用户名: 密码: 验证码:
CdSe纳米晶体的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
CdSe属于II-VI族化合物半导体系列,CdSe纳米晶体由于量子效应具备了独特、新颖的性质,可用来制造高效太阳能电池、量子点激光器、生物标签,光压器件以及发光二极管等,具有极大的研发吸引力和应用前景。
     参照制备CdSe纳米晶体的TOP-TOPO-HDA路线,本文探讨了该路线下控制CdSe量子点粒径的规律,揭示了表面活性剂的用量和前体注入方式对CdSe量子点粒径的影响。
     提出了一种应用新溶剂体系制备CdSe纳米晶体的新方法。新溶剂A更加环境友好,降低了操作难度;价廉,降低了合成成本的90%,致使制备过程更加符合绿色化学的基本原则。在新体系中,成功地合成出CdSe量子点,并利用UV-Vis、PL、XRD、EDX和TEM等对产品进行了表征;考察了反应温度、注入方式、前体浓度,前体比例以及配体浓度对纳米晶体制备的影响;通过优化调节上述因素实现了对CdSe量子点粒径和晶体结构的调控。
     在利用HDA单溶剂体系和新溶剂体系制备CdSe纳米晶体时,实现了对其形态的调控。通过控制反应温度,前体加入方式和加入速度,制备出了球形、棒状、多臂和四脚纺锤形等多种形态的CdSe纳米晶体。
     为提高纳米粒子的光稳定性和化学稳定性,利用有机、无机钝化方法,对所得的CdSe量子点进行了表面修饰。采用一步法制备了CdSe@ZnSe核壳纳米粒子。利用微乳液方法,将CdSe@ZnSe核壳纳米粒子进一步封装到SiO2纳米粒子中,得到水溶性的CdSe@ZnSe@SiO2核壳壳型纳米粒子,有利于进一步的生物应用。
     定量研究了TOP-TOPO-HDA路线下CdSe量子点的结晶动力学,并发展了一种新的扩散控制的生长模型;探讨了新体系中CdSe量子点的结晶动力学规律。利用粒数衡算模型和移动边界算法对CdSe量子点的结晶过程进行了模拟。
     本文研究成果尚未见国内外文献报道。
CdSe belongs to the II-VI type semiconductors. CdSe nanocrystals have some novel and excellent properties due to the quantum effects. Hence, the synthesis of CdSe nanocrystals is a very attractive research field. CdSe nanocrystals have great application prospects and could be used to fabricate high performance solar cell, quantum dots lasers, biological labels, photovoltage devices and LEDs et al.
     In this dissertation, we investigated the dependence of CdSe nanocrystals size on the manipulative factors according to the TOP-TOPO-HDA route and found the influence of the dosage of surfactants on the size of the CdSe quantum dots (QDs).
     A new method was developed to synthesize CdSe nanocrystals. The new solvent A is more environment-friendly and cheaper than the old solvents. The usage of solvent A can slash the cost by 90 percent and make the synthesis obey the principles of green chemistry. Based on this new method, high quality CdSe nanocrystals were synthesized and characterized by UV-Vis, PL, XRD, EDX and TEM, and the size of CdSe QDs could be controlled by adjusting various factors such as the reaction temperature, injection mode, monomers concentration, the ratio between monomers and the ligand concentration et al. The shape control regularities of CdSe nanocrystals was studied both in HDA system and in solvent A, and different shapes such as spheres, rods (wire) and multi-pod et al were obtained.
     In order to improve the photostability of the CdSe QDs, the surface modification of CdSe QDs via organic and inorganic passivation has been investigated. The CdSe@ZnSe core-shell nanocrystals were synthesized by a one-pot method both in HDA system and in solvent A. A new core-shell-shell type of nanocrystal, CdSe@ZnSe@SiO2, was synthesized via microemulsion method. The double shells make the nanocrystals compatible to aqueous solution which is essential to the biological application.
     The crystallization of CdSe QDs in TOP-TOPO-HDA system was quantitatively determined and the growth of CdSe QDs was found to be a diffusion-controlled process. A new diffusion-controlled growth model has been developed and the simulation results fitted the experimental data quite well. The crystallization kinetics of CdSe QDs in the new solvent was qualitatively determined. According to population balance model and moving boundary algorithm, the simulation study of the crystallization process of CdSe QDs in solvent A was basically completed.
引文
[1] 赵新宇, 纳米世纪:奇迹、革命与未来世界, 广州: 广州出版社, 2001.5-26
    [2] 袁哲俊, 纳米科学与技术, 哈尔滨: 哈尔滨工业大学出版社, 2005.184-196
    [3] 克莱邦德 K J, 纳米材料化学, 北京: 化学工业出版社, 2004.9-25
    [4] 张立德, 牟季美, 纳米材料和纳米结构, 北京: 科学出版社, 2001.51-65
    [5] 严东生, 冯端, 材料新星--纳米材料科学, 长沙: 湖南科学技术出版社, 1997.3-12
    [6] 克莱邦德 K J, 纳米材料化学, 北京: 化学工业出版社, 2004.53-56
    [7] 张立德, 牟季美, 纳米材料和纳米结构, 北京: 科学出版社, 2001.2-5
    [8] 顾宁, 付德刚, 张海黔, 纳米技术与应用, 北京: 人民邮电出版社, 2002.156
    [9] 谭宗颖, 世界纳米科技/材料的研发战略重点及趋势, 科学网, 2004
    [10] 杨树人, 王宗昌, 王兢, 半导体材料, 第二版, 北京: 科学出版社, 2004.222-240
    [11] 季振国, 半导体物理, 第一版, 杭州: 浙江大学出版社, 2005.30-64
    [12] Berger L I, Semiconductor Materials, USA: CRC Press, 1997.201-203
    [13] Tonkov E Y, High Pressure Phase Transformations, Luxembourg: Taylor & Francis, 1996.59
    [14] Capper P, Welss B L, Properties of Narrow Gap Cadmium-Based Compounds, London: IET, 1994.413
    [15] Alivisatos A P, Semiconductor Clusters, Nanocrystals, and Quantum Dots, Science, 1996, 271: 933-937.
    [16] Brus L E, Electron-electron and electron-hole interactions in small semiconductor crystallites: The size dependence of the lowest excited electronic state, The Journal of chemical and Physics, 1984, 80 (9): 4403-4409.
    [17] Brus L E, Electronic Wave Functions in Semiconductor Clusters: Experiment and Theory, Journal of Physical Chemistry, 1986, 90: 2555-2560.
    [18] Lee J, Sundar V C, Heine J R, et al., Full Color Emission from II-VI Semiconductor Quantum Dot-Polymer Composites, Advanced Materials, 2000, 12 (15): 1102-1105.
    [19] Coe S, Woo W-K, Bawendi M, et al., Electroluminescence from single monolayers of nanocrystals in molecular organic devices, Nature, 2002, 420 (6917): 800-803.
    [20] Greenham N C, Peng X, Alivisatos A P, Charge separation and transport in conjugated-polymer/semiconductor-nanocrystal composites studied by photoluminescence quenching and photoconductivity, Physical Review B: Condensed Matter, 1996, 54 (24): 17628-17637.
    [21] Talapin D V, Poznyak S K, Gaponik N P, et al., Synthesis of surface-modified colloidal semiconductor nanocrystals and study of photoinduced charge separation and transport in nanocrystal-polymer composites, Physica E, 2002, 14 (1-2): 237-241.
    [22] Jr M B, Moronne M, Gin P, et al., Semiconductor Nanocrystals as Fluorescent Biological Labels, Science, 1998, 281: 2013-2015.
    [23] Poznyak S K, Talapin D V, Shevchenko E V, et al., Quantum Dot Chemiluminescence, Nano Letters, 2004, 4 (4): 693-698.
    [24] Chan W C W, Nie S, Quantum Dot Bioconjugates for Ultrasensitive Nonisotopic Detection, Science, 1998, 281 (5385): 2015-2018.
    [25] Hu J, Li L-s, Yang W, et al., Linearly Polarized Emission from Colloidal Semiconductor Quantum Rods, Science, 2001, 292: 2060-2063.
    [26] Klimov V I, Mikhailovsky A A, Su Xu A M, et al., Optical Gain and Stimulated Emission in Nanocrystal Quantum Dots, Science, 2000, 290: 314-317.
    [27] Artemyev M V, Woggon U, Wannemacher R, et al., Light Trapped in a Photonic Dot: Microspheres Act as a Cavity for Quantum Dot Emission, Nano Letters, 2001, 1 (6): 309-314.
    [28] Maskaly G R, Petruska M A, Nanda J, et al., Amplified spontaneous emission in semiconductor-nanocrystal/synthetic-opal composites: Optical-gain enhancement via a photonic crystal pseudogap, Advanced Materials, 2006, 18 (3): 343-347.
    [29] Talapin D V, Experimental and theoretical studies on the formation of highly luminescent II-VI, III-V and core-shell semiconductor nanocrystals, Ph.D, 2002.
    [30] Hines M A, Guyot-Sionnest P, Synthesis and Characterization of Strongly Luminescing ZnS-Capped CdSe Nanocrystals, Journal of Physical Chemistry, 1996, 100: 468-471.
    [31] Rogach A L, Kotov N A, Koktysh D S, et al., Electrophoretic Deposition of Latex-Based 3D Colloidal Photonic Crystals: A Technique for Rapid Production of High-Quality Opals, Chemistry of Materials, 2000, 12: 2721-2726.
    [32] Trindade T, O'Brien P, Pickett N L, Nanocrystalline Semiconductors: Synthesis, Properties, and Perspectives, Chemistry of Materials, 2001, 13: 3843-3858.
    [33] Esteves A C C, Trindade T, Synthetic studies on II /VI semiconductor quantum dots, Current Opinion in Solid State and Materials Science, 2002, (6): 347-353.
    [34] Cushing B L, Kolesnichenko V L, O'Connor C J, Recent Advances in the Liquid-Phase Syntheses of Inorganic Nanoparticles, Chemical Reviews, 2004, 104: 3893-3946.
    [35] Eychmuller A, Structure and Photophysics of Semiconductor Nanocrystals, Journal of Physical Chemistry B, 2000, 104: 6514-6528.
    [36] Wang Y, Herron N, Nanometer-Sized Semiconductor Clusters: Materials Synthesis, Quantum Size Effects, and Photophysical Properties, Journal of Physical Chemistry, 1991, 95: 525-532.
    [37] Brennan J G, Siegrist T, Carroll P J, et al., The Preparation of Large Semiconductor Clusters via the Pyrolysis of a Molecular Precursor, Journal of the American Chemical Society, 1989, 111 (11): 4141-4143.
    [38] Brennan J G, Siegrist T, Carroll P J, et al., Bulk and Nanostructure Group II-VI Compounds from Molecular Organometallic Precursors, Chemistry of Materials, 1990, (2): 403-409.
    [39] Stuczynski S M, Brennan J G, Steigerwald M L, Formation of Metal-Chalcogen Bonds by the Reaction of Metal Alkyls with Silyl Chalcogenides, Inorganic Chemistry, 1989, 28: 4431-4432.
    [40] Murray C B, Norris D J, Bawendi M G, Synthesis and Characterization of Nearly Monodisperse CdE (E = S, Se, Te) Semiconductor Nanocrystallites, Journal of the American Chemical Society, 1993, 115 (19): 8706-8715.
    [41] Peng Z A, Peng X, Formation of High-Quality CdTe, CdSe, and CdS Nanocrystals Using CdO as Precursor, Journal of the American Chemical Society, 2001, 123 (1): 183-184.
    [42] Chan E M, Mathies R A, Alivisatos A P, Size-Controlled Growth of CdSe Nanocrystals in Microfluidic Reactors, Nano Letters, 2003, 3 (2): 199-201.
    [43] Wu D G, Kordesch M E, Van Patten P G, A new class of capping ligands for CdSe nanocrystal synthesis, Chemistry Of Materials, 2005, 17 (25): 6436-6441.
    [44] Yu W W, Wang Y A, Peng X, Formation and Stability of Size-, Shape-, and Structure-Controlled CdTe Nanocrystals: Ligand Effects on Monomers and Nanocrystals, Chemistry of Materials, 2003, 15: 4300-4308.
    [45] Vossmeyer T, Katsikas L, Gienig M, et al., CdS Nanoclusters: Synthesis, Characterization, Size Dependent Oscillator Strength, Temperature Shift of the Excitonic Transition Energy, and Reversible absorbance Shift, Journal of Physical Chemistry, 1994, 98: 7665-7673.
    [46] Qi L, Co1lfen H, Antonietti M, Synthesis and Characterization of CdS Nanoparticles Stabilized by Double-Hydrophilic Block Copolymers, Nano Letters, 2001, 1 (2): 61-65.
    [47] Donners J J J M, Hoogenboom R, Schenning A P H J, et al., Fabrication of Organic-Inorganic Semiconductor Composites Utilizing the Different Aggregation States of a Single Amphiphilic Dendrimer, Langmuir, 2002, 18: 2571-2576.
    [48] Scott R W J, Wilson O M, Crooks R M, Synthesis, characterization, and applications of dendrimer-encapsulated nanoparticles, Journal Of Physical Chemistry B, 2005, 109 (2): 692-704.
    [49] Qu L, Peng Z A, Peng X, Alternative Routes toward High Quality CdSe Nanocrystals, Nano Letters, 2001, 1 (6): 333-337.
    [50] Peng X, Wickham J, Alivisatos A P, Kinetics of II-VI and III-V Colloidal Semiconductor Nanocrystal Growth: "Focusing" of Size Distributions, Journal of the American Chemical Society, 1998, 120 (21): 5343-5344.
    [51] Talapin D V, Haubold S, Rogach A L, et al., A Novel Organometallic Synthesis of Highly Luminescent CdTe Nanocrystals, Journal of Physical Chemistry B, 2001, 105: 2260-2263.
    [52] Reiss P, Carayon S, Bleuse J, Large fluorescence quantum yield and low size dispersion from CdSe/ZnSe core/shell nanocrystals, Physica E-Low-Dimensional Systems & Nanostructures, 2003, 17 (1-4): 95-96.
    [53] Peng Z A, Peng X, Nearly Monodisperse and Shape-Controlled CdSe Nanocrystals via Alternative Routes: Nucleation and Growth, Journal of the American Chemical Society, 2002, 124 (13): 3343-3353.
    [54] Steigerwald M L, Alivisatos A P, Gibson J M, et al., Surface Derivatization and Isolation of Semiconductor Cluster Molecules, Journal of the American Chemical Society, 1988, 110 (10): 3046-3050.
    [55] Curri M L, Agostiano A, Mavellib F, et al., Reverse micellar systems: self organised assembly as effective route for the synthesis of colloidal semiconductor nanocrystals, Materials Science & Engineering C, 2002, 22: 423-426.
    [56] Hambrock J, Birkner A, Fischer R A, Synthesis of CdSe nanoparticles using various organometallic cadmium precursors, Journal of Materials Chemistry, 2001, 11: 3197-3201.
    [57] Mekis I, Talapin D V, Kornowski A, et al., One-Pot Synthesis of Highly Luminescent CdSe/CdS Core-Shell Nanocrystals via Organometallic and "Greener" Chemical Approaches, Journal of Physical Chemistry B, 2003, 107: 7454-7462.
    [58] Jun Y-W, Lee S-M, Kang N-J, et al., Controlled Synthesis of Multi-armed CdS Nanorod Architectures Using Monosurfactant System, Journal of the American Chemical Society, 2001, 123 (21): 5150-5151.
    [59] Manna L, Scher E C, Alivisatos A P, Synthesis of Soluble and Processable Rod-, Arrow-, Teardrop-, and Tetrapod-Shaped CdSe Nanocrystals, Journal of the American Chemical Society, 2000, 122 (51): 12700-12706.
    [60] Qu L, Peng X, Control of Photoluminescence Properties of CdSe Nanocrystals in Growth, Journal of the American Chemical Society, 2001, 124 (9): 2049-2055.
    [61] Reiss P, Bleuse J, Pron A, Highly Luminescent CdSe/ZnSe Core/Shell Nanocrystals of Low Size Dispersion, Nano Letters, 2002, 2 (7): 781-784.
    [62] Joo J, Na H B, Yu T, et al., Generalized and Facile Synthesis of Semiconducting Metal Sulfide Nanocrystals, Journal of the American Chemical Society, 2003, 125: 11100-11105.
    [63] Peng X, Green Chemical Approaches toward High-Quality Semiconductor Nanocrystals, Chemistry - A European Journal, 2002, 8 (2): 334-339.
    [64] Talapin D V, Rogach A L, Kornowski A, et al., Highly luminescent monodisperse CdSe and CdSe/ZnS nanocrystals synthesized in a hexadecylamine-trioctylphosphine oxide-trioctylphospine mixture, Nano Letters, 2001, 1 (4): 207-211.
    [65] Elbaum R, Vega S, Hodes G, Preparation and Surface Structure of Nanocrystalline Cadmium Sulfide (Sulfoselenide) Precipitated from Dimethyl Sulfoxide Solutions, Chemistry of Materials, 2001, 13: 2272-2280.
    [66] Pradhan N, Katz B, Efrima S, Synthesis of High-Quality Metal Sulfide Nanoparticles from Alkyl Xanthate Single Precursors in Alkylamine Solvents, Journal of Physical Chemistry B, 2003, 107: 13843-13854.
    [67] Murcia M J, Shaw D L, Woodruff H, et al., Facile sonochemical synthesis of highly luminescent ZnS-shelled CdSe quantum dots, Chemistry Of Materials, 2006, 18 (9): 2219-2225.
    [68] Li H L, Zhu Y C, Chen S G, et al., A novel ultrasound-assisted approach to the synthesis of CdSe and CdS nanoparticles, Journal Of Solid State Chemistry, 2003, 172 (1): 102-110.
    [69] Xu S, Wang H, Zhu J J, et al., Sonochemical synthesis of copper selenides nanocrystals with different phases, Journal Of Crystal Growth, 2002, 234 (1): 263-266.
    [70] Dhas N A, Gedanken A, A sonochemical approach to the surface synthesis of cadmium sulfide nanoparticles on submicron silica, Applied Physics Letters, 1998, 72: 2514-2516.
    [71] Chu M Q, Shen X Y, Liu G J, Microwave irradiation method for the synthesis of water-soluble CdSe nanoparticles with narrow photoluminescent emission in aqueous solution, Nanotechnology, 2006, 17 (2): 444-449.
    [72] Firth A V, Tao Y, Wang D S, et al., Microwave assisted synthesis of CdSe nanocrystals for straightforward integration into composite photovoltaic devices, Journal Of Materials Chemistry, 2005, 15 (40): 4367-4372.
    [73] Yu W W, Peng X, Formation of High-Quality CdS and Other II -VI Semiconductor Nanocrystals in Noncoordinating Solvents: Tunable Reactivity of Monomers, Angew. Chem. Int. Ed., 2002, 41 (13): 2368-2371.
    [74] Jasieniak J, Bullen C, van Embden J, et al., Phosphine-free synthesis of CdSe nanocrystals, Journal Of Physical Chemistry B, 2005, 109 (44): 20665-20668.
    [75] Asokan S, Krueger K M, Alkhawaldeh A, et al., The use of heat transfer fluids in the synthesis of high-quality CdSe quantum dots, core/shell quantum dots, and quantum rods, Nanotechnology, 2005, 16 (10): 2000-2011.
    [76] Deng Z T, Cao L, Tang F Q, et al., A new route to zinc-blende CdSe nanocrystals: Mechanism and synthesis, Journal Of Physical Chemistry B, 2005, 109 (35): 16671-16675.
    [77] Boyd J, Method slashes quantum dot costs by 80 percent, 2005
    [78] 单桂晔, 吕强, 安利民等, 十六烷基胺稳定的 CdSe 纳米晶体的合成与表征, 高等学校化学学报, 2004, 25 (6): 1108-1110.
    [79] Qu L, Yu W W, Peng X, In Situ Observation of the Nucleation and Growth of CdSe Nanocrystals, Nano Letters, 2004, 4 (3): 465-469.
    [80] Bawendi M G, Carroll P J, Wilson W L, et al., Luminescence properties of CdSe quantum crystallites: Resonance between interior and surface localized states, Journal of Chemical Physics, 1992, 96: 946-954.
    [81] Kumar S, Nann T, Shape Control of II-VI Semiconductor Nanomaterials, Small, 2006, 2 (3): 316-329.
    [82] Manna L, Scher E C, Alivisatos A P, Shape Control of Colloidal Semiconductor Nanocrystals, Journal of Cluster Science, 2002, 13 (4): 521-532.
    [83] Talapin D V, Koeppe R, Go1tzinger S, et al., Highly Emissive Colloidal CdSe/CdS Heterostructures of Mixed Dimensionality, Nano Letters, 2003, 3 (12): 1677-1681.
    [84] Talapin D V, Mekis I, Go1tzinger S, et al., CdSe/CdS/ZnS and CdSe/ZnSe/ZnS Core-Shell-Shell Nanocrystals, Journal of Physical Chemistry B, 2004: A-F.
    [85] Deng Z-X, Li L, Li Y, Novel Inorganic-Organic-Layered Structures: Crystallographic Understanding of Both Phase and Morphology Formations of One-Dimensional CdE (E = S, Se, Te) Nanorods in Ethylenediamine, Inorganic Chemistry, 2003, 42: 2331-2341.
    [86] Li J, Wang L-W, Shape Effects on Electronic States of Nanocrystals, Nano Letters, 2003, 3 (10): 1357-1363.
    [87] Peng Z A, Peng X, Mechanisms of the Shape Evolution of CdSe Nanocrystals, Journal of the American Chemical Society, 2001, 123 (7): 1389-1395.
    [88] Peng X, Manna L, Yang W, et al., Shape control of CdSe nanocrystals, Nature, 2000, 404: 59-61.
    [89] Alivisatos A P, Scher E C, Manna L, Shaped Nanocrystal Particles And Mehtods For Making The Same, United States, US6,855,202,B2, 2005.
    [90] Alivisatos A P, Peng X, Manna L, Process For Forming Shaped Group Semiconductor Nanocrystals, And Product Formed Using Process, US 6,225,198 B1, 2001.
    [91] Cozzoli P D, Manna L, Curri M L, et al., Shape and Phase Control of Colloidal ZnSe Nanocrystals, Chemistry of Materials, 2005, 17: 1296-1306.
    [92] Peng X, Mechanisms for the Shape-Control and Shape-Evolution of Colloidal Semiconductor Nanocrystals, Advanced Materials, 2003, 15 (5): 459-463.
    [93] Tang Z, Kotov N A, Giersig M, Spontaneous Organization of Single CdTe Nanoparticles into Luminescent Nanowires, Science, 2002, 297: 237-240.
    [94] Bose S, Saha S K, Synthesis and characterization of hydroxyapatite nanopowders by emulsion technique, CHEMISTRY OF MATERIALS, 2003, 15 (23): 4464-4469.
    [95] Xu D S, Xu Y J, Chen D P, et al., Preparation of CdS single-crystal nanowires by electrochemically induced deposition, Advanced Materials, 2000, 12 (7): 520-522.
    [96] Cao H Q, Xu Y, Hong J M, et al., Sol-gel template synthesis of an array of single crystal CdS nanowires on a porous alumina template, Advanced Materials, 2001, 13 (18): 1393-1394.
    [97] JianYang, Xue C, Shu-HongYu, et al., General Synthesis of Semiconductor Chalcogenide Nanorods by Using the Monodentate Ligand n-Butylamine as a Shape Controller, Angew. Chem. Int. Ed. 2002, 41, No. 24, 2002, 41 (24): 4697-4700.
    [98] Peng X, Schlamp M C, Kadavanich A V, et al., Epitaxial Growth of Highly Luminescent CdSe/CdS Core/Shell Nanocrystals with Photostability and Electronic Accessibility, Journal of the American Chemical Society, 1997, 119 (30): 7019-7029.
    [99] Mattoussi H, Cumming A W, Murray C B, et al., Properties of CdSe nanocrystal dispersions in the dilute regime: Structure and interparticle interactions, Physical Review B: Condensed Matter, 1998, 58 (12): 7850-7863.
    [100] Manna L, Scher E C, Li L-S, et al., Epitaxial Growth and Photochemical Annealing of Graded CdS/ZnS Shells on Colloidal CdSe Nanorods, Journal of the American Chemical Society, 2002, 124 (24): 7136-7145.
    [101] Katari J E B, Colvin V L, Alivisatos A P, X-ray Photoelectron Spectroscopy of CdSe Nanocrystals with Applications to Studies of the Nanocrystal Surface, Journal of Physical Chemistry, 1994, 98: 4109-4117.
    [102] Noglik H, Pietro W J, Chemical Functionalization of Cadmium Sulfide Quantum-Confined Microclusters, Chemistry of Materials, 1994, 6: 1593-1595.
    [103] Weller H, Colloidal Semiconductor Q-Particles: Chemistry in the Transition Region Between Solid State and Molecules, Angew Chem. Int. Ed. Engl., 1993, 32: 41-53.
    [104] Kuno M, Lee J K, Dabbousi B O, et al., The band edge luminescence of surface modified CdSe nanocrystallites: Probing the luminescing state, Journal of Chemical Physics, 1997, 106 (23).
    [105] Kalyuzhny G, Murray R W, Ligand effects on optical properties of CdSe nanocrystals, Journal Of Physical Chemistry B, 2005, 109 (15): 7012-7021.
    [106] Gaponik N, Talapin D V, Rogach A L, et al., Efficient Phase Transfer of Luminescent Thiol-Capped Nanocrystals: From Water to Nonpolar Organic Solvents, Nano Letters, 2002, 2 (8): 803-806.
    [107] Gaponik N, Talapin D V, Rogach A L, et al., Thiol-Capping of CdTe Nanocrystals: An Alternative to Organometallic Synthetic Routes, Journal of Physical Chemistry B, 2002, 106: 7177-7185.
    [108] Sui G, Orbulescu J, Ji X, et al., Surface Chemistry Studies of Quantum Dots (QDs) Modified with Surfactants, Journal of Cluster Science, 2003, 14 (2): 123-133.
    [109] Aldana J, Wang Y A, Peng X, Photochemical Instability of CdSe Nanocrystals Coated by Hydrophilic Thiols, Journal of the American Chemical Society, 2001, 123: 8844-8850.
    [110] He R, Qian X-F, Yin J, et al., Formation of monodispersed PVP-capped ZnS and CdS nanocrystals under microwave irradiation, Colloids and Surfaces A, 2003, 220: 151-157.
    [111] Guo W, Li J J, Wang Y A, et al., Luminescent CdSe/CdS Core/Shell Nanocrystals in Dendron Boxes: Superior Chemical, Photochemical and Thermal Stability, Journal of the American Chemical Society, 2003, 125 (13): 3901-3909.
    [112] Talapin D V, Rogach A L, Mekis I, et al., Synthesis and surface modification of amino-stabilized CdSe, CdTe and InP nanocrystals, Colloids And Surfaces A-Physicochemical And Engineering Aspects, 2002, 202 (2-3): 145-154.
    [113] Spanhel L, Haase M, Weller H, et al., Photochemistry of Colloidal Semiconductors. 20. Surface Modification and Stability of Strong Luminescing CdS Particles, Journal of the American Chemical Society, 1987, 109 (19): 5649-5655.
    [114] Tian Y, Newton T, Kotov N A, et al., Coupled Composite CdS-CdSe and Core-Shell Types of (CdS)CdSe and (CdSe)CdS Nanoparticles, Journal of Physical Chemistry, 1996, 100: 8927-8939.
    [115] Bawendi M, Jensen K F, Dabbousi B O, et al., Highly Luminescent Color-Selective Nano-crystalline Materials, US 6,322,901 B1, 2001.
    [116] Malik M A, O'Brien P, Revaprasadu N, A Simple Route to the Synthesis of Core/Shell Nanoparticles of Chalcogenides, Chemistry of Materials, 2002, 14: 2004-2010.
    [117] Li J J, Wang Y A, Guo W, et al., Large-Scale Synthesis of Nearly Monodisperse CdSe/CdS Core/Shell Nanocrystals Using Air-Stable Reagents via Successive Ion Layer Adsorption and Reaction, Journal of the American Chemical Society, 2003, 125: 12567-12575.
    [118] Reiss P, Carayon S, Bleuse J, et al., Low polydispersity core/shell nanocrystals of CdSe/ZnSe and CdSe/ZnSe/ZnS type: preparation and optical studies, Synthetic Metals, 2003, 139 (3): 649-652.
    [119] Bleuse J, Carayon S, Reiss P, Optical properties of core/multishell CdSe/Zn(S,Se) nanocrystals, Physica E-Low-Dimensional Systems & Nanostructures, 2004, 21 (2-4): 331-335.
    [120] Charvet N, Reiss P, Roget A, et al., Biotinylated CdSe/ZnSe nanocrystals for specific fluorescent labeling, Journal Of Materials Chemistry, 2004, 14 (17): 2638-2642.
    [121] Kirchner C, Liedl T, Kudera S, et al., Cytotoxicity of Colloidal CdSe and CdSe/ZnS Nanoparticles, Nano Letters, 2005, 5 (2): 331-338.
    [122] Dabbousi B O, Rodriguez-Viejo J, Mikulec F V, et al., (CdSe)ZnS Core-Shell Quantum Dots: Synthesis and Characterization of a Size Series of Highly Luminescent Nanocrystallites, Journal of Physical Chemistry B, 1997, 101: 9463-9475.
    [123] Chon J W M, Zijlstra P, Gu M, et al., Two-photon-induced photoenhancement of densely packed CdSe/ZnSe/ZnS nanocrystal solids and its application to multilayer optical data storage, Applied Physics Letters, 2004, 85 (23): 5514-5516.
    [124] Dorfs D, Eychmu1ller A, A Series of Double Well Semiconductor Quantum Dots, Nano Letters, 2001, 1 (11): 663-665.
    [125] Borchert H, Dorfs D, McGinley C, et al., Photoemission study of onion like quantum dot quantum well and double quantum well nanocrystals of CdS and HgS, JOURNAL OF PHYSICAL CHEMISTRY B, 2003, 107 (30): 7486-7491.
    [126] Baranov A V, Rakovich Y P, Donegan J F, et al., Effect of ZnS shell thickness on the phonon spectra in CdSe quantum dots, Physical Review B: Condensed Matter, 2003, 68: 1653061-1653067.
    [127] De la Rosa-Fox N, Santos A, Pinero M, et al., SANS study of CdS and CdSe quantum dot crystal growth in a silica matrix by sol-gel, Journal Of Sol-Gel Science And Technology, 1998, 13 (1-3): 629-633.
    [128] Gerion D, Pinaud F, Williams S C, et al., Synthesis and properties of biocompatible water-soluble silica-coated CdSe/ZnS semiconductor quantum dots, Journal Of Physical Chemistry B, 2001, 105 (37): 8861-8871.
    [129] Nann T, Mulvaney P, Single quantum dots in spherical silica particles, Angewandte Chemie-International Edition, 2004, 43 (40): 5393-5396.
    [130] Yang X T, Zhang Y, Encapsulation of quantum nanodots in polystyrene and silica micro-/nanoparticles, Langmuir, 2004, 20 (14): 6071-6073.
    [131] Ki C D, Emrick T, Chang J Y, Preparation of functional nanoporous silica for encapsulation of CdSe nanoparticles, Advanced Materials, 2005, 17 (2): 230-234.
    [132] Potter B G, Jr., Simmons J H, Quantum size effects in optical properties of CdS-glass composites, Physical Review B: Condensed Matter, 1988, 37: 10838-10845.
    [133] Selvan S T, Tan T T, Ying J Y, Robust, non-cytotoxic, silica-coated CdSe quantum dots with efficient photoluminescence, Advanced Materials, 2005, 17 (13): 1620-1625.
    [134] Zhou X P, Kobayashi Y, Romanyuk V, et al., Preparation of silica encapsulated CdSe quantum dots in aqueous solution with the improved optical properties, Applied Surface Science, 2005, 242 (3-4): 281-286.
    [135] Correa-Duarte M A, Giersig M, M.Liz-Marzan L, Stabilization of CdS semiconductor nanoparticles against photodegradation by a silica coating procedure, Chemical Physics Letters, 1998, 286: 497-501.
    [136] Caruso F, Nanoengineering of particle surfaces, Advanced Materials, 2001, 13 (1): 11-22.
    [137] Rogach A L, Nagesha D, Ostrander J W, et al., "Raisin Bun"-Type Composite Spheres of Silica and Semiconductor Nanocrystals, Chemistry of Materials, 2000, 12: 2676-2685.
    [138] Tago T, Hatsuta T, Miyajima K, et al., Novel Synthesis of Silica-Coated Ferrite Nanoparticles Prepared Using Water-in-Oil Microemulsion, Journal of the American Ceramic Society, 2002, 85 (9): 2188-2194.
    [139] Arriagada F J, Osseo-Asare K, Synthesis of Nanosize Silica in a Nonionic Water-in-Oil Microemulsion: Effects of the Water/Surfactant Molar Ratio and Ammonia Concentration, Journal of Colloid and Interface Science, 1999, 211: 210-220.
    [140] 周宁琳, 有机硅聚合物导论, 北京: 科学出版社, 2000.237
    [141] Mantzaris N V, Liquid-phase synthesis of nanoparticles: Particle size distribution dynamics and control, Chemical Engineering Science, 2005, 60 (17): 4749-4770.
    [142] 丁绪淮, 谈遒, 工业结晶, 1st Edition, 北京: 化学工业出版社, 1985.74-132
    [143] Randolph A, Larson M A, Theory of Particulate Processes-Analysis and Techniques of Continuous Crystallization, 2nd Edition, New York: Academic Press, 1971.109-134
    [144] Mullin J W, Crystallization, 3th. edtion, Oxford: Butterworth-Heinemann, 1997.172-260
    [145] Voorhees P W, The theory of Ostwald ripening, Journal of Statistical Physics, 1985, 38: 231-252.
    [146] Baldan A, Review Progress in Ostwald ripening theories and their applications to the gamma '-precipitates in nickel-base superalloys - Part II - Nickel-base superalloys, Journal Of Materials Science, 2002, 37 (12): 2379-2405.
    [147] Sugimoto T, Preparation on Monodispersed Colloidal Particles, Advances in Colloid and Interface Science, 1987, 28: 65-108.
    [148] Talapin D V, Rogach A L, Haase M, et al., Evolution of an ensemble of nanoparticles in a colloidal solution: Theoretical study, Journal Of Physical Chemistry B, 2001, 105 (49): 12278-12285.
    [149] Madras G, McCoy B J, Distribution kinetics theory of Ostwald ripening, Journal of Chemical Physics, 2001, 115 (14): 6699-6706.
    [150] Madras G, McCoy B J, Ostwald ripening with size-dependent rates: similarity and power-law solutions, Journal of Chemical Physics, 2002, 117 (17): 8042-8049.
    [151] Madras G, McCoy B J, Continuous distribution theory for Ostwald ripening: comparison with the LSW approach, Chemical Engineering Science, 2003, 58: 2903-2909.
    [152] Lin R-Y, Zhang J-Y, Zhang P-X, Nucleation and growth kinetics in synthesizing nanometer calcite, Journal of Crystal Growth, 2002, 245: 309-320.
    [153] Leatherdale C A, Woo W-K, Mikulec F V, et al., On the Absorption Cross Section of CdSe Nanocrystal Quantum Dots, Journal of Physical Chemistry B, 2002, 106: 7619-7622.
    [154] Yu W W, Qu L, Guo W, et al., Experimental Determination of the Extinction Coefficient of CdTe, CdSe, and CdS Nanocrystals, Chemistry of Materials, 2003, 15: 2854-2860.
    [155] Dickerson B D, Irving D M, Herz E, et al., Synthesis kinetics of CdSe quantum dots in trioctylphosphine oxide and in stearic acid, Applied Physics Letters, 2005, 86: 1719151-1719153.
    [156] Bullen C R, Mulvaney P, Nucleation and growth kinetics of CdSe nanocrystals in octadecene, Nano Letters, 2004, 4 (12): 2303-2307.
    [157] Pan B F, He R, Gao F, et al., Study on growth kinetics of CdSe nanocrystals in oleic acid/dodecylamine, Journal Of Crystal Growth, 2006, 286 (2): 318-323.
    [158] van Embden J, Mulvaney P, Nucleation and Growth of CdSe Nanocrystals in a Binary Ligand System, Langmuir, 2005, 21 (22): 10226-10233.
    [159] Myerson A S, Handbook of industrial crystallization, ed Second Edition, Woburn: Butterworth-Heinemann, 2001.23-24
    [160] Cussler E L, Diffusion: Mass Transfer in Fluid Systems, ed Second Edition, Cambridge: Cambridge University Press, 1997.118-119

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700