用户名: 密码: 验证码:
GaN和SiC一维纳米结构物性的原子尺度模拟
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
低维纳米结构是当前纳米科学与技术领域的一个重要研究方向。它不仅对理解基本的物理现象具有重要意义,而且作为功能模块在构建纳米器件方面具有极大的应用潜力。本文采用经典分子动力学、第一性原理及第一性原理分子动力学方法研究了宽禁带半导体GaN和SiC一维纳米结构的热学、力学及电子能级等基本物理性质。
     1、利用经典分子动力学方法对单晶GaN纳米管和纳米线的热稳定性、导热特性和力学性能进行了模拟。原子间的相互作用势采用Stillinger-Weber势描述。结果表明:
     纳米线和纳米管的熔点随着其尺寸(纳米线的直径、纳米管的壁厚)的增加而升高,当尺寸增加到某一值后熔点达到饱和值,且接近体相的熔点。纳米线、管在完全熔化前存在一个过渡区,在这一温区,液相与固相同时存在。对于截面为三角形的[1-10]和[110]晶向的纳米线,熔化过程首先从角部原子开始,然后表面开始熔化,并逐步向内部发展,最后导致纳米线整体熔化。对于[001]晶向的纳米线和纳米管,熔化从表面开始,然后向内部扩展。
     纳米线和纳米管的导热系数低于体相材料;导热系数表现出显著的尺寸效应,当纳米线和纳米管的尺寸减小时,导热系数减小;且导热系数随温度的升高而下降。
     轴向拉伸时,GaN纳米管在低温时表现出脆性断裂特征,高温时表现出韧性断裂特征;韧脆转变温度随着纳米管厚度的增加而升高。晶向对纳米线的断裂行为有很大的影响,[001]晶向的纳米线随着温度的升高表现由脆性断裂到韧性断裂的转变;[1-10]晶向纳米线以脆性方式断裂;而[110]晶向纳米线以沿{010}晶面滑移的方式断裂。轴向压缩时,屈曲时临界应力值随着纳米线、纳米管长度的增加而减小,和Euler理论预测的趋势一致。
     2、利用经典分子动力学方法对[111]晶向生长的单晶β-SiC纳米线和纳米管在轴向拉伸、轴向压缩与扭转等简单载荷,及轴向拉伸-扭转及轴向压缩-扭转复合载荷作用下的纳米力学行为进行了模拟。原子间作用势采用Tersoff经验势描述。结果表明:
     轴向拉伸时纳米线和纳米管以垂直于{111}晶面键断裂方式断裂,表现出脆性断裂的特征:轴向压缩时存在两种失稳模式,对于较长的纳米线(管),结构首先发生整体失稳,此时截面仍保持原来的形状,而对于较短的纳米线(管),首先发生局部的塌陷;扭转时纳米线(管)主要以原子键发生断裂和重组的形式产生屈曲。复合载荷作用下,纳米线(管)的临界应变值随着扭转速率的增加而减小,这是因为扭转引起体系能量的升高,从而降低了其拉伸和压缩失稳所需要的能垒。
     3、利用第一性原理方法研究了轴向应变对单壁SiC纳米管几何结构和电子结构的影响。发现纳米管的能隙可以通过施加应变在很大范围内调制,能隙随着拉伸应变的增加而减小,随着压缩应变的增加先增加而后减小,这样可以考虑通过施加应变达到改变SiC纳米管电学性能的目的,在量子阱中具有潜在的应用前景。
     4、利用第一性原理分子动力学研究了单壁SiC纳米管的移位阈能及辐照初期缺陷的产生过程。纳米管的尺寸及反冲能量的方向对SiC纳米管中原子移位阈能均有很大的影响。移位阈能随着纳米管直径的增加而增加。辐照后在纳米管中主要形成三种缺陷,一类是原子离位后成为吸附原子或自由原子;二是形成Stone-Wales(SW)缺陷;三是形成反位缺陷。
Low-dimensional nanostructures have become the focus of intensive research owing to their novel physical, chemical, and electro-optical properties as well as their potential applications in nanodevices. It is worthy of study not only for understanding the fundamental physical phenomena, but also for their promising applications such as functional building blocks for novel electrical, optical and magnetic nanodevices. In this dissertation the physical properties, such as thermal, mechanical and electrical properties, of GaN and SiC one dimensional nanostructures are investigated using classic molecular dynamics, first principles and ab initio molecular dynamics methods.
     1. Molecular dynamics methods with a Stilling-Weber potential are used to investigate the thermal stability, thermal conductivity and mechanical properties of wurtzite-type single GaN nanotubes and nanowires. Nanowires with axial orientations along the [001], [100] and [110] crystallographic directions and nanotubes with axial orientations along the [001] direction are studied.
     The melting temperature of GaN nanowires and nanotubes increases with the size (the diameter of nanowires and the thickness of nanotubes) to a saturation value, which is close to the melting temperature of bulk GaN. Melting of the [1-10] and [110]-oriented nanowires is initiated at the surface edges formed by the triangular shape and then spreads across the nanowire surfaces. The melting of the [001]-oriented nanowires and nanotubes starts from the surface, and rapidly extends to the inner regions as temperature increases.
     The thermal conductivity of GaN nanowires and nanotubes is smaller than that of the bulk GaN single crystal. The thermal conductivity is also found to decrease with temperature and increase with the size of the nanostructures.
     The simulation results show that (1) under axial tension, the nanotubes exhibit brittle properties, whereas at high temperatures, they behave as ductile materials. The brittle to ductile transition temperatures have been determined which generally increases with increasing wall thickness. The nanowires with different axial orientations show distinctly different deformation behavior under loading. The brittle to ductile transition is observed in the nanowires oriented along the [001] direction. The nanowires oriented along the [110] direction exhibit slip in the {010} planes, whereas the nanowires oriented along the [100] direction fracture in a cleavage manner. (2) Under axial compression, the buckling critical stress decreases with the increase of wire length, which is in agreement with the Euler theory.
     2. Molecular dynamics methods using the Tersoff bond-order potential are performed to study the nanomechanical behavior of [111]-orientedβ-SiC nanowires and nanotubes under axial tension, compression, torsion, combined tension-torsion and compression-torsion. Under axial tensile strain, the bonds of the nanowires are just stretched before the failure of nanowires and nanotubes by bond breakage. Under axial compressive strain, the collapse of the SiC nanowires by yielding or column buckling mode depends on the lengthes and diameters of the nanowires and nanotubes. Under torsional strain, the nanowires buckle with bond breaking and rearrangement. The combined loading causes the decrease of the critical stress.
     3. Electronic band structures of single-walled SiC nanotubes are studied under uniaxial strain using first principles calculations. The band structure can be tuned by mechanical strain in a wide energy range. The band gap decreases with uniaxial tension strain, but increases firstly with uniaxial compression strain and then decreases with further increasing compression strain.
     4. First-principles molecular dynamics is used to study the radiation-induced defect formation and displacement threshold energy of single-walled SiC nanotubes. The simulation results reveal a strongly anisotropic threshold for atomic displacement. The displacement threshold energy also shows size dependence, which increases with the diameter of SiC nanotubes. Three types of defects are observed after the irradiation, the vacancy, the Stone-Walse defect, and the antisite defects.
引文
[1] Goldberger J, He R R, Zhang Y F, et al. Single-crystal gallium nitride nanotubes. Nature,2003, 422(6932): 599-602
    
    [2] Jung W G, Jung S H, Kung P, et al. Fabrication of GaN nanotubular material using MOCVD with an aluminium oxide membrane. Nanotechnology, 2006, 17(1): 54-59
    [3] Hu J Q, Bando Y, Golberg D, et al. Gallium nitride nanotubes by the conversion of gallium oxide nanotubes. Angew. Chem. Int. Ed., 2003, 42(30): 3493-3497
    [4] Hung S C, Su Y K, Chang S J, et al. Self-formation of GaN hollow nanocolumns by inductively coupled plasma etching. Appl. Phys. A-Mater., 2005, 80(8): 1607-1610
    [5] Liu B D, Bando Y, Tang C C, et al. Wurtzite-type faceted single-crystalline GaN nanotubes.Appl. Phys. Lett., 2006, 88(9): 093120
    [6] Hu J Q, Bando Y, Zhan J H, et al. Growth of single-crystalline cubic GaN nanotubes with rectangular cross-sections. Adv. Mater., 2004, 16(16): 1465-1468
    [7] Han W Q, Fan S S, Li Q Q, et al. Synthesis of gallium nitride nanorods through a carbon nanotube-confined reaction. Science, 1997, 277(5330): 1287-1289
    [8] Cheng G S, Zhang L D, Zhu Y, et al. Large-scale synthesis of single crystalline gallium nitride nanowires. Appl. Phys. Lett., 1999, 75(16): 2455-2457
    [9] Chen X L, Li J Y, Cao Y G, et al. Straight and smooth GaN nanowires. Adv. Mater., 2000,12(19): 1432-1434
    
    [10] Duan X F, Lieber C M. Laser-assisted catalytic growth of single crystal GaN nanowires. J.Am. Chem. Soc, 2000, 122(1): 188-189
    
    [11] Li J Y, Chen X L, Qiao Z Y, et al. Photoluminescence spectrum of straight GaN nanowires. J.Mater. Sci. Lett., 2001, 20(8): 757-758
    
    [12] Wang J C, Feng S Q, Yu D P. High-quality GaN nanowires synthesized using a CVD approach. Appl. Phys. A-Mater., 2002, 75(6): 691-693
    [13] Kim H M, Kim D S, Kim D Y, et al. Growth and characterization of single-crystal GaN nanorods by hydride vapor phase epitaxy. Appl. Phys. Lett., 2002, 81(12): 2193-2195
    [14] Park Y S, Park C M, Fu D J, et al. Photoluminescence studies of GaN nanorods on Si (111) substrates grown by molecular-beam epitaxy. Appl. Phys. Lett., 2004, 85(23): 5718-5720
    [15]Kipshidze G,Yavich B,Chandolu A,et al.Controlled growth of GaN nanowires by pulsed metalorganic chemical vapor deposition.Appl.Phys.Lett.,2005,86(3):033104
    [16]Xiang X,Cao C B,Zhai H Z,et al.Large-scale crystalline GaN nanowires synthesized through a chemical vapor deposition method.Appl.Phys.A-Mater.,2005,80(5):1129-1132
    [17]Cai X M,Djurisic A B,Xie M H,et al.Growth mechanism of stacked-cone and smooth-surface GaN nanowires.Appl.Phys.Lett.,2005,87(18):183103
    [18]Lee S M,Lee Y H,Hwang Y G,et al.Stability and electronic structure of GaN nanotubes from density-functional calculations.Phys.Rev.B,1999,60(11):7788-7791
    [19]Lee,,e S M,Lee Y H,Hwang Y G.Electronic structure of GaN nanotubes.J.Korean Phys Soc.,1999,34(s):253-257
    [20]Kang J W,Hwang H J,Song K O.Structures,nanomechanics,and disintegration of single-walled GaN nanotubes:Atomistic simulations.J.Korean Phys.Soc.,2003,43(3):372-380
    [21]Kang J W,Hwang H J.Molecular dynamics simulations of single-walled GaN nanotubes.Mol.Simul.,2004,30(1):29-35
    [22]Jeng Y R,Tsal P C,Fang T H.Molecular dynamics investigation of the mechanical properties of gallium nitride nanotubes under tension and fatigue.Nanotechnology,2004,15(12):1737-1744
    [23]Hao S G,Zhou G,Wu H,et al.Spin-polarized electron current from Mn-doped closed zigzag GaN nanotubes.Chem.Phys.Letts.,2005,401(1-3):47-51
    [24]Zhang M,Su Z M,Yah L K,et al.Theoretical interpretation of different nanotube morphologies among Group Ⅲ(B,A1,Ga) nitrides.Chem.Phys.Letts.,2005,408(1-3):145-149
    [25]Xu B,Lu A J,Pan B C,et al.Atomic structures and mechanical properties of single-crystal GaN nanotubes.Phys.Rev.B,2005,71(12):125434
    [26]Wang Q,Sun Q,Jena P.Ferromagnetic GaN-Cr nanowires.Nano Lett.,2005,5(8):1587-1590
    [27]Wang Q,Sun Q,Jena P.Ferromagnetism in Mn-doped GaN nanowires.Phys.Rev.Lea.,2005,95(16):167202
    [28]Wang Q,Sun Q,Jena P,et al.Clustering of Cr in GaN nanotubes and the onset of ferrimagnetic order.Phys.Rev.B,2006,73(20):205320
    [29]Zhou D,Seraphin S.Production of Silicon-Carbide Whiskers from Carbon Nanoclusters. Chem.Phys.Letts.,1994,222(3):233-238
    [30]Dai H J,Wong E W,Lu Y Z,et al.Synthesis and Characterization of Carbide Nanorods.Nature,1995,375(6534):769-772
    [31]Han W Q,Fan S S,Li Q Q,et al.Continuous synthesis and characterization of silicon carbide nanorods.Chem.Phys.Leas.,1997,265(3-5):374-378
    [32]Pan Z W,Lai H L,Au F C K,et al.Oriented silicon carbide nanowires:Synthesis and field emission properties.Adv.Mater.,2000,12(16):1186-1190
    [33]Zhou X T,Wang N,Au F C K,et al.Growth and emission properties of beta-SiC nanorods.Mater.Sci.Eng.A,2000,286(1):119-124
    [34]Li J C,Lee C S,Lee S T.Direct growth of beta-SiC nanowires from SiOx thin films deposited on Si(100) substrate.Chem.Phys.Letts.,2002,355(1-2):147-150
    [35]Li Y B,Xie S S,Zou X P,et al.Large-scale synthesis of beta-SiC nanorods in the arc-discharge.J.Crys.Growth,2001,223(1-2):125-128
    [36]Shi W S,Zheng Y E Peng H Y,et al.Laser ablation synthesis and optical characterization of silicon carbide nanowires.J.Am.Ceram.Soc.,2000,83(12):3228-3230
    [37]Pham-Huu C,Keller N,Ehret G,et al.The first preparation of silicon carbide nanotubes by shape memory synthesis and their catalytic potential.J.Catal.,2001,200(2):400-410
    [38]Sun X H,Li C P,Wong W K,et al.Formation of silicon carbide nanotubes and nanowires via reaction of silicon(from disproportionation of silicon monoxide) with carbon nanotubes.J.Am.Chem.Soc.,2002,124(48):14464-14471
    [39]Borowiak-Palen E,Ruemmeli M H,Gemming T,et al.Bulk synthesis of carbon-filled silicon carbide nanotubes with a narrow diameter distribution.J.Appl.Phys.,2005,97(5):056102
    [40]Hu J Q,Bando Y,Zhan J H,et al.Fabrication of ZnS/SiC nanocables,SiC-shelled ZnS nanoribbons(and sheets),and SiC nanotubes(and tubes).Appl.Phys.Lett.,2004,85(14):2932-2934
    [41]Pei L Z,Tang Y H,Chen Y W,et al.Preparation of silicon carbide nanotubes by hydrothermal method.J.Appl.Phys.,2006,99(11):114306
    [42]Pei L Z,Tang Y H,Zhao X Q,et al.Formation mechanism of silicon carbide nanotubes with special morphology.J.Appl.Phys.,2006,100(4):046105
    [43]Menon M,Richter E,Mavrandonakis A,et al.Structure and stability of SiC nanotubes.Phys.Rev.B,2004,69(11):115322
    [44]Zhao M W,Xia Y Y,Li E et al.Strain energy and electronic structures of silicon carbide nanotubes:Density functional calculations.Phys.Rev.B,2005,71(8):085312
    [45]Baierle R J,Piquini P,Neves L P,et al.Ab initio study of native defects in SiC nanotubes.Phys.Rev.B,2006,74(15):155425
    [46]Zhao M W,Xia Y Y,Zhang R Q,et al.Manipulating the electronic structures of silicon carbide nanotubes by selected hydrogenation.J.Chem.Phys.,2005,122(21):21407
    [47]Yan B H,Zhou G,Duan W H,et al.Uniaxial-stress effects on electronic properties of silicon carbide nanowires.Appl.Phys.Lett.,2006,89(2):023104
    [48]Makeev M A,Srivastava D,Menon M.Silicon carbide nanowires under external loads:An atomistic simulation study.Phys.Rev.B,2006,74(16):165303
    [49]Kaxirs E.Atomic and Electronic Structure of Solids.Cambridge:Cambridge University Press,2003,120-125
    [50]Martin R M.Electronic Structure:Basic Theory and Practical Methods.Cambridge:Cambridge University Press,2004,300-305
    [51]廖沐真,吴国是,刘洪森.量子化学从头计算方法.北京:清华大学出版社,1984,10-15
    [52]吴兴惠,项金钟.现在材料计算与设计教程.北京:电子工业出版社,2002,1-5
    [53]Born M,Oppenheimer J R.Zur quantentheorie der molekeln.Ann.Phys.,1927,84(10):457-484
    [54]Born M,Huang K.Dynamical Theory of Crystal Lattice.Oxford:Oxford University Press,1954,20-26
    [55]Hartree D R.The wave mechanics of an atom with non-coulombic central field:parts Ⅰ,Ⅱ,Ⅲ,.Proc.Cambridge Phil.Soc.,1928,24(89):111-118
    [56]Fock V.Naherungsmethode zur Losung des quanten-mechanischen Mehrk(o|¨)rperprobleme.Z.Phys.,1930,61(4):126-132
    [57]Hohenberg P,Kohn W.Inhomogeneous Electron Gas.Phys.Rev.B,1964,13(6):864-869
    [58]Kohn W,Sham L J.Self-consistent Equations Including Exchange and Correlation Effects.Phys.Rev.,1965,140(3):1133-1138
    [59]徐光宪,黎乐民,王德民.量子化学(中册).北京:科学出版社,1985,80-90
    [60]McWeeny R.Methods of Molecular Quantum Mechanics.London:Academic Press,1989,5-8
    [61]MOiler C,Plesset M S.Note on an Approximation Treatment for Many-Electron Systems Phys.Rev.,1934,46(7):618-622
    [62]Ceperley D M,Alder B J.Ground-State of the Electron-Gas by a Stochastic Method.Phys.Rev.Lett.,1980,45(7):566-569
    [63]Perdew J P,Wang Y.Accurate and Simple Analytic Representation of the Electron-Gas Correlation-Energy.Phys.Rev.B,1992,45(23):13244-13249
    [64]Perdew J P,Wang Y.Application of gradient correlations to density-functional theory for atoms and solids.Phys.Rev.B,1993,48(12):14944
    [65]Perdew J P,Burke K,Wang Y.Generalized gradient approximation for the exchange-correlation hole of a many-electron system.Phys.Rev.B,1996,54(23):16533-16539
    [66]Phillips J C.Energy-band interpolation scheme bands on a pseudopotential.Phys.Rev.,1958,112(10):685-695
    [67]Harris J,Jones R O.Pseudopotentials in Density-Functional Theory.Phys.Rev.Lett.,1978,41(3):191-194
    [68]Heermann D W.Computer Simulation Methods in Theoretical Physics.Springer-Verlag Press,1990,23-28
    [69]Stillinger F H,Weber T A.Computer-Simulation of Local Order in Condensed Phases of Silicon.Phys.Rev.B,1985,31(8):5262-5271
    [70]Balamane H,Halicioglu T,Tiller W A.Comparative study of silicon empirical interatomic potentials.Phys.Rev.B,1992,46(21):2250-2279
    [71]Aichoune N,Potin V,Ruterana P,et al.An empirical potential for the calculation of the atomic structure of extended defects in wurtzite GaN.Comp.Mater.Sci.,2000,17(2-4):380-383
    [72]Bere A,Serra A.Atomic structure of dislocation cores in GaN.Phys.Rev.B,2002,65(20):205323
    [73]Kioseoglou J,Polatoglou H M,Lymperakis L,et al.A modified empirical potential for energetic calculations of planar defects in GaN.Comp.Mater.Sci.,2003,27(1-2):43-49
    [74]Tang M J,Yip S.Atomistic simulation of thermomechanical properties of beta-SiC.Phys.Rev.B,1995,52(21):15150-15159
    [75]Mizushima K,Tang M J,Yip S.Toward multiscale modelling:the role of atomistic simulations in the analysis of Si and SiC under hydrostatic compression.J.Alloy.Comp.,1998,279(1):70-74
    [76]Tang M,Yip S.Lattice Instability in Beta-Sic and Simulation of Brittle-Fracture.J.Appl. Phys.,1994,76(5):2719-2725
    [77]Porter L J,Li J,Yip S.Atomistic modeling of finite-temperature properties of beta-SiC.1.Lattice vibrations,heat capacity,and thermal expansion.J.Nucl.Mater.,1997,246(1):53-59
    [78]Devanathan R,de la Rubia T D,ⅩⅩⅩ.Displacement threshold energies in beta-SiC.J.Nucl.Mater.,1998,253(10):47-52
    [79]Gao F,ⅩⅩⅩ.Atomic-scale simulation of 50 keV Si displacement cascades in beta-SiC.Phys.Rev.B,2001,63(5):054101
    [80]Gao F,Bylaska E J,ⅩⅩⅩ,et al.Ab initio and empirical-potential studies of defect properties in 3C-SiC.Phys.Rev.B,2001,64:245208
    [81]Gao F.ⅩⅩⅩ,Posselt M,et al.Atomistic study of intrinsic defect migration in 3C-SiC.Phys.Rev.B,2004,69(24):245205
    [82]Verlet L.Computer "Experiments" on classical fluids.I.Termodynamical properties of lennard-jones molecules.Phys.Rev.,1967,159(10):98-103
    [83]Shampine L F,Gorden M K,Computer Solution of ordinary differential equations.San Francisco,1975,6-12
    [84]Rapaport D C.The art of moleuclar dynamics simulations.Cambridge:Cambridge University Press,1995,15-20
    [85]Car R,Parrinello M.Unified Approach for Molecular-Dynamics and Density-Functional Theory.Phys.Rev.Lett.,1985,55(22):2471-2474
    [86]Iijima S.Helical Microtubules of Graphitic Carbon.Nature,1991,354(6348):56-58
    [87]Tenne R,Margulis L,Genut M,et al.Polyhedral and Cylindrical Structures of Tungsten Disulfide.Nature,1992,360(6403):a.44-446
    [88]Margulis L,Salitra G,Tenne R,et al.Nested Fullerene-Like Structures.Nature,1993,365(6442):113-114
    [89]Feldman Y,Wasserman E,Srolovitz D J,et al.High-Rate,Gas-Phase Growth of Mos2Nested Inorganic Fullerenes and Nanotubes.Science,1995,267(5195):222-225
    [90]Chopra N G,Luyken R J,Cherrey K,et al.Boron-Nitride Nanotubes.Science,1995,269(5226):966-967
    [91]Nakamura H,Matsui Y.Silica-Gel Nanotubes Obtained by the Sol-Gel Method.J.Am.Chem.Soc.,1995,117(9):2651-2652
    [92]Kasuga T,Hiramatsu M,Hoson A,et al.Formation of titanium oxide nanotube.Langmuir,1998,14(12):3160-3163
    [93] Spahr M E, Bitterli P, Nesper R, et al. Redox-active nanotubes of vanadium oxide. Angew.Chem. Int. Ed., 1998, 37(9): 1263-1265
    [94] Hacohen Y R, Grunbaum E, Tenne R, et al. Cage structures and nanotubes of NiC12. Nature,1998, 395(6700): 336-337
    [95] Hulteen J C, Jirage K B, Martin C R. Introducing chemical transport selectivity into gold nanotubule membranes. J. Am. Chem. Soc., 1998, 120(26): 6603-6604
    [96] Dloczik L, Engelhardt R, Ernst K, et al. Hexagonal nanotubes of ZnS by chemical conversion of monocrystalline ZnO columns. Appl. Phys. Lett, 2001, 78(23): 3687-3689
    [97] Li J Y, Chen X L, Qiao Z Y, et al. Synthesis of GaN nanotubes. J. Mater. Sci. Lett., 2001,20(21): 1987-1988
    [98] Cheng B, Samulski E T. Fabrication and characterization of nanotubular semiconductor oxides In2O3 and Ga2O3. J. Mater. Chem., 2001, 11(12): 2901-2902
    [99] Pu L, Bao X M, Zou J P, et al. Individual alumina nanotubes. Angew. Chem. Int. Ed., 2001,40(8): 1490-1493
    [100] Karpinski J, Jun J, Porowski S. Equilibrium Pressure of N-2 over Gan and High-Pressure Solution Growth of GaN. J. Crys. Growth, 1984, 66(1): 1-10
    [101] Vanvecht Ja. Quantum Dielectric Theory of Electronegativity in Covalent Systems .3.Pressure-Temperature Phase-Diagrams, Heats of Mixing, and Distribution Coefficients. Phys.Rev. B, 1973,7(4): 1479-1507
    [102] Nord J, Albe K, Erhart P, et al. Modelling of compound semiconductors: analytical bond-order potential for gallium, nitrogen and gallium nitride. J. Phys.: Condens. Matt., 2003,15(32): 5649-5662
    [103] Harafuji K, Tsuchiya T, Kawamura K. Molecular dynamics simulation for evaluating melting point of wurtzite-type GaN crystal. J. Appl. Phys., 2004, 96(5): 2501-2512
    [104] Morris J R, Wang C Z, Ho K M, et al. Melting Line of Aluminum from Simulations of Coexisting Phases. Phys. Rev. B, 1994,49(5): 3109-3115
    [ 105] Belonoshko A B. Melting of corundum using conventional and two-phase molecular dynamic simulation method. Phys. Chem. Miner., 1998, 25(2): 138-141
    [106] Lai S L, Guo J Y, Petrova V, et al. Size-dependent melting properties of small tin particles: Nanocalorimetric measurements. Phys. Rev. Lett., 1996,77(1): 99-102
    [107] Miao L, Bhethanabotla V R, Joseph B. Melting of Pd clusters and nanowires: A comparison study using molecular dynamics simulation. Phys. Rev. B, 2005, 72(13): 134109
    [108] Fang K C, Weng C I. An investigation into the melting of silicon nanoclusters using molecular dynamics simulations. Nanotechnology, 2005,16(2): 250-256
    [109] Huang K C,Wang T, Joannopoulos J D. Nanoscale properties of melting at the surface of semiconductors. Phys. Rev. B, 2005, 72(19): 195314
    [110] Cleveland C L, Luedtke W D, Landman U. Melting of gold clusters. Phys. Rev. B, 1999,60(7): 5065-5077
    [111] Delogu F. Structural and energetic properties of unsupported Cu nanoparticles from room temperature to the melting point: Molecular dynamics simulations. Phys. Rev. B, 2005,72(20): 205418
    [112] Northrup J E, Neugebauer J, Romano L T. Inversion domain and stacking mismatch boundaries in GaN. Phys. Rev. Lett, 1996, 77(1): 103-106
    [113] Lu X, Shen W Z, Chu J H. Size effect on the thermal conductivity of nanowires. J. Appl.Phys., 2002, 91(3): 1542-1552
    [114] Volz S G, Chen G Molecular dynamics simulation of thermal conductivity of silicon nanowires. Appl. Phys. Lett., 1999,75(14): 2056-2058
    [115] Kulkarni A J, Zhou M. Size-dependent thermal conductivity of zinc oxide nanobelts. Appl.Phys. Lett., 2006, 88(14): 141921
    [116] Shi L, Hao Q, Yu C H, et al. Thermal conductivities of individual tin dioxide nanobelts. Appl.Phys. Lett., 2004, 84(14): 2638-2640
    [117] Allen P B, Feldman J L. Thermal-Conductivity of Disordered Harmonic Solids. Phys. Rev. B,1993,48(17): 12581-12588
    
    [118] Hardy R J. Energy-Flux Operator for a Lattice. Phys. Rev., 1963,132(1): 168-175
    [119] Volz S G Chen G Molecular-dynamics simulation of thermal conductivity of silicon crystals.Phys. Rev. B, 2000, 61(4): 2651-2656
    [120] Hirosaki N, Ogata S, Kocer C, et al. Molecular dynamics calculation of the ideal thermal conductivity of single-crystal α- and β-Si3N4 Phys. Rev. B, 2002,65(13): 134110
    [121] Tretiakov K V, Scandolo S. Thermal conductivity of solid argon from molecular dynamics simulations. J. Chem. Phys., 2004, 120(8): 3765-3769
    [122] Daly B C, Marts H J, Imamura K, et al. Molecular dynamics calculation of the thermal conductivity of superlattices. Phys. Rev. B, 2002, 66(2): 024301
    [123] Konashi K, Ikeshoji T, Kawazoe Y, et al. A molecular dynamics study of thermal conductivity of zirconium hydride. J. Alloy. Comp., 2003, 356(9): 279-282
    [124] Allen M P, Tildesley D J, Computer simulation of Liquids. Oxford: Clarendon Press,1987,1-5
    [125] Schelling P K, Phillpot S R, Keblinski P. Comparison of atomic-level simulation methods for computing thermal conductivity. Phys. Rev. B, 2002, 65(14): 144306
    [126] Evans DMorris G, Statistical Mechanics of Non Equilibrium Liquids (Academic Press,London, 1990), 99-105.
    [127] Maeda A, Munakata T. Lattice Thermal-Conductivity Via Homogeneous Nonequilibrium Molecular-Dynamics. Phys. Rev. E, 1995, 52(1): 234-239
    [128] Motoyama S, Ichikawa Y, Hiwatari Y, et al. Thermal conductivity of uranium dioxide by nonequilibrium molecular dynamics simulation. Phys. Rev. B, 1999, 60(1): 292-298
    [129] Berber S, Kwon Y K, Tomanek D. Unusually high thermal conductivity of carbon nanotubes.Phys. Rev. Lett., 2000, 84(20): 4613-4616
    
    [130] Haile J M. Molecular Dynamics Simulation, New York Wiley, 1992, 106-110
    [131] Jezowski A, Danilchenko B A, Bockowski M, et al. Thermal conductivity of GaN crystals in 4.2-300 K range. Solid State Commun., 2003, 128(2-3): 69-73
    [132] Florescu D I, Asnin V M, Pollak F H, et al. Thermal conductivity of fully and partially coalesced lateral epitaxial overgrown GaN/sapphire (0001) by scanning thermal microscopy.Appl. Phys. Lett., 2000,77(10): 1464-1466
    [133] Zhang F, Isbister D J, Evans D J. Nonequilibrium molecular dynamics simulations of heat flow in one-dimensional lattices. Phys. Rev. E, 2000, 61(4): 3541-3546
    [134] Stroscio M A, Sirenko Y M, Yu S, et al. Acoustic phonon quantization in buried waveguides and resonators. J. Phys.: Condens. Matt., 1996, 8(13): 2143-2151
    [135] Balandin A, Wang K L. Significant decrease of the lattice thermal conductivity due to phonon confinement in a free-standing semiconductor quantum well. Phys. Rev. B, 1998,58(3): 1544-1549
    [136] Huang M J, Chong W Y, Chang T M. The lattice thermal conductivity of a semiconductor nanowire. J. Appl. Phys., 2006, 99(11): 113318
    [137] Liang L H, Li B W. Size-dependent thermal conductivity of nanoscale semiconducting systems. Phys. Rev. B, 2006,73(15): 153303
    [138] Ju S P, Lin J S, Lee W J. A molecular dynamics study of the tensile behaviour of ultrathin gold nanowires. Nanotechnology, 2004, 15(9): 1221-1225
    [139] Suzuki T, Yasutomi T, Tokuoka T, et al. Plastic deformation of GaAs at low temperatures. Philos. Mag. A, 1999, 79(11): 2637-2654
    [140] Suzuki T, Yasutomi T, Tokuoka T, et al. Plasticity of III-V compounds at low temperatures. Phys. Status Solidi a, 1999, 171(1): 47-52
    [141] Pirouz P, Samant A V, Hong M H, et al. On temperature dependence of deformation mechanism and the brittle-ductile transition in semiconductors. J. Mater. Res., 1999, 14(7):2783-2793
    [142] Zhang M, Hobgood H M, Demenet J L, et al. Transition from brittle fracture to ductile behavior in 4H-SiC. J. Mater. Res., 2003,18(5): 1087-1095
    [143] Hirth J P, Lothe J. Theory of Dislocations. New York: Wiley, 1982, 99-102
    [144] Rabier J, George A. Dislocations and Plasticity in Semiconductors .2. the Relation between Dislocation Dynamics and Plastic-Deformation. Rev. De Phys. Appl., 1987, 22(11):1327-1351
    [145] Suzuki T, Nishisako T, Taru T, et al. Plastic deformation of InP at temperatures between 77 and 500 K. Philo. Mag. Lett., 1998, 77(4): 173-180
    [146] Boivin P, Rabier J, Garem H. Plastic-Deformation of Gaas Single-Crystals as a Function of Electronic Doping .1. Medium Temperatures (150-650-Degrees-C). Philos. Mag. A, 1990,61(4): 619-645
    [147] Pirouz P, Zhang M, Demenet J L, et al. Yield and fracture properties of the wide band-gap semiconductor 4H-SiC. J. Appl. Phys., 2003, 93(6): 3279-3290
    [148] Kamimura Y, Kirchner HOK, Suzuki T. Yield strength and brittle-to-ductile transition of boron-nitride and gallium-nitride. Scripta Mater., 1999,41(6): 583-587
    [149] Nam C Y, Jaroenapibal P, Tham D, et al. Diameter-dependent electromechanical properties of GaN nanowires. Nano Lett., 2006, 6(2): 153-158
    [150] Schmid M, Hofer W, Varga P, et al. Surface Stress, Surface Elasticity, and the Size Effect in Surface Segregation. Phys. Rev. B, 1995, 51(16): 10937-10946
    [151] Liew KM, Wong C H, Tan M J. Buckling properties of carbon nanotube bundles. Appl. Phys.Lett., 2005, 87(4): 041901
    [152] Liew K M, Wong C H, Tan M J. Tensile and compressive properties of carbon nanotube bundles. Acta Mater., 2006, 54(1): 225-231
    
    [153] Timoshenko S P, Gere J M. Theory of elastic stability. New York: McGraw-Hill, 1961, 25-28
    [154] Hung S C, Su Y K, Fang T H, et al. Buckling instabilities in GaN nanotubes under uniaxial compression. Nanotechnology, 2005, 16(10): 2203-2208
    [155] Yakobson B I, Brabec C J, Bernholc J. Nanomechanics of carbon tubes: Instabilities beyond linear response. Phys. Rev. Lett., 1996, 76(14): 2511-2514
    [156] Poncharal P, Wang Z L, Ugarte D, et al. Electrostatic deflections and electromechanical resonances of carbon nanotubes. Science, 1999, 283(5407): 1513-1516
    [157] Postma H W C, de Jonge M, Yao Z, et al. Electrical transport through carbon nanotube junctions created by mechanical manipulation. Phys. Rev. B, 2000, 62(16): 10653-10656
    [158] Jeong B W, Lim J K, Sinnott S B. Elastic torsional responses of carbon nanotube systems. J.Appl. Phys., 2007, 101(8): 084309
    [159] Carr D W, Evoy S, Sekaric L, et al. Parametric amplification in a torsional microresonator. Appl. Phys. Lett., 2000, 77(10): 1545-1547
    [160] Williams P A, Papadakis S J, Patel A M, et al. Torsional response and stiffening of individual multiwalled carbon nanotubes. Phys. Rev. Lett., 2002, 89(25): 255502
    [161] Jeong B W, Lim J K, Sinnott S B. Tensile mechanical behavior of hollow and filled carbon nanotubes under tension or combined tension-torsion. Appl. Phys. Lett., 2007, 90: 023102
    [162] Huang Y, Duan X F, Cui Y, et al. Logic gates and computation from assembled nanowire building blocks. Science, 2001, 294(5545): 1313-1317
    [163] Yamashita T, Hasegawa S, Nishida S, et al. Electron field emission from GaN nanorod films grown on Si substrates with native silicon oxides. Appl. Phys. Lett., 2005, 86(8): 082109
    [164] Liu B D, Bando Y, Tang C C, et al. Quasi-aligned single-crystalline GaN nanowire arrays. Appl. Phys. Lett., 2005, 87(7): 073106
    [165] Ha B, Seo S H, Cho J H, et al. Optical and field emission properties of thin single-crystalline GaN nanowires. J. Phys. Chem. B, 2005,109(22): 11095-11099
    [166] Zhang J, Zhang L D, Wang X F, et al. Fabrication and photoluminescence of ordered GaN nanowire arrays. J. Chem. Phys., 2001,115(13): 5714-5717
    [167] Bae S Y, Seo H W, Park J, et al. Triangular gallium nitride nanorods. Appl. Phys. Lett., 2003,82(25): 4564-4566
    [168] Kuykendall T, Pauzauskie P, Lee S K, et al. Metalorganic chemical vapor deposition route to GaN nanowires with triangular cross sections. Nano Lett., 2003, 3(8): 1063-1066
    [169] Kuykendall T, Pauzauskie P J, Zhang Y F, et al. Crystallographic alignment of high-density gallium nitride nanowire arrays. Nature Mater., 2004, 3(8): 524-528
    [170] Buehler M J, Kong Y, Gao H J. Deformation mechanisms of very long single-wall carbon nanotubes subject to compressive loading. J. Eng. Mater. Technol. -Trans. Asme, 2004, 126(3):245-249
    [171]Harris G L.Properties of Silicon Carbide,London:INSPEC,Institution of Electrical Engineers,1995,105-119
    [172]Seong H,Choi H,Lee,et al.Optical and electrical transport properties in silicon carbide nanowires.Appl.Phys.Lett.,2004,85(7):1256-1258
    [173]Shen G Z,Bando Y,Ye C H,et al.Synthesis,characterization and field-emission properties of bamboo-like beta-SiC nanowires.Nanotechnology,2006,17(14):3468-3472
    [174]Carnbaz G Z,Yushin G N,Gogotsi Y,et al.Anisotropic etching of SiC whiskers.Nano Lett.,2006,6(3):548-551
    [175]Wenzien B,Kackell P,Bechstedt F.Ab-Initio Calculation of the Atomic and Electronic-Structure for the Clean 3c SiC(110) 1x1 Surface.Surf.Sci.,1994,307(10):989-994
    [176]Sabisch M,Kruger P,Pollmann J.Ab-Initio Calculations of Sic(110) and Gaas(110) Surfaces -a Comparative-Study and the Role of Ionicity.Phys.Rev.B,1995,51(19):13367-13380
    [177]Lambrecht W R L,Segall B,Methfessel M,et al.Calculated Elastic-Constants and Deformation Potentials of Cubic Sic.Phys.Rev.B,1991,44(8):3685-3694
    [178]Li W X,Wang T.Elasticity,stability,and ideal strength of β-SIC in plane-wave-based ab initio calculations Phys.Rev.B,1999,59(6):3993-4001
    [179]Petrovic J J,Milewski J V,Rohr D L,et al.Tensile Mechanical-Properties of Sic Whiskers.J.Mater.Sci.,1985,20(4):1167-1177
    [180]Wong E W,Sheehan P E,Lieber C M.Nanobeam mechanics:Elasticity,strength,and toughness of nanorods and nanotubes.Science,1997,277(5334):1971-1975
    [181]Kim T Y,Han S S,Lee H M.Nanomechanical behavior of beta-SiC nanowire in tension:Molecular dynamics simulations.Mater.Trans.,2004,45(2):1442-1449
    [182]Stevens R.Dislocation Movement and Slip Systems in Beta-Sic.J.Mater.Sci.,1970,5(6):474-479
    [183]Sitch P K,Jones R,Oberg S,et al.Ab-Initio Investigation of the Dislocation-Structure and Activation-Energy for Dislocation-Motion in Silicon-Carbide.Phys.Rev.B,1995,52(7):4951-4955
    [184]Pokropivnyi V V,Silenko P M.Silicon carbide nanotubes and nanotublar fibers:Synthesis,stability,structure and classification.Theor.Exp.Chem.,2006,42(1):3-15
    [185]Baierle R J,Miwa R H.Hydrogen interaction with native defects in SiC nanotubes.Phys. Rev. B, 2007, 76(20): 205410
    [186] Minot E D, Yaish Y, Sazonova V, et al. Tuning carbon nanotube band gaps with strain. Phys.Rev. Lett., 2003, 90(15): 156401
    [187] Shan B, Lakatos G W, Peng S, et al. First-principles study of band-gap change in deformed nanotubes. Appl. Phys. Lett., 2005, 87(17): 173109
    [188] Soler J M, Artacho E, Gale J D, et al. The SIESTA method for ab initio order-N materials simulation. J. Phys.: Condens. Matt., 2002,14(11): 2745-2779

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700