IF2 population.
引文
1.陈彦惠,王利明,戴景瑞(2000).热带、亚热带自交系与中国温带玉米种质杂交种的研究.中国农业大学学报5(1), 50-57.
    2.陈彦惠,吴连成,吴建宇(2000).两种纬度生态条件下热带亚热带玉米种质群体的鉴定.中国农业科学33 (增刊), 40-48.
    3.陈彦惠,张向前(2003).热带玉米光周期敏感相关性状的遗传分析.中国农业科学36(3), 248-253.
    4.陈彦惠,张向前,常胜合,等.热带玉米光周期敏感相关性状的遗传分析。中国农业科学,2003,36(3):248-253.
    5.陈彦惠,常胜合,吴连成(2000).温热玉米杂交种基本营养生长期遗传的初步研究.华北农学报15(2), 15-20.
    6.董海合,李凤华,才卓,等.热带玉米与温带玉米种质杂交农艺性状的差异.华北农学报,2005,20(5):17-20.
    7.冯芬芬,董海合,周旭东. CIMMYT玉米自交系与群体鉴定初报.作物杂志,1998,(增):24-27.
    8.高伟,陈晓,库丽霞,任永哲,常胜合,王铁固,陈彦惠(2006).玉米类LFY基因的克隆及其在不同光周期条件下的表达.作物学报(32), 1256-1260.
    9.高用明,朱军,宋佑胜,等.水稻永久F2群体抽穗期QTL的上位性及其与环境互作效应的分析.作物学报,2004,30(9):849-854.
    10.郭国亮,李培良,张乃生,等.热带suwan玉米群体遗传变异的研究.玉米科学,2001,9(4):6-9.
    11.郭平仲,C.O. Gardner, M. Obaidi.玉米单株穗数及其他数量性状的基因效应与遗传变异分析.遗传学报,1986,13(1):35-42.
    12.郭瑞(2005).玉米光周期敏感相关基因的QTLs定位及性状分析.郑州:河南农业大学硕士论文.
    13.郭瑞,王海斌,陈彦惠.温、热生态环境下玉米生育性状的遗传研究。2005,6:25-29.
    14.贾继增.分子标记种质资源鉴定和分子标记育种.中国农业科学,1996,29(4):1-10.
    15.李德芳,刘为杰等.红麻对短光钝感材料的发掘及其研究.作物学报,1996,22 (1):50-54.
    16.刘永建,张莉萍,潘光堂,等.CIMMYT玉米种质群体主要农艺性状的遗传变异和光周期敏感性.西南农业学报,1999,12(3):30-34.
    17.苗果园,张云亭,候跃生,等.温光互作对不同生态型小麦品中发育效应的研究.作物学报,1993,19(6):489-495.
    18.莫惠栋.数量遗传学的新发展一数量性状基因图谱的构建和应用.中国农业科学,1996,29(2):8-16.
    19.任永哲,陈彦惠,库丽霞,常胜合,高伟,陈晓(2006).玉米光周期反应及一个相关基因的克隆.中国农业科学39(7),1487-1494.
    20.任永哲,陈彦惠,库丽霞,等.玉米光周期反应研究简报.玉米科学,2005,13(4):86-88.
    21.沈利爽,何平,徐云碧,等.水稻DH群体的分子连锁图谱及基因组分析.植物学报,1998,40(12):1115-1122.
    22.史桂荣,曹靖生,郭小明,等.黑龙江省常用玉米杂交种光周期特性的研究.玉米科学,2004,12(3):16-19.
    23.汤华,严建兵,黄益勤,等.玉米5个农艺性状的QTL定位.遗传学报,2005,32(2),203-209.
    24.吴景锋(1995).我国玉米杂交种发展的主要历程、差距和对策.玉米科学3(1),1-5.
    25.吴为人,李维明,卢浩然.建立一个重组自交系群体所需的自交代数(英文),福建农业大学学报,1997,26(2):129-132.
    26.邢永忠,徐才国.作物数量性状基因研究进展.遗传,2001,23(5):498-502.
    27.薛光行,申岳正.试议光敏不育水稻育性转换的光温作用模式.作物学报,1995,21(2):198-203.
    28.严建兵,汤华,黄益勤,等.玉米F2群体分子标记偏分离的遗传分析,遗传学报,2003,30(10):913-918.
    29.杨荣,潘光堂.热带玉米种质群体墨白962光周期驯化不同世代的遗传变异研究.中国农业科学,2000,33(增刊):93-98.
    30.张凤路, Mugo S (2001).不同玉米种质对长光周期反应的初步研究.玉米科学9(4),54-56.
    31.张世煌,石德权(1995).系统引进和利用外来玉米种质.作物杂志1,7-9.
    32.张世煌,石德权,徐家舜,等.对两个亚热带优质蛋白玉米群体得适应性混合选择研究Ⅱ.作物学报,1995,21(5):513-519.
    33.张世煌,石德权,徐家舜,等.对两个亚热带优质蛋白玉米群体的适应性混合选择研究.作物学报,1995,21(3):271-280.
    34.张世煌,石德权,徐家舜等.对两个亚热带优质蛋白玉米群体得适应性混合选择研究Ⅰ.作物学报,1995,21(3):271-280.
    35.张世煌,赵琦.CIMMYT玉米项目的种质改良研究.世界农业,1996,(4):17-20.
    36.张世煌等.在玉米育种方案中利用外来种质的途径.作物杂志,1995,1:7-9.
    37.张志明,赵茂俊,潘光堂等,玉米SSR连锁图谱构建与株高及穗位高QTL定位.作物学报,2007,33(2):341-344.
    38. Aastveit, AH. and Aastveit, K. 1993. Effects of genotype environment interactions on genetic correlations. Theor. Appl. Genet. 86: 1007-1013.
    39. Alabadi D, Oyama T, Yanovsky MJ, Harmon FG, Mas P, Kay SA (2001) Reciprocalregulation between TOC1 and LHY/CCA1 within the Arabidopsis circadian clock. Science 293: 880-883.
    40. Alabadi D, Yanovsky MJ, Mas P, Harmer SL , Kay SA (2002) Critical role for CCA1 and LHY in maintaining circadian rhythmicity in Arabidopsis. Curr. Biol. 12: 757-761.
    41. Allison, J.C.S. and Daynard TB (1979). Effects of change in time of flowing, induced by altering photoperiod or temperature, on attributes related to yield in maize. Crop Sci 19, 1-4.
    42. Austin D F ,Lee M ,Veldboom L R. Genetic mapping in maize with hybrid progeny across testers and generations: plant height and flowering. Theor Appl Genet ,2001 ,102 (1) :163-176.
    43. Austin D.F., and Lee M. Detection of quantitative trait loci for grain yield and yield components in maize across generations in stress and nonstress environments, Crop Sci,1998,38:1296-1308.
    44. Balint-Kurti PJ, Zwonitzer JC, Wisser RJ, Carson ML, Oropeza-Rosas MA, Holland JB, Szalma SJ(2007).Precise mapping of quantitative trait loci for resistance to southern leaf blight, caused by Cochliobolus heterostrophus race O, and flowering time using advanced intercross maize lines. Genetics 176(1):645-657
    45. Balint-Kurti, P. J., Krakowsky, M. D., Jines, M. P., Robertson, L. A., Molnár, T. L., Goodman, M. M., and Holland, J. B. 2006. Identification of quantitative trait loci for resistance to southern leaf blight and days to anthesis in a maize recombinant inbred line population. Phytopathology 96:1067-1071.
    46. BaumanL.F. Evidence of non-allelic gene interaction in determining yield, ear height and kernel row number in corn. Agron. J.,1959,51:531-534.
    47. Beavis, W. D., O. S.Smith,D.Grant and R. Fincher, Identification of quantitative trait loci using a small sample of topcrossed and F4 progeny from maize. Crop Sci,1994,34:882–896.
    48. Birch CJ, Hammer GL, Rickert KG (1998) Temperature and photoperiod sensitivity of development in five cultivars of maize (Zea mays L.) from emergence to tassel initiation. Field Crops Res. 55: 93 - 107.
    49. Bohn M, Khairallah M, Jiang CZ, Gonzalez de Leon D, Hoisington D, Utz H, Deutsch JA, Jewell DC, Mihm JA, Melchinger AE (1997) QTL mapping in tropical maize .2. Comparison of genomic regions for resistance to Diatraea spp. Crop Sci. 37(6):1892-1902
    50. Bohn, M., B. Schulz, R. Kreps, D. Klein and A. Melchinger, QTL mapping for resistance against the European corn borer (Ostrinia nubilalis H.) in early maturing European dent germplasm. TAG,2000,1001: 907–917.
    51. Bonhomme R, Derieu M, Emeades GO (1994) Flowering of dives maize cultivars in relation to temperature and period in mutilocation field trials. Crop Sci. 34:156-164.
    52. Bonhomme R, Derieux M, Kiniry JR ,Emeades GO, Ozier-Lafontaine (1990).Maize leaf number
    53. Bortiri E, Jackson D, Hake S (2006). Advances in maize genomics: the emergence of positional cloning. Curr Opin Plant Biol 9,1–8.
    54. Bouchez, A., F. Hospital, M. Causse, A. Gallais and A. Charcosset, (2002) Marker-assisted introgression of favorable alleles at quantitative trait loci between maize elite lines. Genetics 162: 1945–1959.
    55. Brigitte Gouesnard1, Ce′cile Rebourg, Claude Welcker and Alain Charcosset. Analysis of photoperiod sensitivity within a collection of tropical maize populations. Genetic Resources and Crop Evolution,49: 471-481, 2002.
    56. Burr,B.,Burr F.A.,Recombinant inbreds for molecular mapping in maize: theoretical and practical considerations, TAG,1991,7:55-60.
    57. Cashmore AR, Jarillo JA, Wu YJ, Liu D (1999) . Crypto Chromomes: blue light receptors for plants and animals. Science 284, 760 - 765.
    58. Chapman S C,G O Edmeades,Selection improves drought tolerance in tropical maize populations. Crop Sci,1999,39:1315-1324.
    59. Chardon F, Hourcade D, Combes V, Charcosset A. (2005). Mapping of a spontaneous mutation for early flowering time in maize highlights contrasting allelic series at two-linked QTL on chromosome 8. Theor Appl Genet 112 (1), 1–11.
    60. Chardon F, Virlon B, Moreau L, Falque M, Joets J, Decousset L, Murigneux A, Charcosset A (2004) Genetic architecture of flowering time in maize as inferred from QTL meta-analysis and synteny conservation with the rice genome. Genetics 162: 2169–2185.
    61. Chen YH, Zhang XQ, Chang SH, Wu LC, Wu JY, Xi ZY(2003) Studies on the Heredity of the Traits Related to the Photoperiod-sensitive Phenomenon Among the Temperate×Tropical Crosses in Maize Scientia Agricultura Sinica 36 (3):248-253
    62. Colasanti J, Yuan Z, Sundaresan V (1998). The indeterminate gene encodes a zinc finger protein and regulates a leaf-generated signal required for the transitionto flowering in maize. Cell 93, 593-603.
    63. Colasanti J, Tremblay R, Wong AY, Coneva V, Kozaki A, and Mable BK (2006). The maize INDETERMINATE1 flowering time regulator defines a highly conserved zinc finger protein family in higher plants. BMC Genomics 7,158.
    64. Colasanti, J., Z. Yuan and V. Sundaresan, The indeterminate gene encodes a zinc finger protein and regulates a leaf-generated signal required for the transition to flowering in maize. Cell,1998,93:593-603.
    65. Devlin PF, Patel SR, Wlhitelam GC(1999). Phytochrome E influences internode elongation and flowering time in Arabidopsis . Plant Cell 10 ,1479 - 1488.
    66. Doi K, Izawa T, Fuse T, Yamanouchi U, Kubo T, Shimatani Z, Yano M and Yoshimura A (2004). Ehd1, a B-type response regulator in rice, confers short-day promotion of flowering and controls FT-like gene expression independently of Hd1, Genes Dev 18(8), 926-936.
    67. Ellis R.H., R.J.Sumerfield and G.O.Edmeades.Photoperiod, temperature, and the intervial from tassel inititation to emergence of maize. Crop Sci,1992,32: 398-403.
    68. Ellis RH, Sumerfield RJ , Edmeades GO (1992) Photoperiod, temperature, and the intervial from sowing inititation to emergence of maize. Crop Sci. 32, 1225-1232.
    69. Fabien Chardon, Delphine Hourcade, Valérie Combes,Alain Charcosset.Mapping of a spontaneous mutation for early flowering time in maize highlights contrasting allelic series at two-linked QTL on chromosome 8. TAG Theoretical and Applied Genetics,2005,112(1):1-11.
    70. Fallury S P , Goodman M M. Experimental evaluation ofthe potential of tropical germplasm for temperate maize up grading. TAG, 1999, 98:54-61.
    71. Fedorov AK (1987). Physiological-genetic bases of growing-season length in cereal crops. Biol Bull Acad Sci USSR 14(5), 409-415.
    72. Francis CA, Grogan CO And Sperling DW(1969). Identification of photoperiod insensitive strains of maize(zea mays L.). Crop Sci. 9, 675-677.
    73. Francs CA (1972). Photoperiod sensitivity and adaption in maize. Proc Annu Corn Sorghum Res Conf 27, 119-131.
    74. Fukuta Y, Sasahara H, Tamura K and Fukuyama T. RFLP linkage map included the information of segregation distortion in a wide cross population between indica and japonica (Oryza sativa L.). Breeding Science, 2000,50:65-72.
    75. Galton F. Regression towards mediocrity in hereditary stature. Journal of Anthropological Institute, 1885,15:246-263.
    76. Gamble E.E. Gene effects in corn: Relative importance of gene effects for plant height and certain component attributes of yield. Can. J. Plant Sci,1962, 42:349-358.
    77. Giauffret C, Lothrop J, Dorvillez D, Gouesnard B, Derieux M (2000) Genotype×Environment interactions in Maize Hybrids from Temperate or Highland Tropical Origin Crop Sci. 40:1004–1012.
    78. Goodman MM (1985) Exotic maize germplasm: status, prospects, and remedies. Iowa State J Res 59:497–527
    79. Goodman MM (1992). Choosing and using tropical corn germplasm. Proc Annu Corn Sorghum Res Conf 47, 47-64.
    80. Goodman MM, 2004. Developing temperate inbreds using tropical germplasm: Rationale, results, conclusions. Maydica 49: 209-220.
    81. Goodman MM, Moreno J, Castillo F, Holley RN, Carson ML(2000) Using tropical maize germplasm for temperate breeding. Maydica 45:221–234
    82. Goodman MM,2005. Broadening the U.S. maize germplasm base. Maydica 50:203-214.
    83. Gouesnard B, Rebourg C, Welcker C and Charcosset A (2002) Analysis of photoperiod sensitivity within a collection of tropical maize populations. Genetic Resources and Crop Evolution 49, 471-481.
    84. Guo H, Yang H, Mockder TC, Lin C (1998). Regulation of flowering time by Arabidopsis photoreceptors. Science 279, 1360-1363.
    85. H.Lu,J.Romero-Severson,R.Bernardo.Chromosomal regions associated with segregation distortion in maize.TAG,2002,105:622-628
    86. Hallauer A R, Mirarda J N. Quantitative genetics in maize breeding.Amen, Iowa: Iowa State Univ. Press, 1981.375-402.
    87. Hallauer AR and Miranda JB (1988). Quantitative Genetics in Maize Breeding. 2nd edition, Iowa State University Press/Ames.
    88. Halward T, Stalker HT and Kochert G, Development of an RFLP linkage map in peanut species. TAG,1993,87:379-394.
    89. Hanocq E, Niarquin M, Heumez E, Rousset M, Le Gouis J (2004) Detection and mapping of QTL for earliness components in a bread wheat recombinant inbred lines population. Theor. Appl. Genet. 110:106–115
    90. Hayama R, Yokoi S, Tamaki S, Yano M, and Shimamoto K (2003). Adaptation of photoperiodic control pathways produces short-day flowering in rice. Nature 422, 719-722
    91. Heun,M.and A.E.Kennedy,J.A.Anderson,N.L.V.Lapitan,M.E.Sorrelis and S.D. Tanksley, Construction of a restriction fragment length polymorphism map for barley (Hordeum vulgare), Genome,1991,34:437-447.
    92. Holland J B, Goodman M M. Combining ability of tropical maize accessions with U.S. germplasm.Crop Sci,1995,35:767-776.
    93. Holland JB (2004) Implementation of molecular markers for quantitative traits in breeding programs—challenges and opportunities. In: Fischer T (eds) New directions for a diverse planet: Proceedings of the 4th International crop science congress, Brisbane, Australia
    94. Holland JB, Goodman MM (1995) Combining ability of tropical maize accessions with US germplasm. Crop Sci. 35:767–773
    95. Irish, E. E., and T. M. Nelson, 1991 Identification of multiple stages in the conversion of maize meristems from vegetative to floral development. Development 112: 891–898.
    96. Izawa T, Takahashi YJ, and Yano M (2003). Comparative biology comes into bloom: genomic and genetic comparison of flowering pathways in rice and Arabidopsis . Curr Opin Plant Biol. 6,113-120
    97. Izawa, T., T. Oikawa, N. Sugiyama, T. Tanisaka, M. Yano et al., (2002) Phytochrome mediates the external light signal to repress FT orthologs in photoperiodic flowering of rice. Genes Dev. 16: 2006–2020.
    98. Jansen RC and Stam P. High resolution of quantitative traits into multiple loci via interval mapping. Genetics,1994,136:1447-1455.
    99. Jiang, C., Edmeades, G. O., Armstead, I. et al. 1999. Genetic analysis of adaptation differences between highland and lowland tropical maize using molecular markers. Theor. Appl. Genet. 99: 1106–1119.
    100.Jines MP, Balint-Kurti P, Robertson-Hoyt LA, Molnar T,. Holland J B, Goodman MM (2007) Mapping resistance to Southern rust in a tropical by temperate maize recombinant inbred topcross population.Theor. Appl. Genet. 114:659–667
    101.Kao CH, Zeng ZB and Teasdale RD. Multiple interval mapping for quantitative trait loci. Generics,1999,152:1203-1216.
    102.Kearsey M J .The principles of QTL analysis (a minimal mathematics approach). J Exp Bot,1998,49:1619-1623.
    103.Keightley P D, Blfield G. Detection of quantitative trait loci from frequency changes of marker alleles under selection. Genet Res,1993,62:195-203.
    104.Khairallah MM, Bohn M, Jiang C, Deutsch J A, Jewell DC, Mihm JA, Melchinger AE, Gonzalez-de-Leon-D, Hoisington DA, (1998) Molecular mapping of QTL for southwestern corn borer resistance, plant height and flowering in tropical maize. Plant Breeding, 117: 309-318
    105.Kiniry JR, Ritchie JT, Musser RL (1983) The photoperiod sensitive interval in maize. Agron J 75, 687-690.
    106.Knapp, S. J., W. W. Stroup and W. M. Ross, 1985: Exact confidence intervals for heritability on a progeny mean basis. Crop Sci. 25: 192-194.
    107.Koester RP, Sisco PH ,Stuber CW (1993) Identification of quantitative trait loci controlling days to flowering and plant height in two near-isogenic lines of maize. Crop Sci. 33, 1209-1216.
    108.Kojima S, Takahashi Y, Kobayashi Y, Monna L, Sasaki T, Araki T and Yano M (2002). Hd3a, a rice ortholog of the Arabidopsis FT gene, promotes transition to flowering downstream of Hd1 under short-day conditions. Plant Cell Physiol 43, 1096-1105.
    109.Kozaki A, Hake S, Colasanti J (2004). The maize ID1 flowering time regulator is a zinc finger protein with novel DNA binding properties. Nucleic Acids Res 32, 1710-1720.
    110.Kozumplik V, Pejic I, Senior L, Pavlina R, Graham GI, Stuber CW (1996) Molecular markers for QTL detection in segregating maize populations derived from exotic germplasm. Maydica 41(3):211-217
    111.Kubo T, Aida Y, Nakamura K, et al. Reciprocal chromosome segment substitution series derived from japonica and indica cross of rice (Oryza sativa L). Breeding Sci,2002,52:319-325.
    112.Kubo T, Nakamura K, Yoshimura A. Development of a series of Indica chromosome segment substitution lines in Japonica background of rice. Rice Genet Newslett ,1999,16:104-106.
    113.Lander, E.S., P. Green, J. Abrahamson, A. Barlow, M.J. Daly, E.S. Lincoln, and L. Newburg. 1987. MAPMAKER: An interactive computer package for constructing primary genetic linkage maps of experimental and natural populations. Genomics 1:174–181.
    114.Laurie DA (1997) Comparative genetics of flowering time in cereals. Plant Mol. Biol. 35:167–177
    115.Laurie DA, Pratchett N, Bezant JH, Snape JW (1995) RFLP mapping of Wve major genes and eight quantitative trait loci controlling Xowering time in a winter×spring barley (Hordeum vulgare L.) cross. Genome 38:575–585
    116.Létizia CK, Veyrieras JB, Madur D, Combes V, Fourmann M, Barraud S, Dubreuil P, Gouesnard B, Manicacci D and Charcosset A ( 2006) . Maize adaptation to temperate climate: relationship with population structure and polymorphism in the Dwarf8 gene. Genetics 172, 2449-2463.
    117.Lin HX, Ashikari M, Yamanouchi U, Sasaki T, and Yano M (2002). Mapping quantitative trait locus,Hd9 controlling heading date in rice. Breed Sci. 52, 35-41.
    118.Lin HX, Liang ZW, Sasaki T and Yano M ( 2003) . Fine mapping and characterization of quantitative trait loci Hd4 and Hd5 controlling HD in rice. Breeding Sci 53, 51-59.
    119.Lu CG,Takabatake K and Ikehashi H. Identification of segregation distortion neutral to improve pollen fertility oryza saliva L.indica-japonica hybrids in rice (Oryza saliva L). Euphytica,2000,111:1-7.
    120.Lu H, Romero-Severson J and Bernardo R. Chromosomal regions associated with segregation distortion in maize.TAG,2002,105:622-628.
    121.Mas P, Alabadi D, Yanovsky MJ , Oyama T , Kay SA (2003). Dual role of TOC1 in t he cont rol of circadian and photomorphogenic responses in A rabidopsis . Plant Cel l 15 (1) , 223 - 236.
    122.Mather K.Variation and selection of polygenic characters. Journal of Genetics,1941,41:159-193.
    123.Mizoguchi T, Wright L, Fujiwara S, Cremer F, Lee K, Onouchi H, Mouradov A, Fowler S, Kamada H, Putterill J , Coupland G. (2005) Distinct roles of GIGANTEA in promoting flowering and regulating circadian rhythms in Arabidopsis. Plant Cell 17: 2255-2270.
    124.Moreau L, Charcosset A, Gallais A (2004). Stability of QTL effects investigated in a large range of environmental conditions for grain yield and related traits in Maize. Theor Appl Genet 110, 92–105
    125.Moutiq R, Ribaut J-M, Edmeades GO, Krakowsky MD, Lee M (2002) Elements of genotype–environment interaction: genetic components of the photoperiod response in maize. In: Kang MS (ed) Quantitative genetics, genomics, and plant breeding. CABI, New York, pp 257–267
    126.Muchow RC and Carberry PS (1989). Environmental control of phenology and leaf growth in a tropically adapted maize. Field Crop Research 20, 221-236.
    127.Muszynski MG, Dam T, Li B, Shirbroun DM, Hou Zl, Bruggemann E, Archibald R,Ananiev EV, and Danilevskaya ON (2006). delayed flowering1 Encodes a Basic Leucine Zipper Protein That Mediates Floral Inductive Signals at the Shoot Apex in Maize. Plant Physiology 142, 1523 - 1536.
    128.Nelson PT, Jines MP, Goodman MM. 2006. Selecting among available, elite tropical maize inbreds for use in long-term temperate breeding. Maydica 51:255-262
    129.Niwa Y, Ito S, Nakamichi N, Mizoguchi T, Niinuma K, Yamashino T, Mizuno T(2007) Genetic Linkages of the Circadian Clock-Associated Genes, TOC1, CCA1, and LHY, in the Photoperiodic Control of Flowering Time in Arabidopsis thaliana. Plant Cell Physiol. 48(7):925-937
    130.Paran I, Goldman I, Tanksley SD and Zamir D. Recombinant inbred lines for genetic mapping in tomato.Theoretical and Applied Genetics, 1995, 90:542-548.
    131.Paran l and Zamir D. Quantitative traits in plants beyond the QTL Trends in Genetics,2003, 19(6):303-306.
    132.Pearson K. Skew variation in homogeneous material. Philosophical Transactions of the Royal Society of London.1895,A:186-343.
    133.Peng ZB and Chen ZH (1993) Current status of maize hybrid breeding and its strategies in China. Proceedings of the Fifth Asian Regional Maize Workshop. Hanoi, Vietnam. November 15-20, 1993. Pp.31-41
    134.Pineiro RP and Coupland G (1998). The control of flowering time and floral identity in Arabidopsis. Plant Physiol 117, 1-8
    135.Putterill J, Robson F, Lee K, Simon R, Coupland G (1995). The CONSTANS gene of Arabidopsis promotes flowering and encodes a protein showing similarities to zinc finger transcription factors. Cell, 80, 847-857
    136.Ragot M,P.H.Sisco,D.A.Hoisington.Molecular-marker-mediated characterization of favorable exotic alleles and quantitative trait loci in maize. Crop Sci,1995,35:1306-1315.
    137.Ren YZ, Chen YH, Ku LX, Chang SH, Gao W, Chen X (2006) Response to Photoperiodical Variation and the Clone of a Photoperiod-Related Gene in Maize. Scientia Agricultura Sinica 39(7):1487-1494.
    138.Ribaut JM, FracheboudY, Monneveux P, Banziger M, Vargas M, Jiang CJ(2007).Quantitative trait loci for yield and correlated traits under high and low soil nitrogen conditions in tropical maize Mol. Breeding 20:15–29
    139.Ribaut JM., Hoisington D, Deutsch JA., Jiang CZ, Gonzalez- de-Leon D. 1996 Identification of quantitative trait loci under drought conditions in tropicalmaize. 1. Flowering parameters and the anthesis-silking interval. Theor. Appl. Genet. 92: 905–914.
    140.Rood SB and Major DJ (1980). Responses of early corn inbreds to photoperiod. Crop Sci. 20, 679-682.
    141.Russel WK and Stuber C (1983) Effects of photoperiod and temperatures on the duration of vegetative in maize. Agron. J. 75, 795-802.
    142.Salvi S, Tuberosa R, Chiapparino E, Maccaferri M, Veillet S, van Beuningen L, Isaac P, Edwards K, Phillips RL ( 2002 ). Toward positional cloning of Vgt1, a QTL controlling the transition from the vegetative to the reproductive phase in maize. Plant Mol. Biol. 48, 601–613.
    143.Samach A, Onouchi H, Gold SE, Ditta GS, Schwarz-Sommer Z, Yanofsky MF and Coupland G (2000). Distinct roles of CONSTANS target genes in reproductive development in Arabidopsis. Science 288, 1613–1616.
    144.Sari Gorla M,Krajewski P, Di Fonzo N,Villa M, Frova C. Genetic analysis of drought tolerance in maize by molecular markers. Plant height and flowering. Theor Appl Genet,1999, 99:289-295.
    145.Sax K.The association of size diferences with seed-coat pattern and pigmentation in Phaseolus vulgaris.Genetics,1923,8:552-560.
    146.Sheehan MJ, Kennedy ML, Costich DE, Thomas P. Brutnell TP (2007). Subfunctionalization of PhyB1 and PhyB2 in the control of seedling and mature plant traits in maize. Plant J.49: 338–353
    147.Sheehan, M.J., Farmer, P.R. and Brutnell, T.P. (2004) Structure and expression of maize phytochrome family homeologs. Genetics, 167, 1395–1405.
    148.Smale M, Jason H, Paul W H, Ben S. The contribution of genetic resources and diversity to wheat production in the Punjab of Pakistan American Journal of Agricultural Economic,1998,80:482-483.
    149.Somers DE (1999). The physiology and molecular bases of the plant circadian clock. Plant physiol 121 , 9 - 20.
    150.Struik PC, Doorgeest M and Boonman G (1986). Environmental effects on flowering characteristics and kernel set of maize (Zea mays L.). Netherlands J of Agric Sci 34, 469-484.
    151.Stuber CW, Moll RH, Goodman MM, Schafer HE and Weir BS. Alozyme frequency changes associated with selection for increased grain yield in maize (Zea mays L). Genetics,1980,95:225-236.
    152.Stuber, C. W., Lincoln, S. E., Wolff, D. W. et al. 1992. Identification of genetic factors contributing to heterosis in a hybrid from two elite maize inbred lines using molecular markers. Genetics 132: 823–839.
    153.Suarez-Lopez P, Wheatley K, Robson F, Onouchi H,Valverde F, Coupland G (2001). CONSTANS mediates between the circadian clock and the control of flowering in Arabidopsis. Nature 410 ,1116 - 1120.
    154.Szalma SJ, Hostert BM, Ledeaux JR, Stuber CW, Holland JB (2007) QTL mapping with near-isogenic lines in maize Theor Appl Genet 114(7):1211-1228.
    155.Takahashi Y, Shomura A, Sasaki T and Yano M (2001). Hd6, a rice quantitative trait locus involved in photoperiod sensitivity, encodes theαsubunit of protein kinase CK2, Proc. Nat.l Acad. Sc.i 98, 7922-7927
    156.Tallury SP, Goodman MM (1999) Experimental evaluation of the potential of tropical germplasm for temperate maize improvement. Theor. Appl. Genet. 98:54–61
    157.Tanksley SD. Mapping polygenes. Annual Reviews of Genetics.1993, 27:205-233.
    158.Tarter JA, Goodman MM, Holland JB(2004) Recovery of exotic alleles in semiexotic maize inbreds derived from crosses between Latin American accessions and a temperate line .Theor. Appl. Genet. 109: 609–617
    159.Thornsberry JM, Goodman MM, Doebley J, Kresovich S, Nielsen D, Buckler ES (2001). Dwarf8 polymorphisms associate with variation in flowering time. Nat Genet 28, 286–289
    160.Tollenaar M.,R.B.hunter,1983,a photoperiod and temperature sensitive period for leaf number of maize, Crop Sci,23:457-460.
    161.Tollenaar M.,R.B.hunter,1983,a photoperiod and temperature sensitive period for leaf number of maize,Crop Sci,23:457-460.
    162.Troyer AF (1999) Background of US hybrid corn. Crop Sci. 39:601– 626
    163.Tuber,C.W.,S.E.Lincoln,D.W.Wolff,T.Helentjaris and E.S lander, Identification of genetic factor contributing to heterosis in a hybrid from two elite maize indred lines using molecular markers. Genetics,1992,132:823–839.
    164.Turner A, Beales J, Faure S, Dunford RP, Laurie DA (2005) The pseudo-response regulator Ppd-H1 provides adaptation to photoperiod in barley. Science 310:1031–1034
    165.Uhr DV, Goodman MM (1995) Temperate maize inbreds derived from tropical germplasm: II. Inbred yield trials. Crop Sci. 35:785–790
    166.Vasal S K, Srinivasin G. Heterosis and combining ability of CIMMYT’s tropical Xsubtropical maize germplasm.Crop Sci,1992,32:1483-1489.
    167.Veldboom L, Lee M, Woodman WL (1994) Molecular marker-facilitated studies in an elite maize population: 1. Linkage analysis and determination of QTL for morphological traits. Theor. Appl. Genet. 88(1):7-16
    168.Veldboom LR and Lee M. (1996) Genetic mapping of quantitative trait loci in maize in stress and nonstress environments: II Plant height and flowering. Crop Sci. 36: 1320–1327.
    169.Vladutu C, Mclaughlin J and Phillips RL (1999). Fine mapping and characterization of linked quantitative trait loci involved in the transition of the maize apical meristem from vegetative to generative structures. Genetics 153, 993–1007.
    170.Wang S., C. J. Basten, and Z.-B. Zeng (2007). Windows QTL Cartographer 2.5. Department of Statistics, North Carolina State University, Raleigh, NC. ( http://statgen.ncsu.edu/qtlcart/WQTLCart.htm)
    171.Worland AJ, B?rner A, Korzun V, Li WM, Petrovic S, Sayers EJ (1998) The influence of photoperiod genes to the adaptability of European winter wheat. Euphytica 100:385–394
    172.Yamamoto T, Kuboki Y, Lin SY, Sasaki T and Yano M (1998). Fine mapping of quantitative trait loci Hd-1, Hd-2 and Hd-3, controlling heading date of rice, as single Mendelian factors. Theor Appl Genet 97, 37-44
    173.Yamamoto T, Lin HX, Sasaki T and Yano M( 2000). Identification of heading date quantitative trait locus Hd6 and characterization of its epistatic interactions with Hd2 in rice using advanced backcross progeny. Genetics 154, 885-891
    174.Yano M, Kojima S, Takahashi Y, Lin HX and Sasaki T (2001). Genetic control of flowering time in rice, a short-day plant. Plant Physiology 127, 1425-1429
    175.Yano M, Harushima Y, Nagamura Y, Kurata N, Minobe Y and Sasaki T (1997). Identification of quantitative trait loci controlling HD in rice using a high-density linkage map. Theor Appl Genet 95, 1025-1032
    176.Yano M, Katayose Y, Ashikari M, Yamanouchi U, Monna L,Fuse T, Baba T, Yamamoto K, Umehara Y, Nagamura Y and Sasaki T (2000). A major photoperiod sensitivity quantitative trait locus in rice, is closely related to the Arabidopisis flowering time gene CONSTANS. Plant Cell 12, 2473-2483
    177.Yanovsky MJ and Kay SA (2002). Molecular basis of seasonal time measurement in Arabidopsis. Nature 419, 308 - 312.
    178.Zeng ZB. Theoretical basis for separation of multiple linked gene efects in mappingquantitative trait loci.Proceedings of the National Academy of Sciences of USA,1993,90:10972-10976.
    179.Zeng ZB.Precision mapping of quantitative trait loci.Genetics,1994,136, 1457-1468.
    180.Zhu J.and weir B S.Mixed model approaches for genetic quantitative traits. In: Chen L S, Ruan S G, and zhu J (eds) Advanced Topics in Biomathematics: Proceedings of international Conference on mathematical Biology.Singapore:World Scientific publishing Co,1998,321-330.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700