用户名: 密码: 验证码:
TLX基因对大鼠真皮多能干细胞增殖和成神经细胞分化及移植治疗脊髓损伤的影响研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
TLX基因最初是作为一个“孤儿”核受体发现的,其功能不明。但近来研究结果表明,TLX基因在神经系统发育过程中具有重要意义,是维持成体干细胞增殖和成神经分化的关键基因。
     脊髓损伤(Spinal Cord Injury, SCI)后神经细胞再生能力不足是影响损伤脊髓功能恢复的关键,神经细胞的再生问题一直是困扰神经科学工作者的大难题。目前可用于治疗脊髓损伤的种子细胞来源主要包括:胚胎来源干细胞;来源于神经系统的具有促神经再生作用的细胞;其他具有成神经分化潜能的成体干细胞。胚胎干细胞具有分化全能性和无限增殖的能力,进行成神经诱导分化后用于脊髓损伤治疗时具有替代受损神经元、重建神经元回路的作用,但考虑到伦理学、法律学、组织相容性以及胚胎的来源等难题,其临床应用目前还受到限制。多种来源于神经系统的细胞在脊髓损伤时可作为种子细胞,具有促神经功能恢复作用,但这些细胞在成年个体中数量较少,增殖能力较为有限,并且取材困难,行自体移植时尤为明显;而进行异体移植则要面临组织相容性和免疫相斥等难题。近来多种具有成神经分化潜能的间充质干细胞在脊髓损伤中的研究受到了关注,并有望为脊髓损伤治疗提供新的种子细胞来源。因此,研究真皮多能干细胞高效定向成神经分化的机制及调控将为解决脊髓移植供体细胞来源探索新的途径。基因治疗也是一种促进脊髓损伤再生的有希望的措施,基因修饰DMSCs移植则是结合了两者的优点。
     为了确定TLX基因对DMSCs增殖和成神经细胞分化的影响以及TLX基因工程化DMSCs对SCI后神经再生和功能修复的影响,本文就此进行了系列研究。⑴大鼠TLX基因的克隆及含TLX基因的全长编码序列的真核表达载体的构建和表达;⑵观察大鼠TLX基因对DMSCs的增殖和成神经分化的影响;⑶将TLX基因修饰DMSCs移植到大鼠脊髓全横断模型的损伤部位,观察移植物能否促进脊髓功能的恢复,来阐明TLX基因修饰DMSCs在SCI恢复中所起的作用。希望通过移植物(TLX基因修饰DMSCs)恒定表达TLX,使移植区具有高浓度的TLX,通过TLX高效、定向诱导DMSCs分化为神经细胞,可能为SCI再生修复提供更合适的种子细胞。主要结果如下:
     1、利用设计合成的TLX简并引物,以成年大鼠大脑组织总RNA为模板,进行RT-PCR,我们首次成功扩增出大鼠TLX全长编码序列,序列在线BLAST发现,其与大鼠预测的TLX序列99%相似,证实扩增和克隆成功,将大鼠TLX序列登陆GeneBank,获得Gene accession number:EU316216。
     2、利用RT-PCR的产物,采用定向克隆的方法,先进行T/A克隆,然后成功地将TLX cDNA全长序列亚克隆到pEGFPN1真核表达载体上。在此基础上,将重组质粒pEGFPN1-TLX转染到DMSCs中,用荧光显微镜下观察到荧光蛋白的表达和用RT-PCR方法检测到TLXmRNA的表达,说明TLX已成功转染DMSCs并能在DMSCs中表达。
     3、MTT法研究显示TLX可以促进DMSCs的增殖;DMSCs经诱导后可分化成神经细胞,分化出来的细胞中,星形胶质细胞的比例较高,而神经元比例较低。TLX可以促进DMSCs向神经元方向分化,TLX/DMSCs分化出来的细胞中,与未转染TLX的DMSCs相比,神经元的比例明显增高,而星形胶质细胞比例降低。
     4、将DMSCs和TLX基因修饰DMSCs移植入大鼠脊髓全横断处,结果显示DMSCs和TLX基因修饰DMSCs都能在宿主脊髓内存活和整合,并使脊髓形态学结构达到部分恢复;行为学检测检测显示大鼠脊髓运动功能得到部分恢复,其中移植TLX基因修饰DMSCs使大鼠的功能恢复更好一些。
     综上所述,我们首次成功的地扩增出大鼠TLX基因并构建了含TLX基因全长编码序列的真核表达载体。进一步研究显示TLX基因可以促进DMSCs增殖和向神经元方向分化,抑制DMSCs向星形胶质细胞的分化;移植TLX基因修饰DMSCs可以促进大鼠脊髓损伤后功能和形态的部分恢复,表现为行为学评分明显增高、损伤区空洞和瘢痕面积缩小和通过损伤区的神经纤维数量增多,与移植单纯DMSCs相比较,移植TLX基因修饰的DMSCs治疗效果要显著一些。结果提示TLX基因可能通过提高DMSCs向神经元分化而抑制星形胶质细胞的产生、减少胶质瘢痕形成具有促进脊髓损伤后神经再生和功能重建的作用,为临床治疗脊髓损伤提供新思路。
TLX belongs to a class of orphan nuclear receptors that underlies many aspects of neural development in the CNS. TLX gene was expressing in vertebrates forebrain during embryogenesis, it can help maintaining neural progenitor cells quantities and play an important role in its differentiation into neurons,TLX gene knock-out mice its neural progenitor cells proliferative state and differentiation into neuronsability were influenced. TLX also underlies a fundamental developmental program of retinal organization and controls the generation of the proper numbers of retinal progenies and development of glial cells during the protracted period of retinogenesis. In addition, TLX gene can significantly inhibit expression of the astroglial marker glia fibrillary acidic protein (GFAP) in neural stem cells.
     Many stem cells such as ESCs and NSCs can be used to treat a lot of neurological disease. But the use of embryonic stem cells ESC may raise ethical issues and practical problems such as the fate of the embryonic cells in adult environment and the required immunosuppression. NSCs transplantation, indeed, is limited by the inaccessibility of its source, that is located deeply in the brain. Therefore the identification of a readily accessible source of neural cells obtainable without invasive procedures could be of a great benefit. Several non-neuronal tissues can be a source of adult stem cells capable of neuronal differentiation. Recently it has been shown that dermal multipotential stem cells is present in the dermis of mammalian skin, and if grown in vitro it preferentially forms floating spheres constituted by cells positive for fibronectin and nestin. After long term and continuous cultured, dermal multipotential stem cells maintain highly proliferative and differentiative ability, which suggests that DMSCs is a perfect“seed”cells in cell substitute therapy.
     Both the absence of neuronal regeneration ability and local environment factor in spinal cord injury are harmful to the repairment of injuried spinal cord tissues. The recovery of spinal cord after injury is all along a difficult problem that puzzles the neuroscientists. Numerious studies had been carried out by neuroscientists, and some encourage results had been obtained. Dermal multipotential stem cells (DMSCs) transplantation had been a prospect treatment for spinal cord injury (SCI). Deliveries of therapeutic genes are also new and promising strategies to simulate regeneration of spinal cord after injury. DMSCs engineered by gene combines the therapeutic values of DMSCs transplantation and gene delivery.
     In order to determin the effects of TLX gene on the proliferation and differentiation into neurons of DMSCs and see if the DMSCs and DMSCs engineered by TLX gene have the effects of promoting the regeneration and function recovery of SCI, a series of studies were carried out as follows: (1)clone rat TLX CDS sequence and built pEGFPN1 vector containing TLX gene complete CDS sequence, and examined its expression; (2)explored effects of TLX in proliferation and differentiation into neurons of DMSCs; (3) transplanted DMSCs modified by TLX gene into the area of spinal cord transverse in rats, explored effects of transplantation on promoting function recovery of spinal cord, and clarified roles of DMSCs modified by TLX gene on recovery of SCI in rats. We hope that the transplantation material- DMSCs modified by TLX gene express TLX protein eternally, and provide a possible agreeable microenvironment for regeneration and recovery of spinal cord after injury. The main results are as following:
     1. In this study, rat TLX full length CDS sequence was amplificatied through Reversetranscription-PCR(RT-PCR), the TLX degenerate primers were used and the total RNA in adult rat brain was the amplificative templet. Basic local alignment search tool (BLAST) search online found that the sequence was 99% similarity to the rat TLX predicted sequence. It suggested that we successfully cloned the rat TLX gene. The sequence was submitted to GeneBank , We get a Gene accession number:EU316216.
     2. Using RT-PCR product, the TLX cDNA was cloned to pMD18-T, then identified pMD18-T-TLX by double enzyme cutting by means of restriction enzyme BamHI and HindⅢ,and then the TLX fragment second-cloned to lined pEGFPN1. Then the pEGFPN1- TLX was transferred to DMSCs. The GFP expression and TLX expression was detected with fluorescence microscope and RT-PCR respectively. The results suggests that pEGFPN1-TLX was successfully constructed .In adition, the result of RT-PCR indicates that the TLX was successfully transferred to DMSCs and expressed in DMSCs.
     3. Using MTT we conclude that TLX can promote the proliferation of DMSCs;When DMSCs differentiated in vitro, DMSCs can be differentiated into neurons and astrocytes, and the the percent of astrocytes was higher than neuons,While DMSCs modified by TLX gene differentiated, the percent of neurons increased. TLX helped the differentiation of DMSCs to neurons, but the percent of astrocytes decreased.
     4. DMSCs and DMSCs modified by TLX gene were transplanted into spinal cord transverse injured site. The results indicated that DMSCs and DMSCs modified by TLX gene survived and integrated into the host spinal cord, the structure and fuction of spinal cord were recovered partially. It seems that transplantations promoted partial recovery of motor functions of spinal cord, and the effects of DMSCs modified by TLX gene group seems better than that of the DMSCs group.
     In summary, we successfully cloned the rat TLX gene. The sequence was submitted to GeneBank , We get a Gene accession number:EU316216. And then we built pEGFPN1 vector containing TLX gene complete sequence. Results showed TLX gene promoted the proliferation and the differentiation of DMSCs to neurons and inhibited the differentiation of DMSCs to astrocytes. The transplantation of DMSCs and DMSCs modified by TLX gene promoted recovery of structure and function of spinal cord after injury, the effects of DMSCs modified by TLX gene were a litter better than that of DMSCs. Our results indicated that TLX gene probably involved in the processs of repair of spinal cord and rebuilding of function through helped the differentiation of DMSCs to neurons and inhibited the differentiation to astrocytes. The results of this study provide some fundmental information for the clinical application of SCI..
引文
1. Murray M. Cellular transplants: steps toward restoration of function in spinal injured animals. Prog Brain Res, 2004,143:133-146.
    2. Mauney JR, Kaplan DL, Volloch V, et al. Matrix-mediated retention of osteogenic differentiation potential by human adult bone marrow stromal cells during ex vivo expansion. Biomaterials, 2004,25(16):3233-3243.
    3. Jones DG, Anderson ER, Galvin KA, et al. Spinal cord regeneration: Moving tentatively towards new perspectives. NeuroRehabilitation, 2003,18(4):339-351.
    4. Miya D. Fetal transplants alter the development of function after spinal cord transection in newborn rats. J Neurosci, 1997; 17:4856-4866.
    5. Xu XM. Axonal regeneration into Schwann cell-seeded guidance channels grafted into transected adult rat spinal cord. J comp. Neurol, 1995; 351:145-155.
    6. Li Y, Field PM, Raisman G, et al. Repair of adult corticospinal tract by transplants of olfactory ensheathing cells. Science, 1997; 277:2000-2012.
    7. Mckay R. Stem cells in the central nervous system. Science, 1997,276(5309):66-77.
    8. Clarke DL, Johansson CB, Wilbertz J, et al. Generalized potential of adult neural stem cells. Science, 2000; 288(5471): 1660-1671.
    9. Wozniak K. Multipotent stem cells in adult mammalian central nervous system. Folia Morphol Warsz, 1999; 58(3 suppl 2):57-69.
    10. Rubio FJ, Bueno C, Villa A, et al. Genetically perpetuated human neural stem cells engraft and differentiate into the adult mammalian brain. Mol Cell Neurosci, 2000; 16(1):1-12.
    11. Gage FH. Mammalian neural stem cells. Science, 2000; 287(5457):1433-1443.
    12. Johansson CB, Momma S, Clarke DL, et al. Identification of a neural stem cell in the adult mammalian central nervous system. Cell, 1999; 96(1):25-36.
    13.赵宗茂,张庆俊,韩忠朝,等。骨髓间质干细胞移植对大鼠脊髓损伤神经功能恢复的影响。中华神经外科杂志,2003,19(1):58-62.
    14. Young HE, Steele TA, Bray RA, et al. Human reserve pluripotent mesenchymal stem cells are present in the connective tissues of skeletal muscle and dermis derived from fetal, adult, and geriatric donors. Anat Rec. 2001,264(1):51-62.
    15. Toma JG, Akhavan M, Fernandes KJ, et al. Isolation of multipotent adult stem cells from the dermis of mammalian skin. Nat Cell Biol, 2001, 3(9):778-784.
    16.史春梦,程天民。大鼠真皮间充质干细胞的体外长期培养及胶原海绵对其生长的影响.生物医学工程学杂志,2002,19(4):660-663.
    17. Land PW, Monaghan AP. Expression of the transcription factor, tailless, is required for formation of superficial cortical layers. Cereb Cortex, 2003,13(9):921-931.
    18. Roy K, Thiels E, Monaghan AP, et al. Loss of the tailless gene affects forebrain development and emotional behavior. Physiol Behav, 2002,77(4-5):595-600.
    19. Logan C, Millar C, Bharadia V, et al. Onset of Tlx-3 expression in the chick cerebellar cortex correlates with the morphological development of fissures and delineates a posterior transverse boundary. J Comp Neurol, 2002,448(2):138-149.
    20. Shi Y, Lie DC, Taupin P, et al. Expression and function of orphan nuclear receptor TLX in adult neural stem cells. Nature,2004,427(6969),78-83.
    1. Land PW, Monaghan AP. Expression of the transcription factor, tailless, is required for formation of superficial cortical layers. Cereb Cortex, 2003,13(9):921-931.
    2. Roy K, Thiels E, Monaghan AP. Loss of the tailless gene affects forebrain development and emotional behavior. Physiol Behav, 2002,77(4-5):595-600.
    3. Logan C, Millar C, Bharadia V, et al. Onset of Tlx-3 expression in the chick cerebellar cortex correlates with the morphological development of fissures and delineates a posterior transverse boundary. J Comp Neurol, 2002,448(2):138-149.
    4. Sun–G, Yu–R-T, Evans–R-M, et al. Orphan nuclear receptor TLX recruits histone deacetylases to repress transcription and regulate neural stem cell proliferation.Proc Natl Acad Sci USA. 2007 Sep 25; 104(39): 15282-15287.
    5.金东雁、黎孟枫等译。分子克隆实验指南。第二版:北京,科学出版社,1999.
    6. Yang HL , Jiang HJ , Fang WY, et al . High fidelity PCR with an off/ on switch mediated by proofreading polymerases combining with phosphorothioate modified primer. Biochem Biophys Res Commun , 2005 , 328∶265-272.
    7. Fischer I, Liu Y. Gene Therapy strategies in CNS axon regeneration. In: Ingoglia N, Murray M, eds. Regeneration in Vertebrate CNS. Marcel Dekker, NY 2000.
    8. Liu Y, Himes BT, Moul J et al. Application of recombinant adenovirus for in vivo gene delivery to spinal cord. Brain Res 1997;768:19-29.
    9. Tuszynski MH, Weidner N, McCormack M, et al.Grafts of genetically modified Schwann cells to the spinal cord: survival, axon growth, and myelination. Cell Transplantation 1998;7:187-196.
    10. Nakajima–H, Uchida–K, Kobayashi–S, et al.Targeted retrograde gene delivery into the injured cervical spinal cord using recombinant adenovirus vector.Neurosci-Lett. 2005 Sep 2; 385(1): 30-35.
    11. Takahashi K, Schwarz E, Ljubetic C, et al. A DNA plasmid that codes for the human BCl2 gene preserves axotomized Clarke’s nucleus neurons and reduces atrophy after spinal cord hemisection in adult rats. J Comp Neurol 1999;404:159-171.
    12. Valdivia RH, Cormack BP, Falkow S.The uses of green fluorescent protein in prokaryotes. Methods Biochem Anal. 2006;47:163-78.
    13. Cormack B. Green fluorescent protein as a reporter of transcription and protein localization in fungi. Curr Opin Microbiol. 1998 Aug;1(4):406-410.
    14. Cormack BP, Valdivia RH, Falkow S. FACS-optimized mutants of the green fluorescent protein (GFP). Gene. 1996;173(1 Spec No):33-38.
    15. Kozak M.An analysis of 5'-noncoding sequences from 699 vertebrate messenger RNAs. Nucleic Acids Res. 1987 Oct 26;15(20):8125-8148.
    1.赵宗茂,张庆俊,韩忠朝,等。骨髓间质干细胞移植对大鼠脊髓损伤神经功能恢复的影响。中华神经外科杂志,2003,19(1):58-62.
    2. Young HE, Steele TA, Bray RA, et al. Human reserve pluripotent mesenchymal stem cells are present in the connective tissues of skeletal muscle and dermis derived from fetal, adult, and geriatric donors. Anat Rec. 2001,264(1):51-62.
    3. Toma JG, Akhavan M, Fernandes KJ, et al. Isolation of multipotent adult stem cells from the dermis of mammalian skin. Nat Cell Biol, 2001, 3(9):778-784.
    4.史春梦,程天民。大鼠真皮间充质干细胞的体外长期培养及胶原海绵对其生长的影响.生物医学工程学杂志,2002,19(4):660-663.
    5. Gorio A., Torrente Y,. Madaschi L, et al. Fate of autologous dermal stem cells transplanted into the spinal cord after traumatic injury (TSCI). Neuroscience 2004,125:179–189.
    6. Land PW, Monaghan AP. Expression of the transcription factor, tailless, is required for formation of superficial cortical layers. Cereb Cortex, 2003,13(9):921-931.
    7. Roy K, Thiels E, Monaghan AP. Loss of the tailless gene affects forebrain development and emotional behavior. Physiol Behav, 2002,77(4-5):595-600.
    8. Logan C, Millar C, Bharadia V, et al. Onset of Tlx-3 expression in the chick cerebellar cortex correlates with the morphological development of fissures and delineates a posterior transverse boundary. J Comp Neurol, 2002,448(2):138-149.
    9. Woodbury D, Schwarz EJ, Prockop DJ, Black IB. Adult rat and human bone marrow stromal cells differentiate into neurons. J Neurosci Res. 2000,61:364-370.
    10. LIU Yong-Zhong, Li Jin-Jun, ZHANG Feng-Rui, et al. Exogenous expression of SOCS Box-deficient mutant ASB-8 suppresses the growth of lung adenocarcinoma SPC-A1 cells. ACTA BIOCHIMICA et BIOPHYSICA SINICA 2003, 35(6): 548-553.
    11.金东雁、黎孟枫等译。分子克隆实验指南。第二版:北京,科学出版社,1999.
    12. Deans RJ , Moseley AB. Mesenchymal stem cells:biology and potential clinical uses. Exp Heamatol, 2000; 28 (8):875-886.
    13. Yang L Y, L iu XM , Hui GZ, et al. Salvia m iltio rrh iza induce bone marrow stromal cells into neurons. Ch in J Neurosurg Disease Res, 2003; 2 (1):29-33.
    14. Young HE, Steele TA , Bray RA , et al. Human reserve pluripotent mesenchymal stem cells are p resent in the connective tissues of skeletal muscle and derm is derived from fetal, adult, and geriatric donors. Anat Rec, 2001; 264 (1) :51-62.
    15. Zuk PA , Zhu M , M izuno H, et al. Multilineage cells from humanadipose tissue: implications for cell-based therapies.Tissue Engineering, 2001; 7 (2):211-221.
    16. Yang LY, Liu XM , Sun B, et al. Experimental study on stromal cells derived from adipose tissue and expressing neuronal phenotypes. Chin J Neuromedicine, 2002; 1 (1) :45-49.
    17. Young HE, Steele TA, Bray RA, et al. Human reserve pluripotent mesenchymal stem cells are present in the connective tissues of sketetal, muscle and dermis derived from fetal, adult and geriatric donor. Anat Rec, 2001,264:51-62.
    18. Toma JG,Akhavan M,Fernandes KJ, et al. Isolation of multipotent adult stem cells from the dermis of mammalian skin. Nat Cell Biol, 2001,3:778-784.
    19. Bartsch G, Yoo JJ, Coppi PD, et al. Propagation, Expansion, and Multilineage Differentiation of Human Somatic Stem Cells from Dermal Progenitors. Stem Cell and Dev, 2005,14:337-348.
    20. Medina RJ, Kataok K, Tskaishi M, et al. Isolation of Epithelial Stem Cells From Dermis by a Three- Dimensional Culture System. J Cell Biochem, 2006,98:174-184.
    21. Joannides A, Gaughwin P, Schwiening C, et al. Efficient generation of neural precursors from adult human skin: astrocytes promote neurogenesis from skin- derived stem cells [J]. Lancet, 2004,364:172 -178.
    22. Belcchi M, Pisati F, Lopa R, et al. Human Skin- Derived Stem Cells Migrate Throughout Forebrain and Differentiate Into Astrocytes After Injection Into Adult Mouse Brain[J]. J Neurosci Res, 2004,77:475-486.
    23. Gorio A, Torrente Y, Madaschi L, et al. Fate of autolocous dermal stem cells transplanted into the spinal cord after traumatic injury (tsci). Neusci, 2004, 125:179-189.
    24. Midha R, McKenzie I, Biernaskie J, et al. Skin derived dtem cells: A source of schwann cells that survive and ensheath axons upon transplantation into peripheral nerve . J Peripheral Nervous Sys,2005, 10(Supplement):61-62.
    25. Fernandes KJL, McKenzie IA, Mill P, et al. A dermal niche for multipotent adult skin-derived precursor cells [J]. Nat Cell Biol,2004,6:1082-1093.
    26. Toma JG, McKenzie IA, Bageli D,et al. Isolation and Characterization of Multipotent Skin- Derived Precursors from Human Skin .Stem Cell, 2005,23:727-737.
    27. Pluderi M, Costa F, Giussani C, et al. In Vivo Targeting Ability of Human Glioblastoma by Human Skin - derived Stem Cells .Congress Neuro Surg, 2003,5,3:489.
    28. Kobayashi NR, Mukhida K, Miller F, et al. Trophic effect of skin derived precursor cells for rat fetal ventral mesencephalon and sequential co-grafting in the rat model of Parkinson’s disease. Exp Neuro, 2006,198:558-597.
    29. McKenzie IA, Biernaskie J, Toma JG, et al. Skin- Derived Precursors Generate Myelinating System Schwann Cells for the Injured and Dysmyelinated Nervous. J Neurosci 2006,26:6651-6660.
    30.史春梦,程天民.大鼠真皮多能间充质干细胞的分离培养.第三军医大学学报,2001, 23(9):1068~1070.
    31.刘志君.VEGF165转染真皮多能干细胞及其对放创复合难愈性创面促愈的实验研究.第三军医大学硕士学位论文,2004.
    32.闫国和,粟永萍,王军平,等。重组真核表达载体pEGFP- N/PDGFA的构建及真皮干细胞的转染.第三军医大学学报,2005,27(20):2005-2008.
    33.李楠,肖桃元,粟永萍,等.人β防御素2腺病毒表达载体的构建及其在大鼠真皮多能干细胞中的表达.创伤外科杂志, 2006,8(1):69-72.
    34. Finley KD, Taylor BJ, Milstein M, et al. Dissatisfaction, a gene involved in sex-specific behavior and neural development of Drosophila melanogaster. Proc Natl Acad Sci USA 1997;94: 913-918.
    35. Monaghan,A.P., Grau,E., Bock,D. et al. The mouse homolog of the orphan nuclear receptor tailless is expressed in the developing forebrain. Development 1995;121 (3), 839-853.
    36. Yu, R.T., Chiang, M.Y., Tanabe, T., et al. The orphan nuclear receptor Tlx regulates Pax2 and is essential for vision. Proc.Natl. Acad. Sci. 2000 ;97: 2621–2625.
    37. Yu RT, McKeown M, Evans RM, and Umesono K.Relationship between Drosophila gap gene tailless and a vertebrate nuclear receptor Tlx. Nature (Lond) 1994; 370: 375-379.
    38. Uemura A, Kusuhara S, Wiegand SJ, et al. Tlx acts as a proangiogenic switch byregulating extracellular assembly of fibronectin matrices in retinal astrocytes. J Clin Investig 2006;116: 369-377.
    39. Shi Y, ChichungLie D, Taup in P, et al. Expression and function of orphan nuclear receptor TLX in adult neural stem cells. Nature,2004, 427: 782-783.
    40. Land PW and Monaghan APAbnormal development of zinc-containing cortical circuits in the absence of the transcription factor Tailless. Brain Res Dev Brain Res 2005;158: 97-101.
    41. Land PW and Monaghan AP .Expression of the transcription factor, tailless, is required for formation of superficial cortical layers. Cereb Cortex 2003; 13: 921-931.
    42. Miyawaki T, Uemura A, Dezawa M, et al. Tlx, an orphan nuclear receptor, regulates cell numbers and astrocyte development in the developing retina. J Neurosci 2004;24: 8124-8134.
    43. Zhu J, Wu X, Zhang HL. Adult neural stem cell therapy:expansion in vitro, tracking in vivo and clinical transp lantation. Curr DrugTargets, 2005, 6: 97-110.
    44. Yu, R.T., Chiang, M.Y., Tanabe, T., et al. The orphan nuclearreceptor Tlx regulates Pax2 and is essential for vision. Proc.Natl. Acad. Sci. 2000 ;97: 2621–2625.
    45. Chun-Li Zhang, Yuhua Zou, Ruth T. Yu, Fred H. Gage and Ronald M. Evans. Nuclear receptor TLX prevents retinal dystrophy and recruits the corepressor atrophin1 Genes & Dev. 2006;20: 1308-1320.
    46. Sun G, Yu RT, Evans RM, et al.recruits histone deacetylases to repress transcription and regulate neural stem cell proliferation.Proc-Natl-Acad-Sci-USA.2007 Sep 25; 104(39): 15282-15287.
    1. Gorio A, Torrente Y, Madaschi L, et al. Fate of autolocous dermal stem cells transplanted into the spinal cord after traumatic injury (tsci). Neusci, 2004, 125:179-189.
    2. Land PW and Monaghan AP. Abnormal development of zinc-containing cortical circuits in the absence of the transcription factor Tailless. Brain Res Dev Brain Res 2005;158: 97-101.
    3. Basso DM, Beattie MS, Bresnahan JC, et al. MASCIS evaluation of open field locomotor scores: effects of experience and team work on reliability. J Neurotrauma, 1996; 13(2): 343-353.
    4. Basso DM, Beattie MS, Bresnahan JC. A sensitive and reliable locomtor rating scale for open field testing in rats. J Neurotrauma, 1995; 12(1): 1-11.
    5. Gale K, Kerasidis H, Wrathall JR. Spinal cord contusion in the rat: behavioral analysis of functional neurologic impairment. Exp Neurol, 1985; 88(1): 123-133.
    6.方福德,周吕,丁濂,等.现代医学实验技巧全书(上册).第1版.北京:北京医科大学中国协和医科大学联合出版社,1995.83-84.
    7. Zaitsev EN, Kowalczykowski SC. Binding of double-stranded DNA by Escherichia coli RecA protein monitored by a fluorescent dye displacement assay. Nucl Acids Res,1998,26(2):650-654.
    8. Metz GA, Curt A, van de Meent H, et al. Validation of the weight-drop contusionmodel in rats:a comparative study of human spinal cord injury. J Neurotrauma, 2000,17(1):1-17.
    9. Resnick DK, Nguyen P, and Cechvala CF. Regional and temporal changes in prostaglandin E2 and thromboxane B2 concentrations after spinal cord injury. Spine J, 2001,1(6):432-436.
    10. Tuszynski MH, Grill R, Jones LL, et al. NT-3 gene delivery elicits growth of chronically injured corticospinal axons and modestly improves functional deficits after chronic scar resection. Exp Neurol,2003(1)181:47-56.
    11. Zivin JA,Saito HT. Reduction of neurological damage by a peptide segment of the amyloid beta/A4 protein precursor in a rabbit spinal cord ischemia model. Exp Neurol, 1994,129(1):112-119.
    12. Cameron T, Predo R, Watson BD, et al. Photochemically induced cystic lesion in the rat spinal cord. I. Behavioral and morphological analysis. Exp Neurol, 1990,109(2): 214-223.
    13. Murry M, Goldberger ME. Restitution of function and collateral sprouting in the catspinal cord:The partially hemisected ani-mal. J Comp Neurol, 1974; 158(1 ): 19-28.
    14. L ittle JW, Harris RM, Sohlberg RC. Locomotor recovery following subtotal spinal cord lesions in a rat model. Neurosci Lett, 1988; 81(1):25-36.
    15. Basso DM, Beattie MS, Bresnahan JC, et al. MASCIS evaluation of open field locomotor scores: effects of experience and team work on reliability. J Neurotrauma, 1996; 13(2): 343-352.
    16. Basso DM, Beattie MS, Bresnahan JC. A sensitive and reliable locomtor rating scale for open field testing in rats. J Neurotrauma, 1995; 12(1):1-12.
    17. Talac R, Friedman J. A , Moore MJ , et al. A nimal models of spinal cord injury for evaluation of tissue enginering treatmentstrategies. Biomaterials, 2004, 25 (9) : 1505~1510.
    18. Ray J, Palmer TD, Shihabuddin LS, Gage FH. The use of neural progenitor cells for therapy in the CNS disorders. In: Tuszynski MH, Kordower JH, eds. CNS Regeneration. Academic Press; 1999. 183-192.
    19. Mauney JR, Kaplan DL, Volloch V. Matrix-mediated retention of osteogenic differentiation potential by human adult bone marrow stromal cells during ex vivoexpansion. Biomaterials, 2004,25(16):3233-3243.
    20. Jones DG, Anderson ER, Galvin KA. Spinal cord regeneration: Moving tentatively towards new perspectives. NeuroRehabilitation, 2003,18(4):339-351.
    21.赵宗茂,张庆俊,韩忠朝,等。骨髓间质干细胞移植对大鼠脊髓损伤神经功能恢复的影响。中华神经外科杂志,2003,19(1):58-62。
    22. Fricker RA , Carpenter MK, Winkler, et al. Site-specific migration and neuronaldifferentiation of human neural progenitor cells after transplantation in the adult rat brain. J Neurosci,1999,19(4):5990-6005.
    23. Wu S, Suzuki Y, Kitada M, et al. Migration, integration, and differentiation of hippocampus-derived neurosphere cells after transplantation into injured rat spinal cord. Neurosci Lett,2001,312(3):173-176.
    24. Liu Y, Himes BT, Solowska J, et al. Intraspinal delivery of neurotrophin-3 using neural stem cells genetically modified by recombinant retrovirus. Exp Neurol,1999,158(1): 9-26.
    25. Qi-lin C, Zhang YP, Howard RM, et al. Pluripotent stem cells engrafted into the normal or lesioned adult rat spinal cord are restricted to a glial lineage. Exp neurol, 2001,167(1):48-58.
    26. Alexanian AR, Sieber-Blum. Differentiating adult hippocampal stem cells into neural crest derivatives. Neuroscience,2003,118(1):1-5.
    27. Hasegawa K, Chang YW, Li H, et al.Embryonic radial glia bridge spinal cord lesions and promote functional recovery following spinal cord injury.Exp Neurol, 2005, 193( 2) : 394- 410.
    28. Ishii K, Nakamura M, Dai H, et al. Neutralization of ciliary neurotrophic factor reduces astrocyte production from transplanted neural stem cells and promotes regeneration of corticospinal tract fibers in spinal cord injury.J Neurosci Res, 2006, 84( 8) : 1669- 1681.
    29. Chen J, Bernreuther C, Dihne M, et al. Cell adhesion molecule 11- transfected embryonic stem cells with enhanced survival support regrowth of corticospinal tract axons in mice after spinal cord injury.J Neurotrauma, 2005, 22( 8) : 896- 906.
    30. Hamada M, Yoshikawa H, Ueda Y, et al. Introduction of the MASH1 gene into mouse embryonic stem cells leads to differentiation of motoneuron precursors lacking Nogoreceptor expression that can be applicable for transplantation to spinal cord injury.Neurobiol Dis, 2006, 22( 3) : 509- 522.
    31. Dohrmann GJ,and Wick KM. Intramedullary blood flow patterns in transitory traumatic paraplegia. Surg Neurol, 1973,1(1):209-215.
    32. Weirich SD,Cotler HB,Narayana PA, et al. Histopathologic correlation of magnetic resonance imaging signal patterns in a spinal cord injury model. Spine, 1990, 15(7):630-638.
    33. Yan P, Liu N, Kim GM, et al. Expression of the type 1 and type 2 receptors for tumor necrosis factor after traumatic spinal cord injury in adult rats. Exp Neurol, 2003,183(2):286-297.
    34. Bao F, Chen Y, Dekaban GA, et al. Early anti-inflammatory treatment reduces lipid peroxidation and protein nitration after spinal cord injury in rats. J Neurochem, 2004,88(6):1335-1344.
    35. Lipton SA, Choi YB, Pan ZH, et al. A redox-based mechanism for the neuroprotective and neurodestructive effects of nitric oxide and related nitroso-compounds. Nature,1993,364(6438):626-632.
    36. Fouad K,Schnell L,Bunge MB, et al. Combining Schwann cell bridges and olfactory-ensheathing glia grafts with chondoitinase promotes locomotor recovery after complete transection of the spinal cord . Neurosci, 2005, 25 (1) : 1169-1178.
    37. Hideyuki Okano,Yuto Ogawa,Masaya Nakamura, et al. transplatation of neural stem cells into the spinal cord after injury. Seminars in cell & Developmental Biology, 2003,14(1):191-198.
    38. Gale K,Kerasidis H,Wrathall JR. Spinal cord contusion in the rat:behavioral analysis of functional neurologic impairment. Exp Neurol, 1985, 88(1):123-134.
    39. Hara M, Takayasu M, Watanabe K. et al. Protein kinase inhibition by fasudil hydrochloride promotes neurological recovery after spinal cord injury in rats. J Neurosurg, 2000,93(1Suppl):S94-S101.
    40. Basso DM, Beattie MS, Bresnahan JC, et al. MASCIS evaluation of open field locomotor scores: effects of experience and team work on reliability. J Neurotrauma, 1996; 13(2): 343-353.
    41. Basso DM, Beattie MS, Bresnahan JC. A sensitive and reliable locomtor rating scalefor open field testing in rats. J Neurotrauma, 1995; 12(1): 1-11.
    42. Li W, Sun G, Yang S, et al. Nuclear receptor TLX regulates cell cycle progression in neural stem cells of the developing brain. Mol Endocrinol, 2008,Jan;22(1):56-64.
    43. Shi Y, ChichungLie D, Taup in P, et al. Expression and function of orphan nuclear receptor TLX in adult neural stem cells. Nature,2004, 427: 782-783.
    44. Sun G, Yu RT, Evans RM, et al.recruits histone deacetylases to repress transcription and regulate neural stem cell proliferation.Proc-Natl-Acad-Sci-USA.2007 Sep 25; 104(39): 15282-15287.
    45. Zhu J, Wu X, Zhang HL. Adult neural stem cell therapy:expansion in vitro, tracking in vivo and clinical transp lantation. Curr DrugTargets, 2005, 6: 97-110.
    46. Zhang CL, Zou Y, He W, et al.A role for adult TLX-positive neural stem cells in learning and behaviour.Nature, 2008 Feb 21;451(7181):1004-1007.
    47. Milev P, Chiba A, Haring M, et al. High affinity binding and overlapping localization of neurocan and phosphacan/protein-turosine phosphatase-zeta/beta with tenascin-R, amphoterin, and the heparin-binding growth-associated molecule. J Biol Chem, 1998,273(12):6998-7005.
    48. Bandtlow CE, Schmidt MF, Hassinger TD, et al. Role of intracellular calcium in NI-35-evoked collapse of neuronal growth cones. Science,1993,259(5091):80-83.
    49. Ziv Y, Avidan H, Pluchino S, et al.Synergy between immune cells and adult neural stem/progenitor cells promotes functional recovery from spinal cord injury.Proc Natl Acad Sci U S A, 2006, 103( 35) : 13174- 13179.
    50. Guo JS, Zeng YS, Li HB, et al. Cotransplant of neural stem cells and NT- 3 gene modified Schwann cells promote the recovery of transected spinal cord injury[J].Spinal Cord, 2007, 45( 1) : 15- 24 .
    1. Aguayo AJ, Bray GM, Carter DA, et al. Regrowth and connectivity of injured central nervous system axons in adult rodents. Acta Neurobiol Exp, 1990;50(4-5):381-9.
    2. Allen AR. Surgery of experimental lesion of spinal cord equivalent to crush injury of fracture dislocation of spinal colum. JAMA, 1991, 57(10):878-880.
    3. Tarlov IM, Klinger H, Vitale S. Spinal cord compression studies. I. Experimental techniques to produce acute and gradual compression. AMA Arch Neurol Psychiatry,1953,70(6):813-819.
    4. Basso DM, Beattie MS, Bresnahan JC. Graded histological and locomotor outcomes after spinal cord contusion using the NYU weightdrop device versus transaction. Exp Neurol, 1996,139(2):244-256.
    5. Bavetta S, Hamlyn PJ, Burnstock G, et al. The effects of FK506 on dorsal column axons following spinal cord injury in adult rats: neuroprotection and local regeneration. Exp neurol, 1999,158(2):382-393
    6. Talac R, Friedman J. A , Moore MJ , et al. A nimal models of spinal cord injury for evaluation of tissue enginering treatmentstrategies. Biomaterials, 2004, 25 (9) : 1505~1510.
    7. Brosamle C,Huber AB,Schwab ME. Regeneration of les ionedcorticospinal tract fibers in the a rat included by a recombinant humanized IN-1 antibody fragment. Neurosci 2000; 20(21):8061-8068.
    8. Thomas AJ , Nockels RP, Pan HQ, et al. Proges terone is neuroprotective after acute experimental spinal cord trauma in rat.Spine 1999; 24 (20): 2134-2138
    9. von Euler M, Seiger A, Sunds trom E. Clip compres s ion injury in the spinal cord: a correlative s tudy of neurological and morphological alterations .Exp Neurol 1997;145(2 Pt 1):502-510
    10. Haghighi SS, Perez-Espejo MA, Rodriguez F, et al. Radiofrequency as a les ioning model in experimental spinal cord injury.Spinal Cord 1996;341 (4):214-219
    11. Zivin JA,Saito HT. Reduction of neurological damage by a peptide segment of the amyloid beta/A4 protein precursor in a rabbit spinal cord ischemia model. Exp Neurol, 1994,129(1):112-119.
    12. Chavko M, Kalincakova K, Kluchova D, et al. Blood flow and electrolytes in spinal cord ischemia. Exp Neurol, 1991,112,(3):299-303.
    13. Watson BD, Prado R, Dietrich WD, et al. Photochemically induced spinal cord injury in the rat. Brain Res, 1986, 367(1):296-300.
    14. Cameron T, Predo R, Watson BD, et al. Photochemically induced cystic lesion in the rat spinal cord. I. Behavioral and morphological analysis. Exp Neurol, 1990,109(2): 214-223.
    15.周子强,李佛保,陈裕光.脊髓牵拉性损伤动物模型的建立.中国脊柱脊髓杂志,2000,10(5):269-273.
    16. Setoguchi T , Nakashima K, Takizawa T , et al. Treatment of spinal cord injury by transplantation of fetal neural p recurso r cells engineered to exp ress BM P inh ibito r. Exp N euro l, 2004 ; 189: 33-38.
    17. Ogawa Y, Sawamoto K, Miyata T , et al. Transplantation of in vitro-expanded fetal neuralprogenitor cells results in neurogenesis and functional recovery after spinal cord contusion injury in adult rats. Neurosci Res, 2002; 69: 925-931.
    18. McDonald JW , Howard MJ. Repairing the damaged spinal cord: a summary of our early success with embryonic stem cell transplantation and remyelination. Prog Brain Res, 2002; 137: 299-303.
    19. Vroemen M , Aigner L , Winkler J,et al. Adult neural progenitor cell grafts survive after acute spinal cord injury and integrate along axonal pathways. Eur J Neuro sci, 2003; 18:743-747.
    20. Tzeng B. Neural progenitors isolated from new born rat spinal cords differentiate into neurons and astroglia. Biomed Sci, 2002; 9: 10-16.
    21. Falci S, Holtz A, Akesson E, et al. Obliteration of a posttraumatic spinal cord cyst with solid human embryonic spinal cord grafts: first clinical attempt. J Neurotrauma 1997;14:875-884.
    22. Reier PJ, Thompson FJ, Fessler RG, Anderson DK, Wirth III ED. Spinal cord injury and fetal CNS tissue transplantation: an initial“bench to bedside”translational research experience. In Ingoglia N and Murray M, eds. Regeneration in Vertebrate CNS. Marcel Dekker, NY. 2000.
    23. Miya D, Tessler A, Giszter S, Mori F, Murray, M. Fetal transplants alter thedevelopment of function after spinal cord transection in newborn rats J Neurosci 1997; 17: 4856-4872.
    24. Diener PS, Bregman BS. Fetal spinal cord transplants support the development of target reaching and coordinated postural adjustments after neonatal cervical spinal cord injury. J Neurosci 1998;18:763-778.
    25. Barinaga M. Fetal neuron grafts pave the way for stem cell therapies. Science 2000; 287: 1421-1426.
    26. VargasMR, PeharM , Cassina P, et al. Stimulation of nerve growth factor expression in astrocytes by peroxynitrite. In Vivo, 2004; 18: 269-272.
    27. Houle JD,Mo rris K, Sk inner RD, et al. Effects of fetal sp inal co rd t issue transplants and cycling exercise on the soleus musle in spinalized rats. Muscle Nerve, 1999; 22: 846-851.
    28.侯天勇,伍亚民,李强,等.大鼠脊髓半切块状缺损模型的建立及科学性评估.创伤外科杂志,2006,8(4):362-365.
    29. Bregman BS, Broude E, Mc Atee M , et al.Transplants and neurotrophic factors prevent atrophy of mature CNS neurons after spinal cord injury. Exp N euro l, 1998; 149: 13-21.
    30. Bregman BS, McAtee M, Dai HN, Kuhn PI. Neurotrophic factors increase axonal growth after spinal cord injury and transplantation in the adult rat. Exper Neurol , 1997;148:475-94.
    31. Xu XM, Guenard V, Kleitman N, Bunge MB. Axonal regeneration into Schwann cells seeded into transected adult rat spinal cord. J Comp Neurol 1995b; 351: 145-160.
    32. Ye J-H, Houle JD. Treatment of the chronically injured spinal cord with neurotrophic factors can promote axonal regeneration from supraspinal neurons. Exp Neurol 1997; 143: 70-81.
    33. Cheng H, Cao Y, Olson L. Spinal cord repair in adult paraplegic rats: Partial restoration of hind limb function. Science, 1996,273(5274):510-513.
    34. Kojun T, Kazuo L. A role of migratory Schwann cells in a conditioning effect of peripheral nerve regeneration. Exp Neurol, 1999,160(27):99-108.
    35. Brian K, Kwon, Wolfram Tetzlaff. Spinal cord regeneration. Spine,2001,26(24s):13-22.
    36. Liu Y, Kim, D, Himes BT, Chow SY et al. Transplants of fibroblasts geneticallymodified to express BDNF promote regeneration of adult rat rubrospinal axons. J Neurosci 1999;19(11):4370-4387.
    37. Liu Y, Himes BT, Murray M, Tessler A, Fischer I. Grafts of BDNF-producing fibroblasts that promote regeneration of axotomized rubrospinal neurons also rescue most neurons from retrograde death and prevent their atrophy. 2000;Submitted.
    38. Mori F, Himes BT, Kowada M , Murray M , Tessler A. Fetal spinal cord transplants rescue some axotomized rubrospinal neurons from retrograde cell death in adult rats. Exp Neurol 1997;143:45-60.
    39. Saavedra RA, Murray M, deLacalle S, Tessler A. In vivo neuroprotection of injured CNS neurons by a single injection of a DNA plasmid encoding the bc1-2 gene. Prog Brain Res 2000;in press.
    40. Kim D, Liu Y, Browarek T, Nayeri A et al. Transplants of fibroblasts genetically modified to express BDNF promote recovery of forelimb and hindlimb functions in the adult rat. Soc Neurosci 1999b;25:492.
    41. Grill RJ, Blesch A, Tuszynski MH. Robust growth of chronically injured spinal cord axons induced by grafts of genetically modified NGF-secreting cells. Exp Neurol 1997;148:444-452.
    42. Prockop DJ. Marrow stromal cells as stem cells for nonhematopoietic tissues. Science 1997;276:71-74.
    43. Keating A, Berkahn L, Filshie R. A Phase I study of the transplantation of genetically marked autologous bone marrow stromal cells. Human Gene Therapy 1998;9:591-600.
    44. Hofstetter CP, Schwarz EJ, Hess D, et al. Marrow stromal cells form guiding strands in the injuried spinal cord and promote recovery. PNAS,2002,99(4):2199-2204.
    45. Schwartz EJ, Alexander GM, Prockop DJ, Azizi SA. Multipotential marrow stromal cells transduced to produce L-DOPA: engraftment in a rat model of Parkinson’s disease. Human Gene Therapy 1999;10:2539-2549.
    46. Moore MA.“Turning brain into blood”– clinical applications of stem-cell research in neurobiology and hematology. New Engl J Med 1999;341:605-607.
    47. Rapalino O, Lazarov-Spiegler O, Agranov E et al. Implantation of stimulated homologous macrophages results in partial recovery of paraplegic rats. Nature Medicine 1998;4:814-821.
    48. Jones DG, Anderson ER, Galvin KA. Spinal cord regeneration: Moving tentatively towards new perspectives. NeuroRehabilitation, 2003,18(4):339-51.
    49. Young HE, Steele TA, Bray RA, et al. Human reserve pluripotent mesenchymal stem cells are present in the connective tissues of skeletal muscle and dermis derived from fetal, adult, and geriatric donors. Anat Rec. 2001,264(1):51-62.
    50. Xu XM, Guenard V, Kleitman N, Aebischer P, Bunge MB. A combination of BDNF and NT-3 promotes supraspinal axonal regeneration into Schwann cell grafts in adult rat thoracic spinal cord. Exp Neurol 1995;134:261-272.
    51. Menei P, Montero-Menei C, Whittemore SR, Bunge RP, Bunge MB. Schwann cells genetically modified to secrete human BDNF promote enhanced axonal regrowth across transected adult spinal cord. Eur J Neurosci 2005;10:607-621.
    52. Tuszynski MH. Gene therapy: Applications to the neurosciences and to neurological disease. Neuroscientist 1999;4:398-402
    53. Weidner N, Blesch A, Grill RJ, Tuszynski MH. Nerve growth factor secreting Schwann cell grafts augment and guide spinal cord axonal growth and remyelinate central nervous system axons in a phenotypically appropriate manner that correlates with expression of L1. J Comp Neurol 1999;413:495-506.
    54. Keirstead HS, Morgan SV, Wilby MJ, Fawcett JW. Enhanced axonal regeneration following combined demyelination plus Schwann cell transplantation therapy in the injured adult spinal cord. Exp Neurol 1999;159:225-236.
    55. Murray M. Strategies and mechanisms of recovery after spinal cord injury. Adv. Neurol. 1997, 72:219.
    56. Xu XM, et al. Axonal regeneration into Schwann cell-seeded guidance channels grafted into transected adult rat spinal cord. J comp. Neurol.1995, 351:145.
    57. Gris P, Tighe A, Levin D, et al. Transcriptional regulation of scar gene expression in primary astrocytes. Glia, 2007 Aug 15; 55(11): 1145-1155.
    58. Fawcett JW, Asher RA. The glial scar and central nervous system repair. Brain Res Bull 1999;49:377-391.
    59. Friedlander DR, Brittis PA, Sakurai T et al. Generation of a radial-like glial cell line. J Neurobiol 1998;37:291-304.
    60. Hormigo A, McCarthy M, Nothias J-M, et al. Integration of embryonic neurons in vivois enhanced by co-transplantation with a radial glial cell line C6-R. Soc. for Neurosc.Abst. 1999 25:214.
    61. Bertrand J , WintonMJ , Rodriguez-HernandezN, et al. Ap-plication of rho antagonist to neuronal cell bodies p romotes neurite growth in compartmented cultures and regeneration of retinal ganglion cell axons in the op tic nerve of adult rats. J Neurosci. 2005, 25:1113~1121.
    62. Lu J, Ferom F, Ho SM, et al. Transplation of nasalollactory tissue promotes partial recovery in paraplegic adult rats.Brain Res,2001,889(1-2):344-357.
    63. Toft A, Scott DT, Barnett SC, et al. Electrophysiological evidence that olfactory cell transplants improve function after spinal cord injury.Brain,2007 ,Apr; 130(Pt 4): 970-984.
    64. Raisman G. Repair of spinal cord injury by transplantation of olfactory ensheathing cells. C-R-Biol,2007 Jun-Jul; 330(6-7): 557-560.
    65. Ramon2Cueto A, corderoM I, Santos2benito FF, et al. Functional recovcry of paraplegic rats and motor axon regeneration in their spine cords by olfactory enshesthing glia. Neuron, 2000, 25 (2) : 425 -435.
    66. Yah H, Lu D, Rivkees SA. Lysophosphatidic acid regulatest the proliferation and migration of olfactory ensheathing cells in vitro.Glia, 2003, 44 (1) : 26-36.
    67. Plant, GW, Bunge, MB, Ramon-Cuerto, A. Transplantation of Schwann cells and ensheathing glia to improve regeneration in adult spinal cord. In: Ingoglia N, Murray M, eds. Regeneration in Vertebrate CNS. Marcel Dekker, NY 2000.
    68. Bu L,Wang DJ, Zhong H, et al.The intercostal nerve transplantation with olfactory ensheathing cells modified by NGF, BDNF genes repairs the injured rat spinal cord.Sichuan-Da-Xue-Xue-Bao-Yi-Xue-Ban.2006, Jul;37(4):629-631.
    69. Takami T, OudegaM ,BateeML, et al. Schwann cell but not olfactory enshcathing gila transplants improve himdlimb locomotor performance in the moderately contused adult rat thoracic spinal cord. J Neurosci, 2002, 22; 6670 - 6681.
    70. I-Hui Lee, JeffWMB, Petra Schweinhardt, et al. In vivo magnetic resonance tracking of olfactory ensheathing glia grafted into the rat spinal cord. Exp Neurol, 2004, 187 (2):509 - 516.
    71. Ramcr LM, Au E, RichterMW, et al. Peripheral olfactory ensheathing cells reduce scarand cavity formation and promote regeneration after spinal cord injury. J Comp Neurol , 2004, 473 (1) : 1215.
    72. Au E, RoskamsAJ. Olfactory ensheathing cells of the lamina propria in vivo and in vitro. GLIA, 2002, 1:224-236.
    73. Bianco JL, Perry C, Harkin DG, et al. Neurotrophin-3 promotes purification and p roliferation of olfactory ensheathing cells from human nose. Glia, 2004, 45 (2) : 111 - 123.
    74. DeLucia TA, Conners JJ, Brown TJ, et al. Use of a cell line to in2 vestigate olfactory ensheathing cell-enhanced axonal regeneration. A nat Rec, 2003, 271 (1) : 61-70.
    75. Radtke C, Akiyama Y, Brokaw J, et al. Remyelination of the non-human primate spinal cord by transplantation of H-transtbrase trans-genic adult pig olfactory ensheathing cells. FASEBJ, 2004, 18(2):335-337.
    76. Samuil S, Rabinovich A, Victor I, et al. Transplantation treatment of spinal cord injury patients. Biomedicine & Pharmacotherapy,2003, 57: 428 - 433.
    77. Senior K. Olfactory ensheathing cells to be used in spinal cord repairtrial. Lancet Neurol, 2002, 1 (5) : 269.
    78. Huang HY, Chen L, Wang HM, et al. Influence of patients’age on functional recovery after transplantation of olfactory ensheathing cells into injured spinal cord injury. Chin Med J, 2003, 116 ( 10):1488 - 1491.
    79. Bruce H,Dobkin, Armin Curt, et al. Cellular transplants in China: observational study from the largest human experiment in chronic spinal cord injury. Neurorehabilitation and Neural Repair, 2006,20(1).
    80. Barkats M, Bilang-Bleuel A, Buc-Caron M.JH et al. Adenovirus in the brain: recent advances in gene therapy for neurodegenererative diseases. Prog Neurobiol 1998;55:333-341.
    81. Gritti A, Parati EA. Multipotential stem cells from the adult mouse brain proliferate and self renew in response to basic fibroblast growth factor. J Neuroscience, 1996, 16:1091-1100.
    82. Magnuson DS, Morassutti DJ. Techniques for studying the electrophysiology of neurons derived from neural stem/progenitor cells. Methods-Mol-Biol. 2002; 198: 179-86.
    83. Okano,-H; Okada,-S; Nakamura,-M; Toyama,-Y. Neural stem cells and regeneration of injured spinal cord.Kidney-Int. 2005 Nov; 68(5): 1927-1931.
    84. Fujiwara Y; Tanaka N; Ishida O, et al Intravenously injected neural progenitor cells of transgenic rats can migrate to the injured spinal cord and differentiate into neurons, astrocytes and oligodendrocytes. Neurosci-Lett. 2004 Aug 19; 366(3): 287-291.
    85. Young HE, Steele TA, Bray RA, et al. Human reserve pluripotent mesenchymal stem cells are present in the connective tissues of skeletal muscle and dermis derived from fetal, adult, and geriatric donors. Anat Rec. 2001, 264(1):51-62.
    86. Toma JG, Akhavan M, Fernandes KJ, et al. Isolation of multipotent adult stem cells from the dermis of mammalian skin. Nat Cell Biol, 2001, 3(9):778-784.
    87.史春梦,程天民。大鼠真皮间充质干细胞的体外长期培养及胶原海绵对其生长的影响.生物医学工程学杂志,2002,19(4):660-663.
    88. Kuhn HG, Svendsen CN. Origins, functions, and potential of adult neural stem cells. Bioessays 1999;21:625-630.
    89. Shi Y, Lie DC, Taupin P, et al. Expression and function of orphan nuclear receptor TLX in adult neural stem cells. Nature,2004,427(6969),78-83.
    90. Kim,-S-U. Genetically engineered human neural stem cells for brain repair in neurological diseases.Brain-Dev. 2007 May; 29(4): 193-201
    91. Guo,-J-S; Zeng,-Y-S; Li,-H-B et al. Cotransplant of neural stem cells and NT-3 gene modified Schwann cells promote the recovery of transected spinal cord injury.Spinal-Cord. 2007 Jan; 45(1): 15-24.
    92. Wu–D, Shibuya–S, Miyamoto–O et al. Increase of NG2-positive cells associated with radial glia following traumatic spinal cord injury in adult rats.J-Neurocytol. 2005 Dec; 34(6): 459-469.
    93. McDonald JW , L iu XZ, Q u Y, et al. T ransplanted embryonic stem cells survive, different iate and p romo te recovery in injured rat sp inal co rd. NatMed, 2000; 6: 358-368.
    94. McDonald JW, Liu X-Z, Qu Y et al. Transplanted embryonic stem cells survive, differentiate and promote recovery in injured rat spinal cord. Nature Medicine 1999;5:1410-1412.
    95. Deacon T, Dinsmore J, Costantini LC, et al. Blastula-stage stem cells can differentiateinto dopaminergic and serotonergic neurons after transplantation. Exp. Neurol. 1998; 149: 28-41.
    96. Morizane A, Takahashi J, Shinoyama M, et al. Generation of graftable dopaminergic neuron progenitors from mouse ES cells by a combination of coculture and neurosphere methods. J Neurosci Res,2006 May 1;83(6):1015-27.
    97. Xu H,Fan X,Tang J,et al.A modified method for generation of neural precursor cells from cultured mouse embryonic stem cells.Brain Res Brain Res Protoc. 2005 May;15(1):52-58.
    98. Xu H, Fan X,Wu X, et al.Neural precursor cells differentiated from mouse embryonic stem cells relieve symptomatic motor behavior in a rat model of Parkinson's disease.Biochem Biophys Res Commun. 2005 Jan 7;326(1):115-122.
    99. Lepore AC, Bakshi A, Swanger SA, et al.Neural precursor cells can be delivered into the injured cervical spinal cord by intrathecal injection at the lumbar cord. Brain Res,2005 May 31;1045(1-2):206-216.
    100. Lepore AC, Neuhuber B, Connors TM, et al.Long-term fate of neural precursor cells following transplantation into developing and adult CNS.Neuroscience, 2006 Sep 29;142(1):287-304.
    101. Vescovi AL, Snyder EY. Establishment and properties of neural stem cell clones: plasticity in vitro and in vivo. Brain Pathol 1999;9:569-598.
    102. Park KI , Liu SX , Flax JD, et al. Transplantation of neural p rogenito r and stem cells:developmental insigh tsmay suggest new therap ies for spinal cord and other CNS dysfunct ion. J Neuro l, 1999; 16: 675-687.
    103. Onifer SM , Cannon AB, Wittemore SR, et al.Altered different iat ion of CNS neural p recursor cells after t ransp lantat ion into the injured adult rat spinal cord. Cell T ransp lant , 1997; 6: 327-337.
    104. Shihabuddin LS, Hertz JA, Holets VR, Whittemore SR. The adult CNS retains the potential to direct region-specific differentiation of a transplanted neuronal precursor cell line. J Neurosci 2005;15:6666-6678.
    105. Zhang,-L; Gu,-S; Zhao,-C; Wen,-T. Combined treatment of neurotrophin-3 gene and neural stem cells is propitious to functional recovery after spinal cord injury.Cell-Transplant. 2007; 16(5): 475-481.
    106.李成仁,李巍,蔡文琴,等. NOV基因修饰神经干细胞移植对损伤大鼠脊髓功能恢复的影响.第三军医大学学报, 2003; 25: 33-37.
    107. Kuh -S-U,Cho-Y-E, Yoon -D-H, et al. Functional recovery after human umbilical cord blood cells transplantation with brain-derived neutrophic factor into the spinal cord injured rat.Acta-Neurochir-(Wien). 2005, Sep;147(9): 985-992.
    108. Pfeifer–K,Vroemen–M ,Caioni–M, et al. Autologous adult rodent neural progenitor cell transplantation represents a feasible strategy to promote structural repair in the chronically injured spinal cord. Regen-Med. 2006,Mar; 1(2): 255-266.
    109. Han SSW, Fischer I. Neural stem cells and gene therapy: prospects for repairing the injured spinal cord. JAMA, 2000; 283: 2300-2301.
    110. Okano–H. Identification of neural stem cells in adult human brain: its implication in the strategy for repairing the damaged central nervous system Rinsho-Shinkeigaku. 2005,Nov;45(11): 871-873.
    111. Vescovi AL, Snyder EY. Establishment and properties of neural stem cell clones: plasticity in vitro and in vivo. Brain Pathol 1999;9:569-598.
    112. Cummings -B-J, Uchida–N, Tamaki -S-J, et al. Human neural stem cells differentiate and promote locomotor recovery in spinal cord-injured mice. Proc-Natl-Acad- Sci-U-S-A. 2005 Sep 27; 102(39): 14069-14074.
    113. Zhang QL , How ard PY. Pluripotent stem cells engrafted into normal or lesioned adult rat spinal cord are restricted to a glial lineage. Exp N euro l, 2001; 167: 48-58.
    114. Akiyama Y, HonmouO , Kato T , et al. Transplantation of clonal neural p recursor cells derived from adult human brain establishes functional peripheral myelin in the rat spinal cord. Exp N euro l, 2001; 167: 27-38.
    115. Kyung -K-S, Ho -C-W, Kwan -C-B, et al. Potential therapeutic clue of skin-derived progenitor cells following cytokine-mediated signal overexpressed in injured spinal cord. Tissue-Eng. 2007 Jun; 13(6): 1247-58
    116. Shi C, Mai Y, Zhu Y, et al.Spontaneous transformation of a clonal population of dermis-derived multipotent cells in culture.In Vitro Cell Dev Biol Anim. 2007 Sep-Oct;43(8-9):290-296.
    117.林建华,雷盛民,康德智,等.静脉注射骨髓间质干细胞对脊髓损伤修复作用的实验研究.中华骨科杂志,2005,25(9):556-559.
    118. Tuszynski MH, Weidner N, McCormack M, Miller I, Powell H, Conner J. Grafts of genetically modified Schwann cells to the spinal cord: survival, axon growth, and myelination. Cell Transplantation 1998;7:187-196.
    119. Fischer I, Liu Y. Gene Therapy strategies in CNS axon regeneration. In: Ingoglia N, Murray M, eds. Regeneration in Vertebrate CNS. Marcel Dekker, NY 2000.
    120. Liu Y, Himes BT, Moul J et al. Application of recombinant adenovirus for in vivo gene delivery to spinal cord. Brain Res 1997;768:19-29.
    121. Tang -X-Q, Wang -Y, Huang -Z-H, et al. Adenovirus-mediated delivery of GDNF ameliorates corticospinal neuronal atrophy and motor function deficits in rats with spinal cord injury. Neuroreport. 2004 Mar 1; 15(3): 425-429.
    122. Nakajima–H, Uchida–K, Kobayashi–S, et al. Rescue of rat anterior horn neurons after spinal cord injury by retrograde transfection of adenovirus vector carrying brain-derived neurotrophic factor gene. J-Neurotrauma. 2007 Apr; 24(4): 703-712.
    123. Nakajima–H, Uchida–K, Kobayashi–S, et al.Targeted retrograde gene delivery into the injured cervical spinal cord using recombinant adenovirus vector.Neurosci-Lett. 2005 Sep 2; 385(1): 30-35.
    124. Takahashi K, Schwarz E, Ljubetic C, Murray M, Tessler A, Saavedra R. A DNA plasmid that codes for the human BCl2 gene preserves axotomized Clarke’s nucleus neurons and reduces atrophy after spinal cord hemisection in adult rats. J Comp Neurol 1999;404:159-171.
    125. Basso DM, Beattie ME, Bresnahan JC. A sensitive and reliable locomotor rating scale for open field testing in rats. J. Neurotrauma 1995;12:1-21.
    126. Gale K,Kerasidis H,Wrathall JR. Spinal cord contusion in the rat:behavioral analysis of functional neurologic impairment. Exp Neurol, 1985, 88(1):123-134.
    127.章亚东,侯树勋,刘英炳,等.脊髓损伤细胞内Ca2+变化及其与脊髓神经功能损害的关系.中华骨科杂志,1997,17:291.
    128. Hara M, Takayasu M, Watanabe K. et al. Protein kinase inhibition by fasudil hydrochloride promotes neurological recovery after spinal cord injury in rats. J Neurosurg, 2000,93(1Suppl):S94-S101.
    129. Mulligan SJ, Knapp E, Thompson B, et al. A method for assessing balance control in rodents. Biomed Sci Instrum, 2002,38(1):77-82.
    130. Dawson GD. A summation technique for detecting small signals in a large irregular background. J Physiol,1951,115(1):2-3.
    131. Stewart M, Quirk GJ, Amassian VE. Corticospinal responses to electrical stimulation of motor cortex in the rat. Brain Res, 1990, 508(2):341-344.
    132. Teng -Y-D, Liao -W-L, Choi–H, et al. Physical activity-mediated functional recovery after spinal cord injury: potential roles of neural stem cells.Regen-Med. 2006 Nov; 1(6): 763-776.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700