用户名: 密码: 验证码:
头孢曲松钠溶析结晶过程研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
头孢曲松钠属于β-内酰胺类抗生素,是长效、广谱的第三代半合成头孢菌素,是国内外最畅销的抗感染药物之一。针对国产头孢曲松钠普遍存在的生产规模小、批间产品质量不稳定、结晶精制收率低等问题,本文对头孢曲松钠结晶过程进行了系统研究,为头孢曲松钠结晶精制工艺的工程放大和进一步深入研究提供了基础数据和理论依据,开发的头孢曲松钠溶析结晶新工艺已成功地应用于产业化生产。
     采用热分析法研究了头孢曲松钠的热不稳定性,建立了头孢曲松钠非等温TG脱水动力学模型,分析了两步脱水过程的最概然机理以及动力学补偿效应;采用Málek法建立了头孢曲松钠非等温DSC热降解动力学模型,模型计算值与实验值一致性好。
     在实验采集头孢曲松钠X-射线粉末衍射数据的基础上,应用JADE 4.0和分子模拟软件Cerius2确定了头孢曲松钠晶体的晶胞参数、所属晶系和空间群;基于能量最小化原理确定了头孢曲松钠晶体的空间结构;采用BFDH、AE模型预测了头孢曲松钠晶体的晶习,其中AE模型晶习与实际生长晶习更为相近,呈薄片状;考察了实际生长环境对晶习的影响规律。
     实验研究了头孢曲松钠结晶热力学性质,采用动态法测定了头孢曲松钠在6种单溶剂体系以及1种双组元溶剂体系中的溶解度,并分别采用经验方程和λh方程建立了头孢曲松钠在单溶剂体系和双溶剂体系中的溶解度模型;根据溶解度特性,筛选了溶剂系统,确定了头孢曲松钠溶析结晶方案;采用激光法测定了头孢曲松钠在A+S双组元体系中的介稳区。
     基于实验测定的结晶诱导期,估算了头孢曲松钠溶析结晶过程的固液表面张力、表面熵因子,初步推断晶体呈连续生长模式生长;采用分级法建立并求解了头孢曲松钠溶析结晶动力学方程;以粒数衡算方程为基础,结合质量衡算和动力学方程,建立了头孢曲松钠溶析结晶过程数学模型。
     依据晶体生长习性、介稳区特性、结晶动力学和过程模型模拟分析结果的预示,考察了晶种、结晶温度、结晶液初始浓度、溶析剂流加速率、搅拌强度、脱色活性炭用量等对结晶产品质量、粒度分布和收率的影响,建立了经验最佳操作时间表,达到了提高结晶产品质量、收率和粒度的效果。
Ceftriaxone sodium, which belonges toβ-lactam antibiotics, is a third generation, semisynthetic, broad-spectrum cephalosporin, and has been one of the most salable anti-infectious drugs home and abroad. Systematic studies have been performed to resolve the problems occurred in the home industry manufacture of ceftriaxone sodium, such as little manufacture scale, significant quality difference between batches, low yield. The results that served as the basic data and important foundation for scaling up and further research on crystallization of ceftriaxone sodium were achieved. A new process of dilution crystallization has been successfully used for industry manufacture of ceftriaxone sodium, and the product quality, yield and size were enhanced much more than that of the old technology.
     The non-isothermal dehydration process of ceftriaxone sodium was systematically studied through Thermogravimetry (TG). The kinetics and the most probable mechanism functions of the two dehydration steps were achieved. The non-isothermal decomposition model of ceftriaxone sodium was also achieved through Differential Scanning Calorimetry (DSC) by Málek method, and the consistency between the experimental data and the values predicted by model is good.
     Based on the X-ray powder diffraction data collected experimentally, the crystal cell parameters, crystal system and space group of ceftriaxone sodium were simulated by using JADE 4.0 and Cerius2. The crystal structure was determined on the basis of the energy minimization principle; and the crystal habit was predicted by using BFDH law and AE law, of which the habit predicted by AE law is plate and is more similar to the actual habit grown from solution. The effects of growing conditions on crystal habit were also experimentally studied.
     The solubilities of ceftriaxone sodium in different solvents were measured by the dynamic method. The empirical equation and theλh equation were used to correlate the solubility data in pure solvent and mixed system respectively, and good results were achieved. Based on the solubility characteristics, the solvent system for crystallization process was screened out, and the dilution crystallization was chosen to separate and purify ceftriaxone sodium. The metastable zone for dilution crystallization of ceftriaxone sodium in A+S system was also experimentally studied by laser method.
     Based on the induction period determined experimentally, the surface tension and surface entropy factors of the dilution crystallization process of ceftriaxone sodium were estimated, which indicated a continuous growth model. The nucleation, size-dependent growth and agglomeration kinetics in the dilution crystallization process of ceftriaxone sodium were established through the classes method. Together with the crystallization kinetics and the mass balance equations, the dilution crystallization process of ceftriaxone sodium was simulated on the basis of the population balance.
     According to the researches of the crystal growth habit, metastable zone characteristics, crystallization kinetics and process simulation analysis, the effects of seeds, temperature, initial concentration of mother liquor, addition rate of anti-solvent, etc, on the crystal size distribution and yield were experimentally studied in detail. The optimum operation schedule for the dilution crystallization of ceftriaxone sodium has been determined, and the product quality, yield and size are enhanced obviously.
引文
[1] 国家药典委员会, 中华人民共和国药典 2005 年版(二部), 北京: 化学工业出版社, 2005
    [2] 许思忠, 头孢三嗪, 国外医药:抗生素分册, 1993, 14 (4): 272-279
    [3] Reiner R, Correlation between structure and biological properties of cephalosporins: the discovery of ceftriaxone, Drugs. Exptl. Clin. Res., 1986, 12 (4): 299-302
    [4] Reiner R, Weiss U, Brombbache U, et al., Ro 13-9904/001, A novel potent and long-acting parenteral cephalosporin, The Journal of Antibiotics, 1980, 33 (7): 783-786
    [5] 许思忠, 陆履康, 蒋以棣等, 头孢三嗪合成研究, 中国抗生素杂志, 1994, 19 (2): 124-127
    [6] Danklmaier J, Marcher I, Prager B, Process for the synthesis of the disodium salt hemiheptahydrate of ceftriaxone, USA, 5 574 155, 1996-11-12
    [7] 潘杰, 头孢曲松钠结晶过程研究 (硕士学位论文), 天津大学, 2004
    [8] 王静康, 化学工程手册--结晶(第二版), 北京: 化学工业出版社, 1996. 2-36
    [9] 涂林, 余方键, 胡昌勤, 国产注射用头孢曲松钠的质量现状, 中国药事, 2002, 16 (1): 45-46
    [10] Giron D, Contribution of thermal methods and related techniques to the rational devolpment of pharmaceuticals--Part 1, Pharmaceutical Science & Technology Today, 1998, 1 (5): 191-199
    [11] Giron D, Thermal analysis, microcalorimetery and combined techniques for the study of the pharmaceuticals, Journal of Thermal Analysis and Calorimetry, 1999, 56: 1285-1304
    [12] Craig D Q M, Thompson K, Special issue — — New advances in pharmaceutical thermal analysis——Preface, Thermochimica Acta, 2001, 380 (2): VII-VII
    [13] 胡荣祖, 史其祯, 热分析动力学, 北京: 科学出版社, 2001. 1-174
    [14] Martin-Gil J, Villa F M, Ramos-Sanchez M C, et al., Studies on beta-lactam antibiotics differential thermal analysis of cephalsporins, Journal of Thermal Analysis, 1984, 29: 1351-1357
    [15] 陈镜泓, 李传儒, 热分析及其应用, 北京: 科学出版社, 1985. 1-102
    [16] 唐万军, 温度积分及固体分解反应的热分析动力学研究 (博士学位论文), 武汉大学, 2004
    [17] Gao X, Dollimore D, The thermal-decomposition of Oxalates.26. A kinetics study of the thermal-decomposition of manganese(II) Oxalate dihydrate, Thermochimica Acta, 1993, 215: 47-63
    [18] Málek J, The kinetic analysis of non-isothermal data, Thermochimica Acta, 1992, 200: 257-269
    [19] Senum G I, Yang R T, Rational approximation of the integral of the Arrhenius function, Journal of Thermal Analysis and Calorimetry, 1997, 11 (3): 445-447
    [20] Coats A W, Redfern J P, Kinetic parameters from thermogravimetric data, Nature, 1964, 201: 68-68
    [21] Koga N, Kinetic analysis of thermoanalytical data by extrapolating to infinite temperature, Thermochimica Acta, 1995, 258: 145-159
    [22] Ozawa T, A new method of analysis of thermogravimetric data, Bulletin of the Chemical Society of Japan, 1965, 38: 1881-1886
    [23] Flynn J H, Wall L A, A quick, direct method for the determination of activation energy from thermogravimetric data, Journal of Polymer Science, Part B: Polymer Physics, 1966, 4: 323-328
    [24] Kissinger H L, Reaction kinetics in differential analysis, Analytical Chemistry, 1957, 29 (11): 1702-1706
    [25] Friedman H L, Kinetics of thermal degradation of char-forming plastic from thermogravimetry: Application to phenolic plastic, Journal of Polymer Science, Part C: Polymer Letters, 1963, 6: 183-195
    [26] 陆振荣, 热分析动力学的新进展, 无机化学学报, 1998, 14 (2): 119-126
    [27] Koga N, Tanaka H, Kinetics and mechanisms of the thermal dehydration of dilithium sulfate monohydrate, Journal of Physical Chemistry, 1989, 93 (23): 7793-7798
    [28] Sestak J, Málek J, Diagnostic limits of phenomenological models of heterogeneous reactions and thermal analysis kinetics, Solid State Ionics, 1993, 63-65: 245-254
    [29] Koga N, A review of the mutual dependence of Arrhenius parameters evaluated by the thermoanalytical study of solid-state reactions: the kinetic compensation effect, Thermochim. Acta, 1994, 244: 1-20
    [30] Cumbrera F L, Sanchez-Bajo F, The use of the JMAYK kinetic equation for the analysis of solid-state reactions: critical considerations and recent interpretations, Thermochim. Acta, 1995, 266: 315-330
    [31] Han J, Gupte S, Suryanarayanan R, Applications of pressure differential scanning calorimetry in the study of pharmaceutical hydrates. II. Ampicillin trihydrate, International Journal of Pharmaceutics, 1998, 170 (1): 63-72
    [32] Khankari R, Grant D, Pharmaceutical hydrates, Thermochim. Acta, 1995, 248: 61-79
    [33] Zhang C T, Wang J K, Wang Y L, Non-isothermal dehydration kinetics of ceftriaxone disodium hemiheptahydrate, Industrial & Engineering Chemistry Research, 2005, 44 (18): 7057-7061
    [34] 郑颉, 张建芳, 用差示扫描量热法测定头孢菌素类药物的热降解稳定性, 药学学报, 1987, 22 (4): 278-283
    [35] Málek J, Kinetic analysis of crystallization processes in amorphous materials, Thermochimica Acta, 2000, 355 (1-2): 239-253
    [36] Ro?u D, Cascaval C N, Mustata F, et al., Cure kinetics of epoxy resins studied by non-isothermal DSC data, Thermochimica Acta, 2002, 383 (1-2): 119-127
    [37] Myerson A S, Handbook of Industrial Crystallization (2nd), Butterworth- Heinemann, 2001. 1-204
    [38] 任国宾, 盐酸帕罗西汀结晶过程研究 (博士学位论文), 天津大学, 2005
    [39] 梁敬魁, 粉末衍射法测定晶体结构(上、下册), 北京: 科学出版社, 2003. 12-709
    [40] 翁臻培, 周志朝, 李中和, 结晶学, 北京: 中国建筑工业出版社, 1986. 1-45
    [41] 俞文海, 晶体结构的对称群, 合肥: 中国科技大学出版社, 1991. 1-98
    [42] 周志朝, 蔡文永, 朱永花等, 结晶学, 杭州: 浙江大学出版社, 1997. 4-54
    [43] 马礼敦, 近代 X 射线多晶体衍射――实验技术与数据分析, 北京: 化学工业出版社, 2004. 2-49
    [44] 于全枝, X 射线粉末衍射物相分析的全谱拟合法 (硕士学位论文), 曲阜师范大学, 2002
    [45] 陈小明, 蔡继文, 单晶结构分析原理与实践, 北京: 科学出版社, 2003. 2-104
    [46] Tanguy D, Marchal P, Relations between the properties of particles and their process of manufacture, Chemical Engineering Research & Design, 1996, 74 (A7): 715-722
    [47] Winn D, Doherty M F, Modeling crystal shapes of organic materials grown from solution, AIChE Journal, 2000, 46 (7): 1348-1367
    [48] Winn D, Doherty M F, A new technique for predicting the shape of solution-grown organic crystals, AIChE Journal, 1998, 44 (11): 2501-2514
    [49] 张缨, 有机物系溶液结晶过程中形态学控制研究 (博士学位论文), 天津大学, 2005
    [50] Bravais A, Etudes Cristallographiques, Paris: Gauthier-Villars, 1866. 2-89
    [51] Donnay J D H, Harker D, A new law of crystal morphology extending the law of Bravais, American Mineralogist, 1937, 22: 446-447
    [52] 王静康, 黄向荣, 刘秉文等, 有机分子晶体晶习预测的研究进展, 人工晶体学报, 2002, 31 (3): 218-223
    [53] Myerson A S, Molecular modeling applications in crystallization, New York: Cambridge University Press, 1999. 59-105
    [54] 陈建新, 氢化可的松结晶过程研究 (博士学位论文), 天津大学, 2005
    [55] Rommelse K, den Nijs M, Preroughening transitions in surface, Physical Review Letters, 1987, 59: 2578-2589
    [56] Mazzeo G, Carlon E, van Beijeren H, Phase diagram of the two component body-centered solid-on-solid model, Physical Review Letters, 1995, 74: 1391-1401
    [57] Inc. A, Cerius2 modeling enviroment, Release 4.0, San Diego: Accelrys Inc., 1999
    [58] Verwer P, Leusen F J J, Computer simulation to predict possible crystal polymorphs, Reviews in Computational Chemistry, 1998, 12: 327-365
    [59] Price S L, The computational prediction of pharmaceutical crystal structures and polymorphism, Advanced Drug Delivery Reviews, 2004, 56: 301-319
    [60] 郝红勋, 地塞米松磷酸钠耦合结晶过程研究 (博士学位论文), 天津大学, 2003
    [61] 姚玉英, 化工原理(下册),天津:天津大学出版社, 1999. 302-307
    [62] Mohan R, Crystallization from solution: Methods for the study of solubility, kinetics and phase transitions (Ph.D. Disssertation), Polytechnic University, 2001
    [63] 金克新, 赵传钧, 马沛生, 化工热力学, 天津: 天津大学出版社, 1990. 78-109
    [64] 陈钟秀, 顾飞燕, 化工热力学, 北京: 化学工业出版社, 1993. 53-74
    [65] 曲红梅, 周立山, 杨志才等, 有机物系固液相平衡理论研究评述, 天然气化工, 2004, 29(6): 57-60, 67
    [66] Mullin J W, Crystallization 3rd, Oxford: Butterworth-Heinemann, 1997. 13-263
    [67] Peter N C, Teja A S, A new cubic equation of state for fluid and fluid mixture, Chemical Enginneering Science, 1982, 37: 463-473
    [68] 侯虞钧, 陈新志, 周浩, 马丁-侯状态方程向固体发展, 高校化学工程学报, 1996, 10 (3): 217-224
    [69] 陈明鸣, 对苯二甲酸生产中相平衡的测定与研究 (博士学位论文), 天津大学, 2002
    [70] Prausnitz J M, Lichenthaler R N, Azevedo E G, Molecular thermodynamics of fluid-phase equilibria (second edition), Englewood Cliffs: Prentice-hall, 1986
    [71] Wilson G M, Vapor-liquid equilibrium XI: A new expression for the excess free energy of mixing, Journal of the American Chemical Society, 1964, 86: 127-130
    [72] Wilson G M, Deal C H, Activity coefficient and molecular structure, Industrial & Engineering Chemistry Fundamental, 1962, 1(13): 292-293
    [73] Kehiaian H V, Grolier J P E, Benson G C, Thermodynamics of organic mixtures - generalized quasi-chemical theory in terms of group surface interactions, Journal De Chimie Physique Et De Physico-Chimie Biologique, 1978, 75(11-1): 1031-1048
    [74] Fredenslund A, Jones R L, Prausnitz J M, Group-contribution estimation of activity-coefficients in nonideal liquid-mixtures, AIChE Journal, 1975, 21(6): 1086-1099
    [75] 曲红梅, 合成硝基麝香相平衡和结晶分离的研究 (博士学位论文), 天津大学, 2002
    [76] Gonzalez J A, delaFuente I G, Cobos J C, et al., Thermodynamics of branched alcohols.1. Extension of DISQUAC to tert-alcohols-n-alkanes or tert-alcohols-cyclohexane mixtures, Fluid Phase Equilibria, 1996, 119 (1-2): 81-96
    [77] Gonzalez J A, Delafuente I G, Cobos J C, et al., Solid-liquid equilibria using disquac - prediction for 1-Alkanol plus n-Alkane systems, Fluid Phase Equilibria, 1994, 94: 167-179
    [78] Domanska U, Gonzalez J A, Solid-liquid equilibria for systems containing long-chain 1-alkanols.3. Experimental data for 1-tetradecanol, 1-hexadecanol, 1-octadecanol or 1-icosanol plus 1-butanol, 1-hexanol, 1-octanol or 1-decanol mixtures, characterization in terms of DISQUAC, Fluid Phase Equilibria, 1997, 129 (1-2): 139-163
    [79] Domanska U, Gonzalez J A, Thermodynamics of branched alcohols - II. solid-liquid equilibria for systems containing tert-butanol and long-chain n-alkanes. Experimental results and comparison with DISQUAC predictions, Fluid Phase Equilibria, 1998, 147 (1-2): 251-270
    [80] Domanska U, Gonzalez J A, Solid-liquid equilibria for systems containing long-chain 1-alkanols.2. Experimental data for 1-dodecanol, 1-tetradecanol, 1-hexadecanol, 1-octadecanol or 1-eicosanol plus CCl4 or plus cyclohexane mixtures. Characterization in terms of DISQUAC, Fluid Phase Equilibria, 1996, 123 (1-2): 167-187
    [81] Gmehling J G, Anderson T F, Prausnitz J M, Solid-Liquid Equilibria Using Unifac, Industrial & Engineering Chemistry Fundamentals, 1978, 17 (4): 269-273
    [82] 朱向前, 任宝山, 王静康, 采用 UNIFAC 方程回归同分异构体物系的固液相平衡, 河北工业大学学报, 1997, 26 (1): 39-44
    [83] Jakob A, Joh R, Rose C, et al., Solid-Liquid Equilibria In Binary-Mixtures Of Organic-Compounds, Fluid Phase Equilibria, 1995, 113 (1-2): 117-126
    [84] Ahlers J, Lohmann J, Gmehling J, Binary solid-liquid equilibria of organic systems containing different amides and sulfolane, Journal of Chemical and Engineering Data, 1999, 44 (4): 727-730
    [85] Buchowski H, Ksiazczak A, Pietrzyk S, Solvent activity along a saturation line and solubility of hydrogen-bonding solids, Journal of Physical Chemistry, 1980, 84 (9): 975-979
    [86] 李艳斌, 头孢哌酮钠结晶过程研究 (硕士学位论文), 天津大学, 2004
    [87] 鲍颖, 盐酸大观霉素溶析结晶过程研究 (博士学位论文), 天津大学, 2003
    [88] Nie Q, Wang J K, Wang Y L, et al., Solubility of 11 alpha-hydroxy-16 alpha,17 alpha-epoxyprogesterone in different solvents between 283 K and 323 K, Journal of Chemical and Engineering Data, 2005, 50 (3): 989-992
    [89] Liu B S, Gong J B, Wang J K, et al., Solubility of potassium clavulanate in ethanol, 1-propanol, 1-butanol, 2-propanol, and 2-methyl-1-propanol between 273 K and 305 K, Journal of Chemical and Engineering Data, 2005, 50 (5): 1684-1686
    [90] Sun H, Gong J B, Wang J K, Solubility of lovastatin in acetone, methanol, ethanol, ethyl acetate, and butyl acetate between 283 K and 323 K, Journal of Chemical and Engineering Data, 2005, 50 (4): 1389-1391
    [91] Ksiazczak A, Moorthi K, Nagata I, Solid-solid transition and solubility of even n-Alkanes, Fluid Phase Equilibria, 1994, 95: 15-29
    [92] 韩佳宾, 王静康, 咖啡因在水和乙醇中的溶解度及其关联, 化工学报, 2004, 55 (1): 125-128
    [93] Osmialowski K, Piekos R, Solubility-structure relationship in naphthalene - organic-solvent binary-systems, Journal of Solution Chemistry, 1991, 20 (2): 241-248
    [94] 金克新, 陈勇强, 谢朝钢, 硝基氯苯体系固液平衡研究, 化学工业与工程, 1993, 10 (2): 1-8
    [95] Hefter G T, Tomkins R P T, The experimental determination of solubilities, England: Wiley, 2003. 5-106
    [96] 丁绪淮, 谈遒, 工业结晶, 北京: 化学工业出版社, 1985. 1-150
    [97] Kubota N, Uchiyama I, Nakai K, et al., Change of solubility of potassium-sulfate in water caused by traces of chromium(III), Industrial & Engineering Chemistry Research, 1988, 27 (6): 930-934
    [98] Kashchiev D, Verdoes D, Vanrosmalen G M, Induction Time And Metastability Limit In New Phase Formation, Journal Of Crystal Growth, 1991, 110 (3): 373-380
    [99] Mersmann A, Supersaturation and nucleation, Chemical Engineering Research & Design, 1996, 74 (A7): 812-820
    [100] Mersmann A, Bartosch K, How to predict the metastable zone width, Journal of Crystal Growth, 1998, 183 (1-2): 240-250
    [101] Smallwood I M, Handbook of organic solvent properties, Elsevier, 1996.
    [102] 鲍颖, 王静康, 王永莉等, 盐酸大观霉素在纯水及丙酮-水混合溶剂中的溶解度测定与关联, 高校化学工程学报, 2003, 17 (4): 457-461
    [103] 潘杰, 王静康, 头孢曲松钠的结晶热力学研究, 化学工业与工程, 2003, 20 (6): 337-341
    [104] Marchisio D L, Barresi A A, Garbero M, Nucleation, growth, and agglomeration in Brium Sulfate turbulent precipitation, AIChE Journal, 2002, 48 (9): 2039-2050
    [105] Yokota M, Kubota N, Apparent size-dependent growth of Potash Alum crystals by agglomeration, AIChE Journal, 1996, 42 (4): 1170-1173
    [106] Ilievski D, Hounslow M J, Agglomeration during precipitation: II. Mechanism deduction from tracer data, AIChE Journal, 1995, 41 (3): 525-535
    [107] Randolph A D, Larson M A, Theory of particulate processes, 2nd, New York: Academic Press, 1988. 2-173
    [108] Mersmann A, Design of crystallizers, Chemical Enginneering Progress, 1988, 23: 213-228
    [109] Dirksen J A, Ring T A, Fundamentals of crystallization: Kinetic effects on partical size distribution and morphology, Chemical Enginneering Science, 1991, 46 (10): 2389-2427
    [110] Gago-Duport L, Rose-Fox N d l, Garcia-Ruiz J M, Nucleation and clustering: a microscopic study of the aggregation behavior in the meastable solutions, Journal of Non-crystalline Solids, 1995, 192-193: 503-508
    [111] Volmer M, Weber K, Nucleus formation in supersaturated system, Journal of Physical Chemistry, 1926, 1: 277-285
    [112] Liu X Y, Effect of foreign particles: a comprehensive understanding of 3D heterogeneous nucleation, the 14th edition of the Smposium on Industrial Crystallization (ISIC 14), London: 1999, 229-237
    [113] Volmer M, Kinetic der phasenbildung, Dresden: Steinkoff, 1939
    [114] Larson M A, Garside J, Solute clustering and interfacial tension, Journal of Crystal Growth, 1986, 76: 88-92
    [115] Garside J, Larson M A, Direct observation of secondary nuclei production, Journal of Crystal Growth, 1978, 1978 (43): 694-704
    [116] Botsaris G D, Qian R Y, Barrett A, New insights into nucleation through chiral crystallization, AIChE Journal, 1999, 45 (1): 201-203
    [117] Abegg C F, Stevents J D, Larson M A, Crystal size distribution in continuous crystallizers when growth rate is size dependent, AIChE Journal, 1968, 14: 118-122
    [118] Canning T F, Randolph A D, Some aspects of crystallization theory: systems that viotate McCabe's delta L law, AIChE Journal, 1967, 13 (1): 5-9
    [119] Mydlarz J, Jones A G, On the estimation of size-dependent growth rate functions in the MSMPR crystallizers, Chemical Enginneering Journal, 1993, 53: 125-129
    [120] Randolph A D, White E T, Modelling size dispersion in the prediction of crystal size distribution, Chemical Enginneering Science, 1977, 32: 1067-1076
    [121] Mydlarz J, Jones A G, Crystallization and agglomeration kinetics during the batch drawing-out precipitation of potash alum with aqueous acetone, Powder Technology, 1991, 65: 187-194
    [122] Lian G P, Thornton C, Adams M J, Discrete particle simulation of agglomerate impact coalescence, Chemical Engineering Science, 1998, 53 (19): 3381-3391
    [123] Saint-Raymond H, Gruy F, Cournil M, Turbulent aggregation of alumina in water and n-heptane, Journal of Colloid and Interface Science, 1998, 202 (2): 238-250
    [124] Schmork K, Modeling of mechanism of agglomeration of KCl crystallization, Crystal Research and Technology, 1988, 23: 967-972
    [125] Masy J C, Cournil M, Using a turbidometric method to study the kinetics of agglomeration of potassium sulfate in a liquid medium, Chemical Enginneering Science, 1991, 46 (2): 639-701
    [126] Nore P H, Mersmann A, Batch precipitation of barium carbonate, Chemical Enginneering Science, 1993, 48 (17): 3083-3088
    [127] Melis S, Verduyn M, Storti G, et al., Effect of fluid motion on the aggregation of small particles subject to interaction forces, AIChE Journal, 1999, 45 (7): 1383-1393
    [128] Maskara A, Smith D M, Agglomeration during the drying of fine silica powders, Part II: The role of particle solubility, Journal of the American Ceramic Society, 1997, 80 (7): 1715-1722
    [129] 胡英顺, 尹秋响, 侯宝红等, 结晶及沉淀过程中粒子聚结与团聚的研究进展, 化学工业与工程, 2005, 22 (5): 371-375
    [130] 刘越, 7-ADCA 反应结晶过程研究 (博士学位论文), 天津大学, 2003
    [131] David R, Marchal P, Klein J P, et al., Crstallization and precipitation engineering--3. A discrete formulation of the agglomeration rate of crystals in a crystallization process, Chemical Enginneering Science, 1991, 46 (1): 205-213
    [132] Marchal P, David R, Klein J P, et al., Crstallization and precipitation engineering--1. An effecient method for solving population balance in crystallization with agglomeration, Chemical Enginneering Science, 1988, 43 (1): 59-67
    [133] Mumataz H S, Hounslow M J, Seaton N A, Orthokinetic agglomeration during precipitation: A computational model for calcium oxalate monohydrate, Trans IChemE, 1997, 75: 152-159
    [134] Kusters K A, Wijers J G, Thoenes D, Aggregation kinetics of small particles in agitated vessels, Chemical Enginneering Science, 1997, 52 (1): 107-121
    [135] Tavare N S, Garside J, Silica precipitation in a semi-batch crystallizer, Chemical Enginneering Science, 1993, 48 (3): 475-488
    [136] 刘勇, 盐酸环丙沙星合成与结晶过程的研究 (博士学位论文), 天津大学, 2003
    [137] 郝红勋, 地塞米松磷酸钠耦合结晶过程研究 (博士学位论文), 天津大学, 2003
    [138] Litster J D, Smit D J, Hounslow M J, Adjustable discretized population balance for growth and aggregation, AIChE Journal, 1995, 41 (3): 591-603
    [139] Tavare N S, Batch crystallizer----A review, Chemical Engineering Communications, 1987, 61: 259-318
    [140] Tavare N S, Characterization of crystallization kinetics from batch experiments, Separation and Purification Methods, 1993, 22 (2): 93-210
    [141] Hounslow M J, Ryall R L, Marshall V R, A discretized population balance for nucleation, growth, and agglomeration, AIChE Journal, 1988, 34 (11): 1821-1832
    [142] 鲍颖, 李艳斌, 王永莉等, 聚集结晶动力学研究方法的改进, 化学工程, 2006, 34 (2): 20-24
    [143] Carosso P A, Pelizzetti E, A stopped-flow technique in fast precipitation kinetics: the case of barium sulfate, Journal of Crystal Growth, 1984, 68: 532-536
    [144] Hao H X, Wang J K, Wang Y L, Determination of induction period and crystal growth mechanism of dexamethasone sodium phosphate in methanol-acetone system, Journal of Crystal Growth, 2005, 274 (3-4): 545-549
    [145] Kibalczyc W, Bondarczuk K, Light scattering study of calcium phosphate precipitation, Journal of Crystal Growth, 1985, 71: 751-756
    [146] Lancia A, Musmarra D, Prisciandaro M, Measuring induction period for calcium sulfate dihydrate precipitation, AIChE Journal, 1999, 45 (2): 390-397
    [147] Wakita M I H, Masuda I, Analyses of precipitation processes of the dis-(dimethyl-glyoximato) Ni(II) and related complexes, Journal of Crystal Growth, 1983, 61: 377-382
    [148] Chien W C, Tai C Y, Hsu J P, The induction period of the CaCl2-Na2CO3 system: Theory and experiment, Journal of Chemical Physics, 1999, 111 (6): 2657-2664
    [149] S?hnel O, Mullin J W, A method for determination of precipitation induction periods, Journal of Crystal Growth, 1978, 44: 377-382
    [150] S?hnel O, Mullin J W, Precipitation of calcium carbonate, Journal of Crystal Growth, 1982, 60: 239-250
    [151] Glasner A, Tassa M, The thermal effects of nucleation and crystallization of KBr solutions, Journal of Crystal Growth, 1972, 13/14: 441-444
    [152] Kibalczyc W, Zielenkiewicz A, Calorimetric investigations of calcium phosphate precipitation, Journal of Crystal Growth, 1987, 82: 733-739
    [153] Verdoes D, Kashchiev D, van Rosmalen G M, Determination of nucleation and growth rates from induction time in seeded and unseeded precipitation of calcium carbonate, Journal of Crystal Growth, 1982, 118: 401-413
    [154] Gómez-Morales J, Torrent-Burgués J, Rodríguez-Clemente R, Nucleation of calcium carbonate at different initial pH conditions, Journal of Crystal Growth, 1996, 169: 331-338
    [155] Bao Y, Wang J K,Wang Y L, et al, Study on the Crystallization Mechanism of Spectinomycin Dihydrochlodde, Transactions of Tianjin University, 2003, 9 (3): 165-169
    [156] Davey R J, The role of solvent in crystal growth from solution, Journal of Crystal Growth, 1986, 76: 637
    [157] Davey R J, Solvent effects in crystallization processes, Current Topics in Material Science, 1982, (8): 454-462
    [158] Davey R J, The control of crystal habit, E. J. de Jong and S. J. Jancic, Industrial Crystallization (7th Symposium, Warsaw), Amsterdam, North-Holland: 1979, 169-183
    [159] 王水, 7-氨基头孢烷酸反应结晶过程研究 (博士学位论文), 天津大学, 2005
    [160] Garside J, Industrial crystallization from solution, Chemical Enginneering Science, 1985, 40 (1): 3-26
    [161] Braatz R D, Advanced control of crystallization processes, Annual Reviews in Control, 2002, 26: 87-99
    [162] Kim I, Today's pharmaceutical/biotech challenges: Cutting-edge technology, tight regulations, and a demanding consumer market, Chemical Enginneering Progress, 2002, 98 (3): 12
    [163] Al-Zoubi N, Malamataris S, Effects of initial concentration and seeding procedure on crystallisation of orthorhombic paracetamol from ethanolic solution, International Journal of Pharmaceutics, 2003, 260 (1): 123-135
    [164] Doki N, Kubota N, Sato A, et al., Effect of cooling mode on product crystal size in seeded batch crystallization of potassium alum, Chemical Engineering Journal, 2001, 81 (1-3): 313-316
    [165] Doki N, Kubota N, Yokota M, et al., Determination of critical seed loading ratio for the production of crystals of uni-modal size distribution in batch cooling crystallization of potassium alum, Journal of Chemical Engineering of Japan, 2002, 35 (7): 670-676
    [166] Doki N, Kubota N, Yokota M, et al., Production of sodium chloride crystals of uni-modal size distribution by batch dilution crystallization, Journal of Chemical Engineering of Japan, 2002, 35 (11): 1099-1104
    [167] Doki N, Yokota M, Sasaki S, et al., Size distribution of needle-shape crystals of monosodium L-glutamate obtained by seeded batch cooling crystallization, Journal of Chemical Engineering of Japan, 2004, 37 (3): 436-442
    [168] Donnet M, Bowen P, Jongen N, et al., Use of seeds to control precipitation of calcium carbonate and determination of seed nature, Langmuir, 2005, 21 (1): 100-108
    [169] Kubota N, Doki N, Yokota M, et al., Seeding effect on product crystal size in batch crystallization, Journal of Chemical Engineering of Japan, 2002, 35 (11): 1063-1071
    [170] Kubota N, Doki N, Yokota M, et al., Seeding policy in batch cooling crystallization, Powder Technology, 2001, 121 (1): 31-38
    [171] Lung-Somarriba B L M, Moscosa-Santillan M, Porte C, et al., Effect of seeded surface area on crystal size distribution in glycine batch cooling crystallization: a seeding methodology, Journal of Crystal Growth, 2004, 270 (3-4): 624-632
    [172] 张纲, 王静康, 熊晖, 沉淀结晶过程中的添加晶种技术, 化学世界, 2002, 6: 326-328
    [173] Barrett P, Smith B, Worlitschek J, et al., A review of the use of process analytical technology for the understanding and optimization of production batch crystallization processes, Organic Process Research & Development, 2005, 9: 348-355
    [174] 《化学工程手册》编委会, 化学工程手册 第 19 篇——颗粒及颗粒系统, 北京: 化学工业出版社, 1989. 1-54
    [175] Barrett P, Glennon B, In-line FBRM monitoring of particle size in dilution agitated suspensions, Part. Part. Syst. Charact., 1999, 16: 207-211
    [176] Ruf A, Worklitschek J, Mazzotti M, Modeling and experimental analysis of PSD measurements through FBRM, Particle Particle Systems Characterization, 2000, (17): 167-179
    [177] Sparks R G, Dobbs C L, The use of laser backscattered instrumentation for the online measurement of the particle size distribution of emulsions, Part. Part. Syst. Charact., 1993, 10: 279-289
    [178] Tavare N S, Chivate P J, CSD analysis from a batch dilution crystallizer, Journal of Chemical and Engineering of Japan, 1980, 13 (5): 371-379
    [179] 赵茜, 高大维, 秦贯丰, 提高抗生素溶析结晶产品质量的途径探讨, 中国抗生素杂志, 1997, 22 (4): 268-271

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700