用户名: 密码: 验证码:
胰腺癌中医证与病机及清胰化积方抑瘤作用机制探讨
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的
     探索胰腺癌中医"证"与病机可能的关系,探寻清胰化积方(QYHJ)治疗胰腺癌的可能作用机制。
     方法
     第一部分
     1、建立不同中医证型(脾虚型、湿热型和血瘀型)pancO2胰腺癌皮下移植瘤模型,评价不同证型对肿瘤生长的影响。
     2、建立不同中医证型(脾虚型、湿热型和血瘀型)pancO2胰腺癌皮下移植瘤模型,观察不同证型胰腺癌对抗胰腺癌中药QVHJ治疗的反应性。
     第二部分
     1、采用real-time PCR和western blot检测QYHJ治疗后胰腺肿瘤细胞SKImRNA和蛋白的表达变化。
     2、采用Real-time PCR对SKI mRNA在四种人胰腺癌细胞系SW1990、BxPC3、PANC-1和PC3中的差异性表达进行半定量分析。
     3、采用RT-PCR技术,检测SKI相关TGF-β信号通路关键分子mRNA在四种人胰腺癌细胞系SW1990、BxPC3、PANC-1和PC3中的表达。
     4、设计针对SKI基因cds区的Negative、siRNA1、siRNA2、siRNA3序列,设计合成互补单链DNA片段,以H1启动子后的BamHI(GGATCC)和EcoRI(GAATTC)为插入位点,克隆进真核表达载体pSIH1-H1-copGFPshRNA Vector,重组载体PCR扩增回收及DNA序列分析进行鉴定。
     5、应用脂质体转染方法将重组载体pSIH-negative和pSIH-siRNA分别导入293T细胞,Real-time PCR筛选有效的SKI干扰序列。
     6、参照SBI Lentivector Expression System操作手册,包装产生含有pSIH-siRNA3和pSIH-negative穿梭质粒的假病毒颗粒,分别感染SW1990和BxPC3细胞,建立干扰SKI基因的稳定细胞株以及对照细胞株。
     7、通过Real-time PCR和Western blot方法对细胞RNAi后SKI表达情况进行鉴定。
     8、WST(water-soluble tetrazolium salt)法测定SKI RNAi对人胰腺癌细胞体外增殖的影响,并绘制细胞增殖曲线。
     9、标准PI染色流式细胞计数法(flow cytometry,FCM)检测SKI RNAi对人胰腺癌细胞细胞周期分布的影响。
     10、体外运动实验(wound healing assay)检测SKI RNAi对人胰腺癌细胞运动能力的影响。
     11、体外侵袭实验(transwell)检测SKI RNAi对人胰腺癌细胞体外侵袭能力的影响。
     12、建立裸鼠皮下移植瘤模型,探讨SKI RNAi对人胰腺癌细胞体内肿瘤生长的影响。
     13、通过尾静脉注射人胰腺癌细胞,探讨SKI RNAi对人胰腺癌细胞体内肝转移的影响。
     14、RT-PCR和real-time PCR检测SKI RNAi后TGFβ信号通路下游反应性靶基因PAI-1 mRNA和CTGF mRNA的表达,同时观检测其他下游反应性靶基因表达情况。
     15、RT-PCR检测SKI RNAi后TGF-β信号通路关键分子TβRⅡ、TβRI、smad2、3、4、7的表达情况,以及通过western blot检测smad3磷酸化水平。
     16、Real-time PCR检测与细胞增殖、侵袭、转移相关基因表达的变化。
     17、流式细胞仪检测TGFB信号通路阻断后SKI RNAi对细胞周期分布的影响。
     18、体外侵袭实验检测TGFβ信号通路阻断后SKI RNAi对细胞侵袭能力的影响。
     19、建立裸鼠人胰腺癌皮下移植瘤模型,评价SKI不同表达人胰腺癌细胞对QYHJ治疗的反应性。
     结果
     第一部分
     1、不同的中医证型pancO2细胞体内成瘤率均为100%,但三模型组肿瘤生长速度均要低于对照组,尤其湿热组表现明显(瘤重与对照组比较,下降了31.7%)。
     2、脾虚组与湿热组肿瘤在应用QYHJ治疗后肿瘤体积与瘤重均有降低。血瘀组肿瘤体积与瘤重在应用QYHJ后并没有表现出明显的抑瘤作用。
     第二部分
     l、经QVHJ治疗后SW1990人胰腺癌细胞SKI mRNA和蛋白表达量与未经QYHJ治疗比较,分别下降了39.6%和41.3%。
     2、SKI在四种人胰腺癌细胞中均有表达,其中BxPC3、PANC-1和PC3细胞SKI mRNA表达量分别是SW1990细胞的0.9、1.4和0.7倍。
     3、SKI相关TGFβ信号通路关键分子TβRⅠ、TβRⅡ、smad2、smad3、smad7在四种人胰腺癌细胞系(SW1990、BxPC3、PANC-1和PC3)均有表达,除外smad4在BxPC3中不表达、TβRⅡ在PC3中不表达。
     4、重组载体pSIH-negative pSIH-siRNAl、pSIH-siRNA2和pSIH-siRNA3经PCR扩增回收电泳及DNA测序证明其序列的正确性。
     5、Real-time PCR检测发现转染pSIH-siRNAl、pSIH-siRNA2和pSIH-siRNA3细胞SKI mRNA表达水平分别是转染pSIH-negative细胞的55.0%、54.0%和45.0%,我们选择pSIH-siRNA3和pSIH-negative进行后续实验。
     6、包装产生含有pSIH-siRNA3和pSIH-negative穿梭质粒的假病毒颗粒,分别感染SW1990和BxPC3细胞,建立干扰SKI基因的稳定细胞株(SW1990/SKIRNAi和BxPC3/SKI RNAi)以及对照细胞株(SW1990/con RNAi和BxPC3/con RNAi)。
     7、SW1990/con RNAi和SW1990/SKI RNAi细胞SKI mRNA表达水平分别是亲代细胞的105%和46%,SKI蛋白表达水平分别是亲代细胞的123%和30%:BxPC3/con RNAi和BxPC3/SKI RNAi细胞SKI mRNA表达水平分别是亲代细胞的94%和38%,SKI蛋白表达水平分别是亲代细胞的90%和16%。
     8、SKI RNAi增加了SW1990和BxPC3细胞对TGF-D1的敏感性,两种人胰腺癌细胞在不同浓度TGF-β1(0、25、50、100、200、300pM)的诱导下,细胞体外增殖明显减慢。
     9、SKI RNAi后细胞经TGF-β1诱导,GO-G1期细胞比列明显增加,在SW1990细胞中由原来的40.4%上升到62.9%(P<0.05);在BxPC3细胞中由原来的20.0%上升到66.6%(P<0.05)。
     10、在TGF-β1诱导下,SW1990和BxPC3细胞体外运动能力明显增强,但SW1990/SKI RNAi细胞经TGFBl诱导24小时后,与SW1990/con RNAi细胞相比,伤口面积降低了54.3%(P<0.05);BxPC3/SKI RNAi细胞经TGFβ1诱导12小时后,与BxPC3/con RNAi细胞相比,伤口面积降低了57.2%(P<0.05)。
     11、在TGF-β1诱导下,SW1990和BxPC3胞体外侵袭能力明显增强,但SW1990/SKI RNAi细胞经TGFβ1诱导48小时后,与SW1990/con RNAi细胞相比,侵袭细胞数增加了36.3%(P<0.05);BxPC3/SKI RNAi细胞经TGFβ1诱导24小时后,与BxPC3/con RNAi细胞相比,侵袭细胞数增加了43.3%(P<0.05)。
     12、裸鼠皮下移植瘤在SKI RNAi后生长明显减慢,SW1990在接种后d31时肿瘤平均体积和瘤重分别下降至对照组的55.8%(P<0.01)和58.4%(P<0.05);BxPC3在接种后8周时肿瘤平均体积和瘤重分别下降至对照组的53.7%(P<0.01)和46.7%(P<0.05)。
     13、细胞经尾静脉注射后后4周BxPC3、BxPC3/con RNAi和BxPC3/SKI RNAi组肝脏转移发生率分别为83.3%(5/6)、71.4%(5/7)和100%(6/6),而平均肝脏转移灶数目分别为15.8、18.0和43.6,BxPC3/SKI RNAi与BxPC3/con RNAi组比较,增加了1.4倍(P<0.01)。SW1990、SW1990/conRNAi和SW1990/SKI RNAi细胞在尾经脉注射后两月均未发现有肝脏转移。
     14、SW1990和BxPC3细胞在SKI RNAi后PAI-1和CTGF mRNA表达量明显上升,而且维持时间延长;同时伴有c-jun、JunB、p21 mRNA的表达上调和c-myc、CDC25A mRNA表达下调。
     15、SKI RNAi并不会对TβRⅡ、TβRⅠ、smad2、3、4、7的表达产生影响,但在SKIRNAi后磷酸化smad3水平明显增加。
     16、SKI RNAi在体内、外上调p21、MMP-2、MMP-9和VEGF,同时下调CyclinD1的表达(均P<0.05)。
     17、TβRI/ALK5激酶抑制剂SB431542可阻断SKI RNAi后TGF-β诱导的G1期阻滞。
     18、TpRFALK5激酶抑制剂SB431542可阻断SKI RNAi后TGF-β诱导的促侵袭作用。
     19、SW1990裸小鼠皮下移植瘤给予QYHJ治疗后瘤重抑制率为29.6-32.2%,但SKI RNAi后SW1990裸小鼠皮下移植瘤予QYHJ治疗后瘤重抑制率为16.0%。
     结论
     1、胰腺癌证与瘤之间可能是一种因瘤致证的关系,证的存在是机体对肿瘤存在所表现出的一种反应,因此要针对胰腺癌本质病机的治疗。
     2、SKI下调在体内外具有抑制肿瘤生长作用,该作用的发挥主要通过影响smad3磷酸化、进而增强TGF-β转录活性的诱导作用,恢复胰腺癌细胞对TGF-β诱导细胞周期阻滞作用的反应性来实现的,QYHJ可通过下调SKI表达抑制了胰腺肿瘤的生长,SKI可能是QYHJ治疗胰腺癌的一个重要作用靶点之一。
     3、SKI不同表达可导致胰腺肿瘤对QYHJ治疗反应性的差异,通过对SKI表达情况的检测在一定程度上可用于预测肿瘤对治疗的反应,用于筛选潜在有效的适用人群。
Objective
     To study the relationship between traditional Chinese medicine(TCM) syndrome and TCM pathogenesis in pancreatic cancer.And to explore the potential mechanism of Qingyihuaji formula(QYHJ) in the treatment of pancreatic cancer.
     Methods
     PartⅠ:Three subcutaneous transplanted panc02 tumor models with different TCM syndrome types,including spleen deficiency,damp-heat and blood stasis,in the nude mice were established.The effect of each TCM syndrome on subcutaneous transplanted tumor were evaluated and the response of anti-pancreatic cancer TCM formular named QYHJ on subcutaneous transplanted tumor with defferent TCM syndrome were also studied.
     PartⅡ:The expression changes of SKI mRNA and protein in pancreatic carcinoma subcutaneous tumor treated with QYHJ were detected by real-time PCR and western blot.Then the expression of SKI and related TGF-βsignaling pathway components in four human pancreatic cancer cell lines,including SW1990,BxPC3, PANC-1and PC3 were also analysed by semi-quantitative real-time RT-PCR. SW1990 and BxPC3 cell lines were chosen for the following RNAi study.Three different small interfering RNA for human SKI(siRNA1 siRNA2 and siRNA3) and one negative siRNA were designed.Then,the primer pairs were annealed and subcloned into the BamH I(GGATCC) and EcoRI(GAATTC) sites of pSIH1-H1-copGFP shRNA Vector.The recombinant vectors were identified by PCR and automated sequencing analysis and then transfected into 293T cells by Lipofectamine~(TM) 2000 Transfection Reagent.Real-time PCR were used for selection of the most effective SKI silencing sequence.Next,according to the instruction of SBI Lentivector Expression System,a lentiviral expression construct and pPACK packaging plasmid mix were co-transfected into 293T cells.Then viral particles were collected and the titer were determined.The recombinant lentivector were used for infecting target cells(SW1990 and BxPC3).The expression of SKI after SKI RNAi or negative RNAi were identified by real-time PCR and western blotting.Cell growth,cell cycle distribution,migration and invasion in vitro were detected respectively by WST,FCM with PI staining,wound healing assay and in vitro invasion assay.To examine the effects of SKI RNAi on tumor growth,we performed the in vivo assay using an subcutaneous transplanted tumor model in the nude mice. in vivo metastasis model were also established through tail vein injection with tumor cells and the effect of SKI expression status on metastasis were also evaluated.Next, molecular basis underlying the involvement of SKI in the phenotypes of human pancreatic cancer cells were explored.Firstly,the induction of specific TGFβ-responsive targeted genes were detected by RT-PCR and real-time PCR.Then the expression of TGFβsignaling pathway components and proliferative-,invasive-and metastatic-related genes after SKI RNAi were also examined by RT-PCR and western blot.Finally,using a selective TβR-I kinase inhibitor,SD-431542,we evaluate the effect of SKI RNAi on in vitro proliferative and invasive potential after blocking TGF-βsignaling.After determination of the function and its potential molecular mechanism,we studied the effect of QYHJ on subcutaneous transplanted tumor with defferent SKI expression status.
     Results
     PartⅠ:The incidence of tumor with different TCM syndrome type were all 100%,however,subcutaneous transplanted tumor grew slowly than that with no TCM syndrome,especial in damp-heat group(compared with control group,the tumor weight inhibitory rate decreased 31.7%).The volume and weight of tumor with spleen deficiency and damp-heat syndrome decreased after administration of QYHJ.But this didn't happened in blood stasis group.
     PartⅡ:Expression of SKI mRNA and protein in SW1990 subcutaneous transplanted tumor after treatment of QYHJ decreased 39.6%and 41.3%of that in the untreated respectively.The levels of SKI mRNA in BxPC3、PANC-1 and PC3 were 0.9-,1.4- and 0.7-fold respectively in comparison to that in SW1990.The expresssion of SKI related TGF-βsignaling pathway components,including TβRⅡ, TβRⅠ,smad2,smad3,smad4 and smad7 were all detected in the four human pancreatic cancer cell lines,except for smad4 in BxPC3 and TβRⅡin PC3.Then SW1990 and BxPC3 pancreatic cancer cell lines were chosen for further SKI RNAi study.The expression of SKI mRNA in pSIH-siRNA1,pSIH-siRNA2 and pSIH-siRNA3 transfectants were 55.0%,54.0%and 45.0%respectively of that in pSIH-negative transfectant(P<0.01).The pSIH-siRNA3 and pSIH-negative were selected for the subsequent studies.The recombinant lentivector were used for infecting SW1990 and BxPC3 cells.Then two stable transfection cells (SW1990/SKI RNAi and BxPC3/SKI RNAi) were created and SW1990/con RNAi and BxPC3/con RNAi were used as control.The expression of SKI mRNA and protein in SW1990/con RNAi and SW1990/SKI RNAi were 105%,123%and 46%, 30%respectively of that in parental cells.Similarly,the expression of SKI mRNA and protein in BxPC3/con RNAi and BxPC3/SKI RNAi were 94%,90%and 38%, 16%respectively of that in parental cells.SKI RNAi sensesized the response of SW1990 and BxPC3 cell to TGF-β1 and reduced the cell growth in vitro induced by TGF-β1 with different concentration.Flow cytometric(FCM) analyses revealed that the percentage of cells in G1-phase was dramatically increased from 40.4%to 62.9% in SW990 cell line and from 20.2%to 66.6%in BxPC3 cell line when SKI RNAi induced by TGF-β1.SKI RNAi transfectants were much higher migrative and invasive in comparison to parental or mock transfected cells.Tumors formed by SW1990/SKI RNAi and BxPC3/SKI RNAi cells were much smaller than those formed by parental and control vector-transfected cells at the end of the in vivo assays(P<0.05).Tail vein injection of SKI RNAi BxPC3 into nude mice resulted in a significant increase of liver metastatic colonizations.Analysis of specific TGF-β-responsive target gene expression detected by real-time PCR showed that the expression of PAI-1 and CTGF mRNA were up-regulated dramatically and sustained for much longer time.Accompanied with PAI-1 and CTGF up-regulation,the expression of other TGF-β-responsive target genes also changed,with c-jun,JunB and p21 mRNA up-regulated and c-myc and CDC25A mRNA down-regulated.SKI RNAi had no influence on the expression of TGF-βsignaling pathway components, including TβRⅡ,TβRⅠ,smad2,smad3,smad4 and smad7,however,SKI RNAi resulted in a rapid and sustained increase in phosphorylated Smad3 in the two cells. The expression of proliferatory,invasive and metastatic related gene were also examined,with result of up-regulation of p21,MMP-2,MMP-9,VEGF and down-regulation of cyclin D1.Blocking TβR-I/ALK5 activity using a selective kinase inhibitor,SD-431542,strongly conteract the effect of G1-phase arrest and invasion promoting induced by SKI RNAi.After determination that down-regulation of SKI can result in decreased tumor growth,we examined the response of QYHJ on subcutaneous transplanted pancreatic cancer with different SKI expression status. The result showed that the tumor weight inhibitory rate of QYHJ on subcutaneous transplanted tumor formed by SW1990 or SW1990/con RNAi were 29.6%and 32.2%repectively,while it was 16.0%when the tumors were formed by SW1990/SKI RNAi
     conclusion
     TCM syndrome originating from tumor might be the relationship between tumor and TCM syndrome.The presence of TCM syndromes might be reaction of body to the existence of tumor.So the treatment of pancreatic cancer should aim at the essential TCM pathogenesis underlying the TCM syndrome.Down-regulation of SKI expression can inhibit the growth of pancreatic cancer both in vitro and in vivo. This effect is mainly achieved through increasing the level of phosphorylated smad3, enhancing the transcriptional activity induced by TGFβsignaling,thus restored the response of pancreatic cancer cell to the TGFβinduced cell cycle arrest.QYHJ inhibits growth of pancreatic cancer by down-regulating SKI expression.SKI is one of the potential targets of QYHJ in the treatment of pancreatic cancer Also,different expression status of SKI results in the difference of response of pancreatic cancer to QYHJ treatment.So SKI expression status detected before treatment might be used for predicting the response of pancreatic cancer to QYHJ treatment and screening for potential suitable population.
引文
1.Jemal A,Siegel R,Ward E,Hao Y,Xu J,Murray T & Thun MJ.Cancer statistics,2008.CA Cancer J Clin 2008 58 71-96.
    2.刘恩菊,项永兵,凡金,周淑贞,璐孙,方茹蓉,阮志贤,高立峰 & 高玉堂.上海市区恶性肿瘤发病趋势分析(1972~1999年).肿瘤 2004 24 11-15.
    3.Li D,Xie K,Wolff R & Abbruzzese JL.Pancreatic cancer.Lancet 2004 363 1049-1057.
    4. Sener SF, Fremgen A, Menck HR & Winchester DP. Pancreatic cancer: a report of treatment and survival trends for 100,313 patients diagnosed from 1985-1995, using the National Cancer Database. J Am Coll Surg 1999 189 1-7.
    5. Nishimura Y, Hosotani R, Shibamoto Y, Kokubo M, Kanamori S, Sasai K, Hiraoka M, Ohshio G, Imamura M, Takahashi M & Abe M. External and intraoperative radiotherapy for resectable and unresectable pancreatic cancer: analysis of survival rates and complications. Int J Radiat Oncol Biol Phys 1997 39 39-49.
    6. Millikan KW, Deziel DJ, Silverstein JC, Kanjo TM, Christein JD, Doolas A & Prinz RA. Prognostic factors associated with resectable adenocarcinoma of the head of the pancreas. Am Surg 1999 65 618-623; discussion 623-614.
    7. Zervos EE, Rosemurgy AS, Al-Saif O & Durkin AJ. Surgical management of early-stage pancreatic cancer. Cancer Control 2004 11 23-31.
    8. Moertel CG, Frytak S, Hahn RG, O'Connell MJ, Reitemeier RJ, Rubin J, Schutt AJ, Weiland LH, Childs DS, Holbrook MA, Lavin PT, Livstone E, Spiro H, Knowlton A, Kaiser M, Barkin J, Lessner H, Mann-Kaplan R, Ramming K, Douglas HO, Jr., Thomas P, Nave H, Bateman J, Lokich J, Brooks J, Chaffey J, Corson JM, Zamcheck N & Novak JW. Therapy of locally unresectable pancreatic carcinoma: a randomized comparison of high dose (6000 rads) radiation alone, moderate dose radiation (4000 rads + 5-fluorouracil), and high dose radiation + 5-fluorouracil: The Gastrointestinal Tumor Study Group. Cancer 1981 48 1705-1710.
    9. Group GTS. Treatment of locally unresectable carcinoma of the pancreas: comparison of combined-modality therapy (chemotherapy plus radiotherapy) to chemotherapy alone. Gastrointestinal Tumor Study Group. J Natl Cancer Inst 1988 80 751-755.
    10. Burris HA, 3rd, Moore MJ, Andersen J, Green MR, Rothenberg ML, Modiano MR, Cripps MC, Portenoy RK, Storniolo AM, Tarassoff P, Nelson R, Dorr FA, Stephens CD & Von Hoff DD. Improvements in survival and clinical benefit with gemcitabine as first-line therapy for patients with advanced pancreas cancer: a randomized trial. J Clin Oncol 1997 15 2403-2413.
    11. Moore MJ, Goldstein D, Hamm J, Figer A, Hecht JR, Gallinger S, Au HJ, Murawa P, Walde D, Wolff RA, Campos D, Lim R, Ding K, Clark G, Voskoglou-Nomikos T, Ptasynski M & Parulekar W. Erlotinib plus gemcitabine compared with gemcitabine alone in patients with advanced pancreatic cancer: a phase III trial of the National Cancer Institute of Canada Clinical Trials Group. J Clin Oncol 2007 25 1960-1966.
    12. Kindler HL, Friberg G, Singh DA, Locker G, Nattam S, Kozloff M, Taber DA, Karrison T, Dachman A, Stadler WM & Vokes EE. Phase II trial of bevacizumab plus gemcitabine in patients with advanced pancreatic cancer. J Clin Oncol 2005 23 8033-8040.
    13. Xiong HQ, Rosenberg A, LoBuglio A, Schmidt W, Wolff RA, Deutsch J, Needle M & Abbruzzese JL. Cetuximab, a monoclonal antibody targeting the epidermal growth factor receptor, in combination with gemcitabine for advanced pancreatic cancer: a multicenter phase II Trial. J Clin Oncol 2004 22 2610-2616.
    14. PA P, J B, Fenoglio-Preiser C, M Z, H L & E OR. Phase III study of gemcitabine [G] plus cetuximab [C] versus gemcitabine in patients [pts] with locally advanced or metastatic pancreatic adenocarcinoma [PC]: SWOG S0205 study J Clin Oncol 2007. ASCO Annual Meeting Proceedings Part Ⅰ.Vol 25,No.18S(June 20 Suppl):LBA4509.
    15.HL K,D N,D H,E O,D S & H H.A double-blind,placebocontrolled,randomized phase Ⅲ trial of gemcitabine(G) plus bevacizumab(B) versus gemcitabine plus placebo (P) in patients(pts) with advanced pancreatic cancer(PC):A preliminary analysis of Cancer and Leukemia Group B(CALGB) 80303.In ASCO Gastrointestinal Cancers Symposium 2007.Abstract No:108.
    16.沈晔华,刘鲁明,陈震,孟志强,宋明志 & 于尔辛.中药联合化疗治疗晚期胰腺癌32例临床研究.中医杂志 2006 47 115-117.
    17.付洁.清胰消积方对胰腺癌化疗协同作用的实验与临床研究.In肿瘤医院 上海:复旦大学,2006.
    18.沈晔华.中西医综合治疗中晚期胰腺癌的研究.In肿瘤医院.上海:复旦大学,2006.
    19.沈晔华,刘鲁明 & 陆燕,等.清胰消积中药对实验性胰腺癌基因表达的影响.中国癌症杂志 2005 15 454-457.
    1.沈晔华,刘鲁明,陈震,孟志强,宋明志 & 于尔辛.中药联合化疗治疗晚期胰腺癌32例临床研究.中医杂志 2006 47 115-117.
    2.付洁.清胰消积方对胰腺癌化疗协同作用的实验与临床研究.In肿瘤医院.上海:复旦大学,2006.
    3.沈晔华.中西医综合治疗中晚期胰腺癌的研究.In肿瘤医院.上海:复旦大学,2006.
    4.刘鲁明 & 宋明志.In于尔辛肝癌经验集-健脾理气法治疗肝癌的研究,p 177.北京:人民卫生出版社.2004.
    5.和岚,蒋文跃 & 毛腾敏.注射肾上腺素模拟“气滞”复制急、慢性血瘀模型初探.中国中西医结合杂志 2004 24 244-246.
    6.吕冠华 & 劳绍贤.脾胃湿热证动物模型的建立与评价.广州中医药大学学报 2005 22231-235.
    7.成文武,刘鲁明 & 于尔辛.202例胰腺癌临床分析.中华消化杂志 2003 23 758-759.
    8.赵晓琴.赵昌基用喜树配方治疗癌症的经验.中国中医药信息杂志 2003 10 75.
    9.王炳胜,刘秀芳 & 吴智群,等.益气活血中药在中晚期胰腺癌放化疗中的作用.中国中西医结合杂志 2000 20 736-738
    10.贺用和,林洪生 & 董海涛,等.中西医结合治疗中晚期胰腺癌63例临床观察.中国中医药信息杂志 2001 8 65-66.
    11.Liu LM,Liang C & al.SYLe.Therapeutic evaluation on advanced pancreatic cancer treated by integrative Chinese and western medicine--clinical analysis of 56 cases.CJIM 2003 939-43.
    12.杨金祖 & 邱佳信.邱佳信教授治疗胰腺癌的经验-附16例疗效分析.陕西中医 200122 354-355.
    13.倪依群,尤建良 & 杨志新,等.微调3号方配合西药治疗晚期胰腺癌21例.陕西中医2006 27 426-427.
    1.沈晔华,刘鲁明 & 陆燕,等.清胰消积中药对实验性胰腺癌基因表达的影响.中国癌症杂志 2005 15 454-457.
    2.Li Y,Turck CM,Teumer JK & Stavnezer E.Unique sequence,ski,in Sloan-Kettering avian retroviruses with properties of a new cell-derived oncogene.J Virol 1986 57 1065-1072.
    3.Akiyoshi S,Inoue H,Hanai J,Kusanagi K,Nemoto N,Miyazono K & Kawabata M.c-Ski acts as a transcriptional co-repressor in transforming growth factor-beta signaling through interaction with smads.J Biol Chem 1999 274 35269-35277.
    4.Luo K,Stroschein SL,Wang W,Chen D,Martens E,Zhou S & Zhou Q.The Ski oncoprotein interacts with the Smad proteins to repress TGFbeta signaling.Genes Dev 1999 132196-2206.
    5.Sun Y,Liu X,Eaton EN,Lane WS,Lodish HF & Weinberg RA.Interaction of the Ski oncoprotein with Smad3 regulates TGF-beta signaling.Mol Cell 1999 4 499-509.
    6.Xu W,Angelis K,Danielpour D,Haddad MM,Bischof O,Campisi J,Stavnezer E &Medrano EE.Ski acts as a co-repressor with Smad2 and Smad3 to regulate the response to type beta transforming growth factor.Proc Natl Acad Sci USA 2000 97 5924-5929.
    7.Shinagawa T,Dong HD,Xu M,Maekawa T & Ishii S.The sno gene,which encodes a component of the histone deacetylase complex,acts as a tumor suppressor in mice.EMBO J 2000 19 2280-2291.
    8.Shinagawa T,Nomura T,Colmenares C,Ohira M,Nakagawara A & Ishii S.Increased susceptibility to tumorigenesis of ski-deficient heterozygous mice.Oncogene 2001 208100-8108.
    9.Reed JA,Bales E,Xu W,Okan NA,Bandyopadhyay D & Medrano EE.Cytoplasmic localization of the oncogenic protein Ski in human cutaneous melanomas in vivo:functional implications for transforming growth factor beta signaling.Cancer Res 2001 61 8074-8078.
    10.Salovaara R,Roth S,Loukola A,Launonen V,Sistonen P,Avizienyte E,Kristo P,Jarvinen H,Souchelnytskyi S,Sarlomo-Rikala M & Aaltonen LA.Frequent loss of SMAD4/DPC4protein in colorectal cancers.Gut 2002 51 56-59.
    11,Fukuchi M,Nakajima M,Fukai Y,Miyazaki T,Masuda N,Sohda M,Manda R,Tsukada K,Kato H & Kuwano H.Increased expression of c-Ski as a co-repressor in transforming growth factor-beta signaling correlates with progression of esophageal squamous cell carcinoma,Int J Cancer 2004 108 818-824.
    12.高洁,武莎斐,曾碹 & 梁智勇.中国人胰腺癌细胞系的染色体特征.基础医学与临床2007 27 670-673.
    13.Michl P,Ramjaun AR,Pardo OE,Warne PH,Wagner M,Poulsom R,D'Arrigo C,Ryder K,Menke A,Gress T & Downward J.CUTL1 is a target of TGF(beta) signaling that enhances cancer cell motility and invasiveness.Cancer Cell 2005 7 521-532.
    14.Moore PS,Sipos B,Orlandini S,Sorio C,Real FX,Lemoine NR,Gress T,Bassi C,Kloppel G.Kalthoff H,Ungefroren H,Lohr M & Scarpa A.Genetic profile of 22 pancreatic carcinoma cell lines.Analysis of K-ras,p53,p 16 and DPC4/Smad4.Virchows Arch 2001 439798-802.
    15.Grau AM,Zhang L,Wang W,Ruan S,Evans DB,Abbruzzese JL,Zhang W & Chiao PJ.Induction of p21wafl expression and growth inhibition by transforming growth factor beta involve the tumor suppressor gene DPC4 in human pancreatic adenocarcinoma cells.Cancer Res 1997 57 3929-3934.
    16.Hahn SA,Schutte M,Hoque AT,Moskaluk CA,da Costa LT,Rozenblum E,Weinstein CL,Fischer A,Yeo CJ,Hruban RH & Kern SE.DPC4,a candidate tumor suppressor gene at human chromosome 18q21.1.,Science 1996 271 350-353.
    17.Munoz-Antonia T,Li X,Reiss M,Jackson R & Antonia S.A mutation in the transforming growth factor beta type Ⅱ receptor gene promoter associated with loss of gene expression.Cancer Res 1996 56 4831-4835.
    18.Venkatasubbarao K,Ammanamanchi S,Brattain MG,Mimari D & Freeman JW.Reversion of transcriptional repression of Spl by 5 aza-2' deoxycytidine restores TGF-beta type Ⅱreceptor expression in the pancreatic cancer cell line MIA PaCa-2.Cancer Res 2001 616239-6247.
    19.Kang SH,Bang YJ,Im YH,Yang HK,Lee DA,Lee HY,Lee HS,Kim NK & Kim SJ.Transcriptional repression of the transforming growth factor-beta type I receptor gene by DNA methylation results in the development of TGF-beta resistance in human gastric cancer.Oncogene 1999 18 7280-7286.
    20.Xie W,Mertens JC,Reiss DJ,Rimm DL,Camp RL,Haffty BG & Reiss M.Alterations of Smad signaling in human breast carcinoma are associated with poor outcome:a tissue microarray study.Cancer Res 2002 62 497-505.
    21.Xie W,Bharathy S,Kim D,Haffty BG,Rimm DL & Reiss M.Frequent alterations of Smad signaling in human head and neck squamous cell carcinomas:a tissue microarray analysis.Oncol Res 2003 14 61-73.
    22.Furukawa T,Sunamura M & Horii A.Molecular mechanisms of pancreatic carcinogenesis.Cancer Sci 2006 97 1-7.
    23.Kuramitsu Y & Nakamura K.Proteomic analysis of cancer tissues:shedding light on carcinogenesis and possible biomarkers.Proteomics 2006 6 5650-5661.
    24.Akhurst RJ & Derynck R.TGF-beta signaling in cancer-a double-edged sword.Trends Cell Biol 2001 11 S44-51.
    25.Wakefield LM & Roberts AB.TGF-beta signaling:positive and negative effects on tumorigenesis.Curt Opin Genet Dev 2002 12 22-29.
    26.Hanahan D & Weinberg RA.The hallmarks of cancer.Cell 2000 100 57-70.
    27.Dao MA,Hwa J & Nolta JA.Molecular mechanism of transforming growth factor beta-mediated cell-cycle modulation in primary human CD34(+) progenitors.Blood 2002 99499-506.
    28.Iavarone A & Massague J.Repression of the CDK activator Cdc25A and cell-cycle arrest by cytokine TGF-beta in cells lacking the CDK inhibitor p15.Nature 1997 387 417-422.
    29.Derynck R,Akhurst RJ & Balmain A.TGF-beta signaling in tumor suppression and cancer progression.Nat Genet 2001 29 117-129.
    30.Warner B J,Blain SW,Seoane J & Massague J.Myc downregulation by transforming growth factor beta required for activation of the p 15(Ink4b) G(1) arrest pathway.Mol Cell Biol 199919 5913-5922.
    31.Frederick JP,Liberati NT,Waddell DS,Shi Y & Wang XF.Transforming growth factor beta-mediated transcriptional repression of c-myc is dependent on direct binding of Smad3to a novel repressive Smad binding element.Mol Cell Bio12004 24 2546-2559.
    32.Villanueva A,Garcia C,Paules AB,Vicente M,Megias M,Reyes G,de Villalonga P,Ageil N, Lluis F,Bachs O & Capella G.Disruption of the antiproliferative TGF-beta signaling pathways in human pancreatic cancer cells.Oncogene 1998 17 1969-1978.
    33.Sirivatanauksorn V,Sirivatanauksorn Y,Gorman PA,Davidson JM,Sheer D,Moore PS,Scarpa A,Edwards PA & Lemoine NR.Non-random chromosomal rearrangements in pancreatic cancer cell lines identified by spectral karyotyping,Int J Cancer 2001 91350-358.
    34.Derynck R,Goeddel DV,Ullrich A,Gutterman JU,Williams RD,Bringman TS & Berger WH.Synthesis of messenger RNAs for transforming growth factors alpha and beta and the epidermal growth factor receptor by human tumors.CancerRes 1987 47 707-712.
    35.Dalai BI,Keown PA & Greenberg AH.Immunocytochemical localization of secreted transforming growth factor-beta 1 to the advancing edges of primary tumors and to lymph node metastases of human mammary carcinoma.Am J Pathol 1993 143 381-389.
    36.Walker RA,Dearing SJ & Gallacher B.Relationship of transforming growth factor beta 1 to extracellular matrix and stromal infiltrates in invasive breast carcinoma.Br J Cancer 199469 1160-1165.
    37.Hasegawa Y,Takanashi S,Kanehira Y,Tsushima T,Imai T & Okumura K.Transforming growth factor-betal level correlates with angiogenesis,tumor progression,and prognosis in patients with nonsmall cell lung carcinoma.Cancer 2001 91 964-971.
    38.Ito N,Kawata S,Tamura S,Shirai Y,Kiso S,Tsushima H & Matsuzawa Y.Positive correlation of plasma transforming growth factor-beta 1 levels with tumor vascularity in hepatocellular carcinoma.Cancer Lett 1995 89 45-48.
    39.Ivanovic V,Melman A,Davis-Joseph B,Valcic M & Geliebter J.Elevated plasma levels of TGF-beta 1 in patients with invasive prostate cancer.Nat Med 1995 1 282-284.
    40.Wikstrom P,Stattin P,Franck-Lissbrant I,Damber JE & Bergh A.Transforming growth factor betal is associated with angiogenesis,metastasis,and poor clinical outcome in prostate cancer.Prostate 1998 37 19-29.
    41.Shariat SF,Shalev M,Menesses-Diaz A,Kim IY,Kattan MW,Wheeler TM & Slawin KM.Preoperative plasma levels of transforming growth factor beta(1)(TGF-beta(1)) strongly predict progression in patients undergoing radical prostatectomy.J Clin Oncol 2001 192856-2864.
    42.Tsushima H,Kawata S,Tamura S,Ito N,Shirai Y,Kiso S,Imai Y,Shimomukai H,Nomum Y,Matsuda Y & Matsuzawa Y.High levels of transforming growth factor beta 1 in patients with colorectal cancer:association with disease progression.Gastroenterology 1996 110 375-382.
    43.Shim KS,Kim KH,Han WS & Park EB.Elevated serum levels of transforming growth factor-betal in patients with colorectal carcinoma:its association with tumor progression and its significant decrease after curative surgical resection.Cancer 1999 85 554-561.
    44.Tsushima H,Ito N,Tamura S,Matsuda Y,Inada M,Yabuuchi I,Imai Y,Nagashima R,Misawa H,Takeda H,Matsuzawa Y & Kawata S.Circulating transforming growth factor beta 1 as a predictor of liver metastasis after resection in colorectal cancer.Clin Cancer Res 2001 7 1258-1262.
    45.Deckers M,van Dinther M,Buijs J,Que I,Lowik C,van der Pluijm G & ten Dijke P.The tumor suppressor Smad4 is required for transforming growth factor beta-induced epithelial to mesenchymal transition and bone metastasis of breast cancer cells.Cancer Res 2006 662202-2209.
    46.Itoh S,Thorikay M,Kowanetz M,Moustakas A,Itoh F,Heldin CH & ten Dijke P.Elucidation of Smad requirement in transforming growth factor-beta type I receptor-induced responses,JBiol Chem 2003 278 3751-3761.
    47.Kowanetz M.Valcourt U,Bergstrom R,Heldin CH & Moustakas A.Id2 and Id3 define the potency of cell proliferation and differentiation responses to transforming growth factor beta and bone morphogenetic protein.Mol Cell Biol 2004 24 4241-4254.
    48.Li W,Qiao W,Chen L,Xu X,Yang X,Li D,Li C,Brodie SG,Meguid MM,Hennighausen L & Deng CX.Squamous cell carcinoma and mammary abscess formation through squamous metaplasia in Smad4/Dpc4 conditional knockout mice.Development 2003 130 6143-6153.
    49.Li Y,Yang J,Dai C,Wu C & Liu Y.Role for integrin-linked kinase in mediating tubular epithelial to mesenchymal transition and renal interstitial fibrogenesis.J Clin Invest 2003112 503-516.
    50.Oft M,Akhurst RJ & Balmain A.Metastasis is driven by sequential elevation of H-ras and Smad2 levels.Nat Cell Biol 2002 4 487-494.
    51.Piek E,Moustakas A,Kurisaki A,Heldin CH & ten Dijke P.TGF-(beta) type I receptor/ALK-5 and Smad proteins mediate epithelial to mesenchymal transdifferentiation in NMuMG breast epithelial cells.J Cell Sci 1999 112(Pt 24) 4557-4568.
    52.Saika S,Kono-Saika S,Ohnishi Y,Sato M,Muragaki Y,Ooshima A,Flanders KC,Yoo J,Anzano M,Liu CY,Kao WW & Roberts AB.Smad3 signaling is required for epithelial-mesenchymal transition of lens epithelium after injury.Am J Pathol 2004 164651-663.
    53.Sato M,Muragaki Y,Saika S,Roberts AB & Ooshima A.Targeted disruption of TGF-beta1/Smad3 signaling protects against renal tubulointerstitial fibrosis induced by unilateral ureteral obstruction.J Clin Invest 2003 112 1486-1494.
    54.Tian F,Byfield SD,Parks WT,Stuelten CH,Nemani D,Zhang YE & Roberts AB.Smad-binding defective mutant of transforming growth factor beta type I receptor enhances tumorigenesis but suppresses metastasis of breast cancer cell lines.Cancer Res 2004 644523-4530.
    55.Tian F,DaCosta Byfield S,Parks WT,Yoo S,Felici A,Tang B,Piek E,Wakefield LM &Roberts AB.Reduction in Smad3 signaling enhances tumorigenesis but suppresses metastasis of breast cancer cell lines.Cancer Res 2003 63 8284-8292.
    56.Valcourt U,Kowanetz M,Niimi H,Heldin CH & Moustakas A.TGF-beta and the Smad signaling pathway support transcriptomic reprogramming during epithelial-mesenchymal cell transition.Mol Biol Cell 2005 16 1987-2002.
    57.Caulin C,Scholl FG,Frontelo P,Gamallo C & Quintanilla M.Chronic exposure of cultured transformed mouse epidermal cells to transforming growth factor-beta I induces an epithelial-mesenchymal transdifferentiation and a spindle tumoral phenotype.Cell Growth Differ 1995 6 1027-1035.
    58.Danielpour D.Transdifferentiation of NRP-152 rat prostatic basal epithelial cells toward a luminal phenotype:regulation by glucocorticoid,insulin-like growth factor-I and transforming growth factor-beta.J Cell Sci 1999 112(Pt 2) 169-179.
    59.Ellenrieder V,Hendler SF,Boeck W,Seufferlein T,Menke A,Ruhland C,Adler G & Gress TM.Transforming growth factor betal treatment leads to an epithelial-mesenchymal transdifferentiation of pancreatic cancer cells requiring extracellular signal-regulated kinase 2 activation.Cancer Res 2001 61 4222-4228.
    60.Miettinen PJ,Ebner R,Lopez AR & Derynck R.TGF-beta induced transdifferentiation of mammary epithelial cells to mesenchymal cells:involvement of type Ⅰ receptors,J Cell Biol 1994 127 2021-2036.
    61.Zavadil J,Bitzer M,Liang D,Yang YC,Massimi A,Kneitz S,Piek E & Bottinger EP.Genetic programs of epithelial cell plasticity directed by transforming growth factor-beta.Proc NatlAcad Sci USA 2001 98 6686-6691.
    62.Moustakas A & Heldin CH.Non-Smad TGF-beta signals,J Cell Sci 2005 118 3573-3584.
    63.Bissell MJ & Radisky D.Putting tumours in context.Nat Rev Cancer 2001 1 46-54.
    64.Bhowmick NA & Moses HL.Tumor-stroma interactions.Curt Opin Genet Dev 2005 1597-101.
    65.Micke P & Ostman A.Exploring the tumour environment:cancer-associated fibroblasts as targets in cancer therapy.Expert Opin Ther Targets 2005 9 1217-1233.
    66.Igarashi A,Okochi H,Bradham DM & Grotendorst GR.Regulation of connective tissue growth factor gene expression in human skin fibroblasts and during wound repair.Mol Biol Cell 1993 4 637-645.
    67.Ishikawa O,LeRoy EC & Trojanowska M.Mitogenic effect of transforming growth factor beta 1 on human fibroblasts involves the induction of platelet-derived growth factor alpha receptors.J Cell Physiol 1990 145 181-186.
    68.Makela TP,Alitalo R,Paulsson Y,Westermark B,Heldin CH & Alitalo K.Regulation of platelet-derived growth factor gene expression by transforming growth factor beta and phorbol ester in human leukemia cell lines.Mol Cell Biol 1987 7 3656-3662.
    69.Strutz F,Zeisberg M,Renziehausen A,Raschke B,Becker V,van Kooten C & Muller G TGF-beta 1 induces proliferation in human renal fibroblasts via induction of basic fibroblast growth factor(FGF-2).Kidney Int 2001 59 579-592.
    70.De Wever O,Westbroek W,Verloes A,Bloemen N,Bracke M,Gespach C,Bruyneel E &Mareel M.Critical role of N-cadherin in myofibroblast invasion and migration in vitro stimulated by colon-cancer-cell-derived TGF-beta or wounding.J Cell Sci 2004 1174691-4703.
    71.Lewis MP,Lygoe KA,Nystrom ML,Anderson WP,Speight PM,Marshall JF & Thomas GJ.Tumour-derived TGF-betal modulates myofibroblast differentiation and promotes HGF/SF-dependent invasion of squamous carcinoma cells.Br J Cancer 2004 90 822-832.
    72.Pepper MS.Transforming growth factor-beta:vasculogenesis,angiogenesis,and vessel wall integrity.Cytokine Growth Factor Rev 1997 8 21-43.
    73.Ueki N,Nakazato M,Ohkawa T,Ikeda T,Amuro Y,Hada T & Higashino K.Excessive production of transforming growth-factor beta 1 can play an important role in the development of tumorigenesis by its action for angiogenesis:validity of neutralizing antibodies to block tumor growth.Biochim Biophys Acta 1992 1137 189-196.
    74.Li MO,Wan YY,Sanjabi S,Robertson AK & Flavell RA.Transforming growth factor-beta regulation of immune responses.Annu Rev Immunol 2006 24 99-146.
    75.Tsunawaki S,Sporn M,Ding A & Nathan C.Deactivation of macrophages by transforming growth factor-beta.Nature 1988 334 260-262.
    76.von Bernstorff W,Voss M,Freichel S,Schmid A,Vogel I,Johnk C,Henne-Bruns D,Kremer B & Kalthoff H.Systemic and local immunosuppression in pancreatic cancer patients.Clin Cancer Res 2001 7 925s-932s.
    77.Torre-Amione G,Beauchamp RD,Koeppen H,Park BH,Schreiber H,Moses HL & Rowley DA.A highly immunogenic tumor transfected with a murine transforming growth factor type beta 1 cDNA escapes immune surveillance.Proc Natl Acad Sci USA 1990 87 1486-1490.
    78.Prunier C,Pessah M,Ferrand N,Seo SR.Howe P & Atfi A.The oncoprotein Ski acts as an antagonist of transforming growth factor-beta signaling by suppressing Smad2phosphorylation.J Biol Chem 2003 278 26249-26257.
    79.Suzuki H,Yagi K,Kondo M,Kato M,Miyazono K & Miyazawa K.c-Ski inhibits the TGF-beta signaling pathway through stabilization of inactive Smad complexes on Smad-binding elements.Oncogene 2004 23 5068-5076.
    1.成文武,刘鲁明,于尔辛.202例胰腺癌临床分析.中华消化杂志,23:758-759
    2.陆菊星,杨炳奎.辩证治疗中晚期胰腺癌30例.浙江中医杂志,2000,9:150-151
    3.尤建良,赵景芳.调脾抑胰方治疗晚期胰腺癌42例.浙江中医杂志,2000,4:238
    4.孙玉冰,周亦农.和解法配合中药外敷治疗中晚期胰腺癌22例临床观察.中华实用中西医结合杂志.2003,3:1770-1771
    5.武迎梅,时水治.金龙胶囊配合中草药治疗中晚期胰腺癌21例临床观察.北京中医杂志,2002,21:349-351
    6.贺用和,董海涛,汪平,等.口服膈下逐瘀汤配合动脉插管化疗治疗晚期胰腺癌—附26例报告.中国中西医结合外科杂志,2001,7:81-82
    7.杨金祖,邱佳信.邱佳信教授治疗胰腺癌的经验-附16例疗效分析.陕西中医,2001,22:354-355
    8.倪依群,尤建良,杨志新,等.微调3号方配合西药治疗晚期胰腺癌21例.陕西中医,2006,27:426-427
    9.邬国斌,梁安民,赵荫农,等.胰腺癌的临床综合治疗(附67例分析).广西医学,2005,27:39-41
    10.王炳胜,刘秀芳,吴智群,等.益气活血中药在中晚期胰腺癌放化疗中的作用.中国中西医结合杂志,2000,20:736-738
    11.赵晓琴.赵昌基用喜树配方治疗癌症的经验.中国中医药信息杂志,2003,10:75
    12.黄莉,郭岳峰,王东峰.中西医结合治疗胰腺癌.光明中医,2002,17:15-16
    13.肖继贤,高国俊.中西医结合治疗胰腺癌32例报告.苏州大学学报(医学版),2002,22:233-234
    14.贺用和,林洪生,董海涛,等.中西医结合治疗中晚期胰腺癌63例临床观察.中国中医药信息杂志,2001,8:65-66
    15.倪依群,尤建良,杨志新,等.中西医结合综合治疗晚期胰腺癌21例.辽宁中医杂志,2005,32:1293
    16.魏东,谭勇,刘涣义,等.中药阿胶治疗晚期胰腺癌化疗后骨髓抑制21例.中国中西医结合杂志,2006,26:659-660
    17.谢建兴,苏小康,郭亚雄,等.中医药抗中晚期胰腺癌血行播散机制初探.云南中医中药杂志,2004,25:29-30
    18.张炫炫.中医药治疗胰腺癌存活2年余.浙江中医学院学报,2000,24:25
    19.杨炳奎,霍介格,曹振健.中医药治疗中晚期胰腺癌68例临床观察.中国中医基础医学杂志,2002,8:135-136
    20.郭丽曼,郭公新,韩晶莉,等.自拟中草药配合免疫营养疗法治疗晚期胰腺癌临床体会.黑龙江医药科学.2004.27:70
    21.Liu LM,Liang C,Lin SY.et al.Therapeutic evaluation on advanced pancreatic cancer treated by integrative Chinese and western medicine-clinical analysis of 56 cases.CJIM,2003,9:39-43
    22.沈晔华,刘鲁明,陈震,等.中药联合化疗治疗晚期胰腺癌32例临床研究.中医杂志,2006,47:115-117
    1.Massague J,Blain SW & Lo RS.TGFbeta signaling in growth control,cancer,and heritable disorders.Cell 2000 103 295-309.
    2.Todaro GJ & De Larco JE.Growth factors produced by sarcoma virus-transformed cells.Cancer Res 1978 38 4147-4154.
    3.Akhurst RJ & Derynck R.TGF-beta signaling in cancer-a double-edged sword.Trends Cell Biol 2001 11 S44-51.
    4.Wakefield LM & Roberts AB.TGF-beta signaling:positive and negative effects on tumorigenesis.Curr Opin Genet Dev 2002 12 22-29.
    5.Hanahan D & Weinberg RA.The hallmarks of cancer.Cell 2000 100 57-70.
    6.Derynck R,Akhurst RJ & Balmain A.TGF-beta signaling in tumor suppression and cancer progression.Nat Genet 2001 29 117-129.
    7.Levy L & Hill CS.Alterations in componems of the TGF-beta superfamily signaling pathways in human cancer.Cytokine Growth FactorRev 2006 17 41-58.
    8.Pardali K & Moustakas A.Actions of TGF-beta as tumor suppressor and pro-metastatic factor in human cancer.Biochim Biophys Acta 2007 1775 21-62.
    9.Cohen MM,Jr.TGF beta/Smad signaling system and its pathologic correlates.Am J Med Genet A 2003 116 1-10.
    10.Dumont N & Arteaga CL.The tumor microenvironment:a potential arbitrator of the tumor suppressive and promoting actions of TGFbeta.Differentiation 2002 70 574-582.
    11.Lin SW,Lee MT,Ke FC.Lee PP,Huang CJ,Ip MM,Chen L & Hwang JJ.TGFbetal stimulates the secretion of matrix metalloproteinase 2(MMP2) and the invasive behavior in human ovarian cancer cells,which is suppressed by MMP inhibitor 13B3103.Clin Exp Metastasis 2000 18 493-499.
    12.Janji B,Melchior C,Gouon V,Vallar L & Kieffer N.Autocrine TGF-beta-regulated expression of adhesion receptors and integrin-linked kinase in HT-144 melanoma cells correlates with their metastatic phenotype,Int J Cancer 1999 83 255-262.
    13.Johansson N,Ala-aho R,Uitto V,Grenman R,Fusenig NE,Lopez-Otin C & Kahari VM.Expression of collagenase-3(MMP-13) and collagenase-1(MMP-1) by transformed keratinocytes is dependent on the activity of p38 mitogen-activated protein kinase.J Cell Sci 2000 113 Pt 2 227-235.
    14.Leivonen SK,Ala-Aho K,Koli K,Greuman R,Peltonen J & Kahari VM.Activation of Smad signaling enhances collagenase-3(MMP-13) expression and invasion of head and neck squamous carcinoma cells.Oncogene 2006 25 2588-2600.
    15.Derynck R.Goeddel DV,Ullrich A,Gutterman JU,Williams RD,Bringman TS & Berger WH.Synthesis of messenger RNAs for transforming growth factors alpha and beta and the epidermal growth factor receptor by human tumors.Cancer Res 1987 47 707-712.
    16.Arrick BA,Lopez AR,Elfman F,Ebner R,Damsky CH & Derynck R.Altered metabolic and adhesive properties and increased tumorigenesis associated with increased expression of transforming growth factor beta 1.J Cell Biol 1992 118 715-726.
    17.Dalai BI,Keown PA & Greenberg AH.Immunocytochemical localization of secreted transforming growth factor-beta 1 to the advancing edges of primary tumors and to lymph node metastases of human mammary carcinoma.Am J Pathol 1993 143 381-389.
    18.Walker RA,Dearing SJ & Gallacher B.Relationship of transforming growth factor beta 1 to extracellular matrix and stromal infiltrates in invasive breast carcinoma.Br J Cancer 199469 1160-1165.
    19.Hasegawa Y,Takanashi S,Kanehira Y,Tsushima T,Imai T & Okumura K.Transforming growth factor-beta 1 level correlates with angiogenesis,tumor progression,and prognosis in patients with nonsmall cell lung carcinoma.Cancer 2001 91 964-971.
    20.Ito N,Kawata S,Tamura S,Shirai Y,Kiso S,Tsushima H & Matsuzawa Y.Positive correlation of plasma transforming growth factor-beta 1 levels with tumor vascularity in hepatocellular carcinoma.Cancer Lett 1995 89 45-48.
    21.Ivanovic V,Melman A,Davis-Joseph B,Valcic M & Geliebter J.Elevated plasma levels of TGF-beta 1 in patients with invasive prostate cancer.NatMed 1995 1 282-284.
    22.Wikstrom P,Stattin P,Franck-Lissbrant I,Damber JE & Bergh A.Transforming growth factor betal is associated with angiogenesis,metastasis,and poor clinical outcome in prostate cancer.Prostate 1998 37 19-29.
    23.Shariat SF,Shalev M,Menesses-Diaz A,Kim IY,Kattan MW,Wheeler TM & Slawin KM.Preoperative plasma levels of transforming growth factor beta(1)(TGF-beta(1)) strongly predict progression in patients undergoing radical prostatectomy.J Clin Oncol 2001 192856-2864.
    24.Tsushima H,Kawata S,Tamura S,Ito N,Shirai Y,Kiso S,Imai Y,Shimomukai H,Nomura Y,Matsuda Y & Matsuzawa Y.High levels of transforming growth factor beta 1 in patients with colorectal cancer:association with disease progression.Gastroenterology 1996 110 375-382.
    25.Shim KS,Kim KH,Han WS & Park EB.Elevated serum levels of transforming growth factor-betal in patients with colorectal carcinoma:its association with tumor progression and its significant decrease after curative surgical resection.Cancer 1999 85 554-561.
    26.Tsushima H,Ito N,Tamura S,Matsuda Y,Inada M,Yabuuchi I,Imai Y,Nagashima R,Misawa H,Takeda H,Matsuzawa Y & Kawata S.Circulating transforming growth factor beta 1 as a predictor of liver metastasis after resection in colorectal cancer.Clin Cancer Res 2001 7 1258-1262.
    27.Welch DR,Fabra A & Nakajima M.Transforming growth factor beta stimulates mammary adenocarcinoma cell invasion and metastatic potential.Proc Natl Acad Sci U S A 1990 877678-7682.
    28.Chang HL,Gillett N,Figari I,Lopez AR,Palladino MA & Derynck R.Increased transforming growth factor beta expression inhibits cell proliferation in vitro,yet increases tumorigenicity and tumor growth of Meth A sarcoma cells.Cancer Res 1993 53 4391-4398.
    29.Cui W,Fowlis DJ,Bryson S,Duffie E,Ireland H,Balmain A & Akhurst RJ.TGFbetal inhibits the formation of benign skin tumors,but enhances progression to invasive spindle carcinomas in transgenic mice.Cell 1996 86 531-542.
    30.Portella G,Cumming SA,Liddell J,Cui W,Ireland H,Akhurst RJ & Balmain A.Transforming growth factor beta is essential for spindle cell conversion of mouse skin carcinoma in vivo:implications for tumor invasion.Cell Growth Differ 1998 9 393-404.
    31.Weeks BH,He W,Olson KL & Wang XJ.Inducible expression of transforming growth factor betal in papillomas causes rapid metastasis.Cancer Res 2001 61 7435-7443.
    32.Han G Lu SL,Li AG,He W,Corless CL,Kulesz-Martin M & Wang XJ.Distinct mechanisms of TGF-betal-mediated epithelial-to-mesenchymal transition and metastasis during skin carcinogenesis.J Clin Invest 2005 115 1714-1723.
    33.Oft M,Peli J,Rudaz C,Schwarz H,Beug H & Reichmann E.TGF-betal and Ha-Ras collaborate in modulating the phenotypic plasticity and invasiveness of epithelial tumor cells.Genes Dev 1996 10 2462-2477.
    34.Oft M,Heider KH & Beug H.TGFbeta signaling is necessary for carcinoma cell invasiveness and metastasis.Curr Biol 1998 8 1243-1252.
    35.Yin JJ,Selander K,Chirgwin JM,Dallas M,Grubbs BG,Wieser R,Massague J,Mundy GR & Guise TA.TGF-beta signaling blockade inhibits PTHrP secretion by breast cancer cells and bone metastases development.J Clin Invest 1999 103 197-206.
    36.Tang B,Vu M,Booker T,Santner SJ,Miller FR,Anver MR & Wakefield LM.TGF-beta switches from tumor suppressor to prometastatic factor in a model of breast cancer progression.J Clin Invest 2003 112 1116-1124.
    37.Siegel PM,Shu W,Cardiff RD,Muller WJ & Massague J.Transforming growth factor beta signaling impairs Neu-induced mammary tumorigenesis while promoting pulmonary metastasis.Proc Natl Acad Sci USA 2003 100 8430-8435.
    38.Tian F,Byfield SD,Parks WT,Stuelten CH,Nemani D,Zhang YE & Roberts AB.Smad-binding defective mutant of transforming growth factor beta type I receptor enhances tumorigenesis but suppresses metastasis of breast cancer cell lines.Cancer Res 2004 644523-4530.
    39.Tian F,DaCosta Byfield S,Parks WT,Yoo S,Felici A,Tang B,Piek E,Wakefield LM & Roberts AB. Reduction in Smad2/3 signaling enhances tumorigenesis but suppresses metastasis of breast cancer cell lines. Cancer Res 2003 63 8284-8292.
    40. Li W, Qiao W, Chen L, Xu X, Yang X, Li D, Li C, Brodie SG, Meguid MM, Hennighausen L & Deng CX. Squamous cell carcinoma and mammary abscess formation through squamous metaplasia in Smad4/Dpc4 conditional knockout mice. Development 2003 130 6143-6153.
    41. Deckers M, van Dinther M, Buijs J, Que I, Lowik C, van der Pluijm G & ten Dijke P. The tumor suppressor Smad4 is required for transforming growth factor beta-induced epithelial to mesenchymal transition and bone metastasis of breast cancer cells. Cancer Res 2006 66 2202-2209.
    42. Kang Y, He W, Tulley S, Gupta GP, Serganova I, Chen CR, Manova-Todorova K, Blasberg R, Gerald WL & Massague J. Breast cancer bone metastasis mediated by the Smad tumor suppressor pathway. Proc Natl Acad Sci U S A 2005 102 13909-13914.
    43. Azuma H, Ehata S, Miyazaki H, Watabe T, Maruyama O, Imamura T, Sakamoto T, Kiyama S, Kiyama Y, Ubai T, Inamoto T, Takahara S, Itoh Y, Otsuki Y, Katsuoka Y, Miyazono K & Horie S. Effect of Smad7 expression on metastasis of mouse mammary carcinoma JygMC(A) cells. J Natl Cancer Inst 2005 97 1734-1746.
    44. Kang Y, Siegel PM, Shu W, Drobnjak M, Kakonen SM, Cordon-Cardo C, Guise TA & Massague J. A multigenic program mediating breast cancer metastasis to bone. Cancer Cell 2003 3 537-549.
    45. Thiery JP. Epithelial-mesenchymal transitions in development and pathologies. Curr Opin Cell Biol 2003 15 740-746.
    46. Hugo H, Ackland ML, Blick T, Lawrence MG, Clements JA, Williams ED & Thompson EW. Epithelial-mesenchymal and mesenchymal—epithelial transitions in carcinoma progression. J Cell Physiol 2007 213 374-383.
    47. Guarino M, Rubino B & Ballabio G The role of epithelial-mesenchymal transition in cancer pathology. Pathology 2007 39 305-318.
    48. Hay ED. The mesenchymal cell, its role in the embryo, and the remarkable signaling mechanisms that create it. Dev Dyn 2005 233 706-720.
    49. Lee JM, Dedhar S, Kalluri R & Thompson EW. The epithelial-mesenchymal transition: new insights in signaling, development, and disease. J Cell Biol 2006 172 973-981.
    50. Miettinen PJ, Ebner R, Lopez AR & Derynck R. TGF-beta induced transdifferentiation of mammary epithelial cells to mesenchymal cells: involvement of type I receptors. J Cell Biol 1994 127 2021-2036.
    51. Caulin C, Scholl FG, Frontelo P, Gamallo C & Quintanilla M. Chronic exposure of cultured transformed mouse epidermal cells to transforming growth factor-beta 1 induces an epithelial-mesenchymal transdifferentiation and a spindle tumoral phenotype. Cell Growth Differ 1995 6 1027-1035.
    52. Ellenrieder V, Hendler SF, Boeck W, Seufferlein T, Menke A, Ruhland C, Adler G & Gress TM. Transforming growth factor betal treatment leads to an epithelial-mesenchymal transdifferentiation of pancreatic cancer cells requiring extracellular signal-regulated kinase 2 activation. Cancer Res 2001 61 4222-4228.
    53. Zavadil J, Bitzer M, Liang D, Yang YC, Massimi A, Kneitz S, Piek E & Bottinger EP. Genetic programs of epithelial cell plasticity directed by transforming growth factor-beta. Proc Natl Acad Sci U S A 2001 98 6686-6691.
    54.Danielpour D.Transdifferentiation of NRP-152 rat prostatic basal epithelial cells toward a luminal phenotype:regulation by glucocorticoid,insulin-like growth factor-I and transforming growth factor-beta,J Cell Sci 1999 112(Pt 2) 169-179.
    55.Lehmann K,Janda E,Pierreux CE,Rytomaa M,Schulze A,McMahon M,Hill CS,Beug H & Downward J.Raf induces TGFbeta production while blocking its apoptotic but not invasive responses:a mechanism leading to increased malignancy in epithelial cells.Genes Dev 2000 14 2610-2622.
    56.Gotzmann J,Huber H,Thallinger C,Wolschek M,Jansen B,Schulte-Hermann R,Beug H &Mikulits W.Hepatocytes convert to a fibroblastoid phenotype through the cooperation of TGF-betal and Ha-Ras:steps towards invasiveness.J Cell Sci 2002 115 1189-1202.
    57.Itoh S,Thorikay M,Kowanetz M,Moustakas A,Itoh F,Heldin CH & ten Dijke P.Elucidation of Smad requirement m transforming growth factor-beta type I receptor-induced responses.J Biol Chem 2003 278 3751-3761.
    58.Kowanetz M,Valcourt U,Bergstrom R,Heldin CH & Moustakas A.Id2 and Id3 define the potency of cell proliferation and differentiation responses to transforming growth factor beta and bone morphogenetic protein.Mol Cell Biol 2004 24 4241-4254.
    59.Li Y,Yang J,Dai C,Wu C & Liu Y.Role for integrin-linked kinase in mediating tubular epithelial to mesenchymal transition and renal interstitial fibrogenesis.J Clin lnvest 2003112 503-516.
    60.Oft M,Akhurst RJ & Balmain A.Metastasis is driven by sequential elevation of H-ras and Smad2 levels.Nat Cell Biol 2002 4 487-494.
    61.Piek E,Moustakas A,Kurisaki A,Heldin CH & ten Dijke P.TGF-(beta) type I receptor/ALK-5 and Smad proteins mediate epithelial to mesenchymal transdifferentiation in NMuMG breast epithelial cells.J Cell Sci 1999 112(Pt 24) 4557-4568.
    62.Saika S,Kono-Saika S,Ohnishi Y,Sato M,Muragaki Y,Ooshima A,Flanders KC,Yoo J,Anzano M,Liu CY,Kao WW & Roberts AB.Smad3 signaling is required for epithelial-mesenchymal transition of lens epithelium after injury.Am J Pathol 2004 164651-663.
    63.Sato M,Muragaki Y,Saika S,Roberts AB & Ooshima A.Targeted disruption of TGF-betal/Smad3 signaling protects against renal tubulointerstitial fibrosis induced by unilateral ureteral obstruction.J Clin Invest 2003 112 1486-1494.
    64.Valcourt U,Kowanetz M,Niimi H,Heldin CH & Moustakas A.TGF-beta and the Smad signaling pathway support transcriptomic reprogramming during epithelial-mesenchymal cell transition.Mol Biol Cell 2005 16 1987-2002.
    65.Kurisaki K,Kurisaki A,Valcourt U,Terentiev AA,Pardali K,Ten Dijke P,Heldin CH,Ericsson J & Moustakas A.Nuclear factor YY1 inhibits transforming growth factor beta-and bone morphogenetic protein-induced cell differentiation.Mol Cell Biol 2003 23 4494-4510.
    66.Takeda M,Mizuide M,Oka M,Watabe T,Inoue H,Suzuki H,Fujita T,hnamura T,Miyazono K & Miyazawa K.Interaction with Smad4 is indispensable for suppression of BMP signaling by c-Ski.Mol Biol Cell 2004 15 963-972.
    67.Moustakas A & Heldin CH.Non-Smad TGF-beta signals,J Cell Sci 2005 118 3573-3584.
    68.Janda E,Lehmann K,Killisch I,Jechlinger M,Herzig M,Downward J,Beug H & Grunert S.Ras and TGF[beta]cooperatively regulate epithelial cell plasticity and metastasis:dissection of Ras signaling pathways.J Cell Biol 2002 156 299-313.
    69.Bakin AV,Rinehart C,Tomlinson AK & Arteaga CL.p38 mitogen-activated protein kinase is required for TGFbeta-mediated fibroblastic transdifferentiation and cell migration.J Cell Sci 2002 115 3193-3206.
    70.Bhowmick NA,Ghiassi M,Bakin A,Aakre M.Lundquist CA,Engel ME,Arteaga CL &Moses HL.Transforming growth factor-betal mediates epithelial to mesenchymal transdifferentiation through a RhoA-dependent mechanism.Mol Biol Cell 2001 12 27-36.
    71.Davies M,Robinson M,Smith E,Htmtley S,Prime S & Paterson I.Induction of an epithelial to mesenchymal transition in human immortal and malignant keratmocytes by TGF-betal involves MAPK,Smad and AP-1 signalling pathways.J Cell Biochem 2005 95 918-931.
    72.Grande M,Franzen A,Karlsson JO,Ericson LE,Heldin NE & Nilsson M.Transforming growth factor-beta and epidermal growth factor synergistically stimulate epithelial to mesenchymal transition(EMT) through a MEK-dependent mechanism in primary cultured pig thyrocytes.J Cell Sci 2002 115 4227-4236.
    73.Xie L,Law BK,Chytil AM,Brown KA,Aakre ME & Moses HL.Activation of the Erk pathway is required for TGF-beta 1-induced EMT in vitro.Neoplasia 2004 6 603-610.
    74.Huber MA,Azoitei N,Baumann B,Grunert S,Sommer A,Pehamberger H,Kraut N,Beug H & Wirth T.NF-kappaB is essential for epithelial-mesenchymal transition and metastasis in a model of breast cancer progression,J Clin Invest 2004 114 569-581.
    75.Maehara Y,Kakeji y,Kabashima A,Emi Y,Watanabe A,Akazawa K,Baba H,Kohnoe S &Sugimachi K.Role of transforming growth factor-beta 1 in invasion and metastasis in gastric carcinoma.J Clin Oncol 1999 17 607-614.
    76.Prunier C,Mazars A,Noe V,Bruyneel E,Mareel M,Gespach C & Atfi A.Evidence that Smad2 is a tumor suppressor implicated in the control of cellular invasion.J Biol Chem 1999274 22919-22922.
    77.Subramanian G,Schwarz RE,Higgins L,McEnroe G,Chakravarty S,Dugar S & Reiss M.Targeting endogenous transforming growth factor beta receptor signaling in SMAD4-deficient human pancreatic carcinoma cells inhibits their invasive phenotypel.Cancer Res 2004 64 5200-5211.
    78.Shen X,Li J,Hu PP,Waddell D,Zhang J & Wang XF.The activity of guanine exchange factor NET1 is essential for transforming growth factor-beta-mediated stress fiber formation.J Biol Chem 2001 276 15362-15368.
    79.Bakin AV,Safina A,Rinehart C,Daroqui C,Darbary H & Helfman DM.A critical role of tropomyosins in TGF-beta regulation of the actin cytoskeleton and cell motility in epithelial cells.Mol Biol Cell 2004 15 4682-4694.
    80.Michl P,Ramjaun AR,Pardo OE,Wame PH,Wagner M,Poulsom R,D'Arrigo C,Ryder K,Menke A,Gress T & Downward J.CUTL1 is a target of TGF(beta) signaling that enhances cancer cell motility and invasiveness.Cancer Cell 2005 7 521-532.
    81.Bissell MJ & Radisky D.Putting tumours in context.Nat Rev Cancer 2001 1 46-54.
    82.Bhowmick NA & Moses HL.Tumor-stroma interactions.Curt Opin Genet Dev 2005 1597-101.
    83.Micke P & Ostman A.Exploring the turnout environment:cancer-associated fibroblasts as targets in cancer therapy.Expert Opin Ther Targets 2005 9 1217-1233.
    84.Igarashi A,Okochi H,Bradham DM & Grotendorst GR.Regulation of connective tissue growth factor gene expression in human skin fibroblasts and during wound repair.Mol Biol Cell 1993 4 637-645.
    85.Ishikawa O,LeRoy EC & Trojanowska M,Mitogenic effect of transforming growth factor beta 1 on human fibroblasts involves the induction of platelet-derived growth factor alpha receptors,J Cell Physiol 1990 145 181-186.
    86.Makela TP,Alitalo R,Paulsson Y,Westennark B,Heldin CH & Alitalo K.Regulation of platelet-derived growth factor gene expression by transforming growth factor beta and phorbol ester in human leukemia cell lines.Mol Cell Biol 1987 7 3656-3662.
    87.Strutz F.Zeisberg M,Renziehausen A,Raschke B,Becker V,van Kooten C & Muller G.TGF-beta 1 induces proliferation in haman renal fibroblasts via induction of basic fibroblast growth factor(FGF-2).Kidney Int 2001 59 579-592.
    88.De Wever O,Westbroek W,Verloes A,Bloemen N,Bracke M,Gespach C,Bruyneel E &Mareel M.Critical role of N-cadherm in myofibroblast invasion and migration in vitro stimulated by colon-cancer-cell-derived TGF-beta or wounding,J Cell Sci 2004 1174691-4703.
    89.Lewis MP,Lygoe KA,Nystrom ML,Anderson WP,Speight PM,Marshall JF & Thomas GJ.Tamour-derived TGF-betal modulates myofibroblast differentiation and promotes HGF/SF-dependent invasion of squamous carcinoma cells.Br J Cancer 2004 90 822-832.
    90.Pepper MS.Transforming growth factor-beta:vasculogenesis,angiogenesis,and vessel wall integrity.Cytokine Growth Factor Rev 1997 8 21-43.
    91.Ueki N,Nakazato M,Ohkawa T,Ikeda T,Amuro Y,Hada T & Higashino K.Excessive production of transforming growth-factor beta 1 can play an important role in the development of tumorigenesis by its action for angiogenesis:validity of neutralizing antibodies to block tumor growth.Biochim Biophys Acta 1992 1137 189-196.
    92.Lu SL,Reh D,Li AG,Woods J,Corless CL,Kulesz-Martin M & Wang XJ.Overexpression of transforming growth factor betal in head and neck epithelia results in inflammation,angiogenesis,and epithelial hyperproliferation.Cancer Res 2004 64 4405-4410.
    93.Li MO,Wan YY,Sanjabi S,Robertson AK & Flavell RA.Transforming growth factor-beta regulation of immune responses.Annu Rev Immunol 2006 24 99-146.
    94.Tsunawaki S,Sporn M,Ding A & Nathan C.Deactivation of macrophages by transforming growth factor-beta.Nature 1988 334 260-262.
    95.Bodmer S,Strommer K,Fre K,Siepl C,Tribolet Nd,Heid I & Fontana A.Immunosuppression and transforming growth factor-β in glioblastoma.Preferential production of transforming growth factor-β2.J.Immunol.1989 143 8.
    96.von Bernstorff W,Voss M,Freichel S,Schmid A,Vogel I,Johnk C,Henne-Bruns D,Kremer B & Kalthoff H.Systemic and local immunosuppression in pancreatic cancer patients.Clin Cancer Res 2001 7 925s-932s.
    97.Torre-Amione G,Beauchamp RD,Koeppen H,Park BH,Schreiber H,Moses HL & Rowley DA.A highly immunogenic tamor transfected with a murine transforming growth factor type beta I cDNA escapes immune surveillance.Proc Natl Acad Sci USA 1990 87 1486-1490.
    98.Gorelik L & Flavell RA.Immune-mediated eradication of tumors through the blockade of transforming growth factor-beta signaling in T cells.Nat Med 2001 7 1118-1122.
    99.Akhurst RJ.Large-and small-molecule inhibitors of transforming growth factor-beta signaling.Curr Opin Investig Drugs 2006 7 513-521.
    100.Yingling JM,Blanchard KL & Sawyer JS.Development of TGF-beta signalling inhibitors for cancer therapy.Nat Rev Drug Discov 2004 3 1011-1022.
    101.Schlingensiepen KH,Schlingensiepen R.Steinbrecher A,Hau P.Bogdahn U,Fischer-Blass B & Jachimczak P.Targeted tumor therapy with the TGF-beta2 antisense compound AP 12009.Cytokine Growth Factor Rev 2006 17 129-139.
    102.DaCosta Byfield S,Major C,Laping NJ & Roberts AB.SB-505124 is a selective inhibitor of transforming growth factor-beta type I receptors ALK4,ALK5,and ALK7.Mol Pharmacol 2004 65 744-752.
    103.Inman GJ,Nicolas FJ,Callahan JF,Harling JD,Gaster LM,Reith AD,Laping NJ & Hill CS.SB-431542 is a potent and specific inhibitor of transforming growth factor-beta superfamily type I action receptor-like kinase(ALK) receptors ALK4,ALK5,and ALK7.Mol Pharmacol 2002 62 65-74.
    104.Peng SB,Yan L,Xia X,Watkins SA,Brooks HB,Beight D,Herron DK,Jones ML,Lampe JW.McMillen WT,Mort N,Sawyer JS & Yingling JM.Kinetic characterization of novel pyrazole TGF-beta receptor I kinase inhibitors and their blockade of the epithelial-mesenchymal transition.Biochemistry 2005 44 2293-2304.
    105.Uhl M,Aulwurm S,Wischhusen J,Weiler M,Ma JY,Almirez R,Mangadu R,Liu YW,Platten M,Herrlinger U,Murphy A,Wong DH,Wick W,Higgins LS & Weller M.SD-208,a novel transforming growth factor beta receptor I kinase inhibitor,inhibits growth and invasiveness and enhances immunogenicity of murine and human glioma cells in vitro and in vivo.Cancer Res 2004 64 7954-7961.
    106.Ge R,Rajeev V,Ray P,Lattime E,Rittling S,Medicherla S,Protter A,Murphy A,Chakravarty J,Dugar S,Schreiner G,Barnard N & Reiss M.Inhibition of growth and metastasis of mouse mammary carcinoma by selective inhibitor of transforming growth factor-beta type I receptor kinase in vivo.Clin Cancer Res 2006 12 4315-4330.
    107.Ehata S,Hanyu A,Fujime M,Katsuno Y,Fukunaga E,Goto K,Ishikawa Y,Nomura K,Yokoo H,Shimizu T,Ogata E,Miyazono K,Shimizu K & Imamura T.Ki26894,a novel transforming growth factor-beta type I receptor kinase inhibitor,inhibits in vitro invasion and in vivo bone metastasis of a human breast cancer cell line.Cancer Sci 2007 98 127-133.
    108.Bandyopadhyay A,Agyin JK,Wang L,Tang Y,Lei X,Story BM,Comell JE,Pollock BH,Mundy GR & Sun LZ.Inhibition of pulmonary and skeletal metastasis by a transforming growth factor-beta type I receptor kinase inhibitor.Cancer Res 2006 66 6714-6721.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700