用户名: 密码: 验证码:
纳米复合镀层的制备与性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
纳米复合镀层将纳米颗粒独特的物理及化学性质与金属基体的特性有机的结合在一起,使复合镀层表现出优异的性能。本论文采用电化学复合沉积与化学复合沉积的方法,成功制备了Ni-W/SiC、Ni-W/ZrOB2B、Ni-P/WC纳米复合镀层,对镀层的制备工艺及性能进行了较为系统的研究。Ni-W/SiC纳米复合镀层的硬度高于Ni-W合金镀层的硬度,且随着镀层中纳米颗粒含量的增加而升高。Ni-W/SiC纳米复合镀层的磨损失重低于Ni-W合金镀层,随着镀层中纳米颗粒含量的增加而降低。通过阳极极化曲线、电化学阻抗谱和浸泡实验考察纳米复合镀层在0.5M NaCl溶液中的腐蚀行为,得到一致的结果,发现Ni-W/SiC纳米复合镀层的耐腐蚀性能优于Ni-W合金镀层及Ni-W/SiC微米复合镀层。对Ni-W合金镀层、Ni-W/ ZrOB2B微米复合镀层与Ni-W/ZrOB2B纳米复合镀层进行热重试验发现,纳米复合镀层的氧化增重低于合金镀层,而微米复合镀层的氧化增重却为纳米复合镀层的3倍。DSC测试结果表明,ZrOB2B纳米颗粒的加入使Ni-W/ZrOB2B复合镀层的高温热稳定性较Ni-W合金提高39℃,而微米ZrOB2B颗粒的加入对复合镀层的热稳定性无明显影响。Ni-W/ZrOB2B纳米复合镀层在NaOH溶液中的催化析氢性能优于Ni-W合金镀层,而且随着镀层中ZrOB2B复合量的增加,镀层的催化析氢性能随之提高。Ni-W/ZrOB2B纳米复合镀层在NaOH溶液中的耐蚀性能高于Ni-W合金镀层,而且耐蚀性随着镀层中ZrOB2B纳米颗粒复合量的增大而进一步提高。Ni-P/WC纳米复合镀层在10%NaCl溶液中的耐蚀性能优于Ni-P合金镀层,硬度随着镀层中WC纳米颗粒复合量的增加而增大。在相同载荷下,Ni-P/WC纳米复合镀层的磨损失重与摩擦系数低于Ni-P合金镀层,而且随着镀层中WC纳米颗粒含量的增加,磨损失重与摩擦系数进一步降低。随着载荷增加,Ni-P/WC纳米复合镀层的磨损失重增大,试样经历由轻度磨损向严重磨损的转化。迄今为止,人们普遍认为复合镀层中的SiC、WC微粒被简单地包裹在镀层中,即所谓机械夹杂。本文通过对复合镀层的XPS测试,发现WC、SiC纳米颗粒与周围的基质金属间发生了电荷转移,并形成界面扩散层。即微粒与周围的基质金属间发生了非计量的化学反应。由该化学反应形成的界面扩散层是使纳米复合镀层的耐蚀性能显著提高的主要原因。
Recently, nanocomposite plating technology has received increasing attention in view of the interesting possibilities that the codeposition of the nano-particles with metal phases can bring a remarkable improvement on physical and chemical properties of the coatings. In this thesis, we have investigated the preparation and property of Ni-W/SiC nanocomposite coating, Ni-W/ZrOB2 Bnanocomposite coatings and Ni-P/WC nanocomposite coating. The addition of SiC nano-particles would lead to an increase in hardness of the Ni-W/SiC nanocomposite coatings. The co-deposited SiC nano-particles in deposit increase the wear resistance and reduce the wear weight loss. Moreover, the wear resistance of Ni–W/SiC nanocomposite coatings is closely related with SiC content in deposit. The co-deposition of SiC nano-particles in the composite coatings increased the corrosion resistance. The high temperature oxidation resistance of Ni-W alloy coating, Ni-W/ ZrOB2B nanocomposite coating and Ni-W/ ZrOB2B composite coating is analyzed.The results of thermogravimetry (TG) and differential scanning calorimetry (DSC) show that the addition of ZrOB2B nano-particles can obviously improve the oxidation resistance of the nanocomposite coatings. The hydrogen evolution reaction of Ni–W/ZrOB2B nanocomposite coatings was investigated by the polarization curves and potentiostatic curves. Arrhenius curves of Ni-W/ZrOB2B nanocomposite coating were calculated. The results indicate that the Ni–W/ZrOB2B nanocomposite coatings obtained higher electrochemical activity than Ni-W alloy coating. The hardness of Ni-P/WC nanocomposite coatings increases with the increasing content of the WC nano-particles in the coatings. The Ni-P/WC nanocomposite coating has better corrosion resistance than the Ni-P alloy coating in NaCl solution. Tribological behavior of Ni-P/WC nanocomposite coatings was investigated using a Block-on-Ring test rig; the effect of mass fraction of WC nano-particles on tribological behavior of the composite coatings was examined. The Ni-P/WC nanocomposite coatings revealed a low coefficient of friction compared with the Ni-P alloy coating. Due to the effects of the reinforcement and reduced friction, the wear rate of the nanocomposite coating decreased with increasing mass fraction of WC nano-particles. The valence of Ni, W, P, Si and Zr element in nanocomposite coatings was investigated by using XPS. The result shows that there is chemical interaction among the elements in such nanocomposite coatings. The main possibility of this phenomenon occurrence may result in the large specific surface area and large surface energy of nanoparticles, therefore, the atoms on nano-particles’ surface are apt to interact with the atoms in alloy matrix and chemical shift appears. The chemical interaction between nano-particles and alloy matrix is the main causation that improves the properties of nanocomposite coatings.
引文
[1] Franser J, Mechanism of composite electroplating, Metal Finishing, 1993, 43(6): 97~102
    [2] Guglielmi N, Kinetics of the deposition of inert particles from electrolytic baths, Journal of the Electrochemical Society, 1972,119(8):1009~1012
    [3] S-C Wang,Wen-Cheng J Wei, Kinetics of electroplating process of nano-sized ceramic particle/Ni composite, Materials Chemistry and Physics,2003,78(3):574~580
    [4]王森林,曹学功,镍-金刚石复合电镀的研究, 华侨大学学报: 自然科学版,1998, 19(4):354~357
    [5] Celis J P, Roos J R, Buelens C, Analysis of the electrolytic codeposition of non-brownian particles with a metals, Journal of the Electrochemical Society, 1987, 134(6):1402~1406
    [6] Hayashi Hidetaka, Izumi Shin-ya, Tari Isao, Codeposition of alpha -alumina particles from acid copper sulfate bath, Journal of the Electrochemical Society, 1993,140(2): 362~365
    [7] J. Fransaer, J. P. Celis, J. R. Roos, Analysis of the electrolytic codeposition of non-brownian particles with metals, Journal of the Electrochemical Society, 1992,139(2): 413~425
    [8] S.H. Yeh, C.C.Wan, A study of SiC/Ni composite plating in the Watts bath, Plating and Surface Finishing, 1997, 84(3): 54~58
    [9] Hwang Bingjoe, Hwang Chengsheng, Mechanism of codeposition of silicon carbide with electrolytic cobalt, Journal of the Electrochemical Society, 1993, 140(4): 979~984
    [10] Kim Sun Kyu, Yoo Hong Jae, Formation of bilayer Ni-SiC composite coatings by electrodeposition, Surface and Coatings Technology, 1998, 108-109(1-3):564-569
    [11] A. Kenteposidou, C. Kiparissides,F.Kotzia J et al, Nickel/microcapsules composite electrocoatings: the synthesis of water-containing microcapsules and preparation of the coatings, Journal of Materials Science, 1996, 31(5):1175~1181
    [12]马亚军, 朱张校, 丁莲珍, 镍基纳米AlB2BOB3B粉末复合电刷镀镀层的耐磨性, 清华大学学报: 自然科学版, 2002, 42(4): 498~500,508
    [13] Lidia Benea, Pier Luigi Bonora, Alberto Borello etc, Wear corrosion properties of nano-structured SiC-nickel composite coatings obtained by electroplating, Wear,2002, 249 (10-11): 995~1003
    [14]蒋斌,徐滨士,董世运等, n-Al2O3/Ni复合镀层的组织与滑动磨损性能研究, 材料工程,2002(9): 33~36
    [15]华希俊, 陈嘉真, 金属基-陶瓷电刷镀复合镀层高温摩擦磨损性能研究, 中国机械工程, 1995, 6(2): 51~53
    [16]黄新民, 吴玉程, 郑玉春, 纳米颗粒对复合镀层性能的影响, 兵器材料科学与工程, 1999, 22(6): 11~14
    [17]王为, 郭鹤桐, 纳米复合镀技术, 化学通报, 2003, 66(3): 178~183
    [18]吴化, 李雪松, 刘云旭等, 耐磨Ni-AlB2BOB3B复合镀层组成及性能研究, 表面技术, 2004, 33(6): 28~30
    [19]张伟, 徐滨士, 梁志杰等, 电刷镀含纳米粉复合镀层结构和磨损性能, 装甲兵工程学院院报, 2000, 14(3): 30~33
    [20]程森, 王昆林, 赵高敏, 镍基纳米SiC复合镀层的摩擦学性能, 清华大学学报: 自然科学版, 2002, 42(4): 516~519
    [21]王丽琴, 吴 化, 铁军等, Ni-SiC纳米复合镀工艺及性能研究, 腐蚀科学与防护技术, 2005, 17(4): 230~233
    [22] Gyttou P, Pavlato E A, Spyellis N etc, Hardening modification of nickel matrix composite electrocoatings containing SiC nanoparticles, Electroplating& Surface Treatment, 2001, 9(1):23~28
    [23]徐龙堂, 徐滨士, 马士宁等, 电刷镀含纳米SiC粉复合镀层EPMA分析, 材料工程, 2000, 6: 34~36
    [24]刘彦军, 崔振铎, 朱胜利等, Au/纳米SiC颗粒复合镀层的制备工艺及性能, 功能材料, 2006, 37(2): 301~303,308
    [25]俞世俊, 宋力昕, 黄银松等, 化学镀Ni-P-SiC复合镀层的研究, 无机材料学报, 2004, 19(3): 647~652
    [26]程秀, 揭晓华, 蔡莲淑, Ni-P-SiC(纳米)化学复合镀层的组织与性能, 材料工程, 2006(1): 43~46, 56
    [27]石雷, 周峰, 孙初锋等, Ni-Co-SiC纳米复合镀层的耐蚀性和摩擦学性能, 中国有色金属学报, 2005, 15(4): 536~540
    [28]杨钦鹏, 汤皎宁, 高继华等, Ni-AlB2BOB3B复合镀层的腐蚀摩擦学性能研究, 化学世界, 2004(7): 350~352
    [29]彭元芳, 赵国鹏, 刘建平等, Ni-AlB2BOB3B纳米复合电镀最佳艺条件的确定, 表面技术, 2004, 33(1): 53~55
    [30]徐滨士, 王海斗, 董世运等, 纳米AlB2BOB3B/Ni复合电刷镀层的表征与微动磨损机理, 稀有金属材料与工程, 2004, 33(8): 785~788
    [31]李忠学, 刘军, Ni- AlB2BOB3B复合镀工艺及镀层性能的研究, 材料保护, 2006, 39(1): 25~27, 73
    [32]徐龙堂, 徐滨士, 马世宁等, 电刷镀镍基包纳米AlB2BOB3B粉复合镀层的组织性能, 兵器材料科学与工程, 2000, 23(4): 7~11
    [33]周广宏, 丁红燕, 章跃, Ni-P-Nano-A1B2BOB3B化学复合镀层的磨损机理, 金属热处理, 2004, 29(7):38~40
    [34]陈小华, 张刚, 陈传盛等, 镍磷化学复合镀碳纳米管的摩擦磨损性能研究, 无机材料学报, 2003, 18(6): 1320~1324
    [35] CHEN W X, Tribological application of carbon nanotubes in a meta1 based composite coating and composites, Carbon, 2003, 41:215~222
    [36] W.X. Chen a, J.P. Tu , Z.D. Xu etc, Tribological properties of Ni–P-multi-walled carbon nanotubes electroless composite coating, Materials Letters, 2003, 57: 1256~ 1260
    [37] Z.H. Li, X.Q. Wang, M. Wang etc, Preparation and tribological properties of the carbon nanotubes-Ni-P composite coating, Tribology International, 2006, 39: 953~ 957
    [38]董树荣, 张孝彬, 纳米碳管增强铜基复合材料的滑动磨损特性研究, 摩擦学导报, 1999, 19(1): 1~6
    [39]王新庆, 王淼, 李振华等, 纳米碳管-(Ni-P)复合材料制备及性能, 复合材料学报, 2003, 20(6): 142~146
    [40]王新庆, 李振华, 朱海滨, 纳米碳管对化学复合镀的影响, 微纳电子技术, 2002, 26(3): 26~28
    [41] LEE W H, Effects of direct current pulse-plating on the co-deposition of nickel and nanometer diamond powder, Surface and Coatings Technology, 1999, 607~611
    [42]谢华, 钱匡武, 陈文哲, Ni-P-金刚石化学复合镀层的耐磨性, 机械工程材料, 2002, 26(10): 19~22,25
    [43]张伟, 徐滨士, 梁志杰等, 电刷镀含纳米粉复合镀层结构和磨损性能, 装甲兵工程学院学报, 2000, 14(3): 30~33, 68
    [44] Lee Wun-hsing, Tang Sen-chen, Chung Kung-cheng, Effects of direct currentand pulse-plating on co-deposition of nickel and nanometer diamond powder, Surface and Coatings Technology, 1999, 120-121:607~611
    [45] Yu Jing-ku, Zhao Yu-cheng, Gao Yu-wei et a1, Composite brush-plating Ni-diamond coating, Diamond and Mould, Wear Material(金刚石与磨料磨具工程),2001,2(122):7
    [46]欧忠文, 纳米材料在表面工程中应用的进展研究, 中国表面工程, 2000, (2): 5~8
    [47]黄新民, 谢跃勤, 吴玉程等, (Ni-P)-纳米TiOB2B微粒化学复合镀层的摩擦特性, 电镀与精饰, 2001, 23(5): 1~4
    [48]黄新民, 吴玉程, 谢跃勤等, Ni-P-纳米TiOB2B化学复合镀层, 中国表面工程, 2001, 14(3): 30~32
    [49]薛玉君, 朱荻, 靳广虎等, 电沉积Ni-LaB2BOB3B纳米复合镀层的摩擦磨损性能, 摩擦学学报, 2005, 25(1):1~5
    [50]薛玉君, 段明德, 李济顺等, 纳米和微米LaB2BOB3B颗粒增强镍基复合镀层的摩擦磨损性能,中国机械工程, 2006, 17(3): 311~314
    [51]王文芳, 吴玉程, 郑玉春等, 纳米SiOB2B/Cu复合镀层的制备和组织性能研究, 材料保护, 2004, 37(2):15~16
    [52]徐龙堂, 徐滨士, 马世宁等, 电刷镀镍/镍包纳米AlB2BOB3B颗粒复合镀层微动磨损性能研究,摩擦学学报, 2001, 21(1): 24~27
    [53]郭忠诚, 朱晓云, 杨显万, 电沉积多功能复合材料的研究现状与展望, 云南冶金, 2002, 31(3): 128~137
    [54]Ebdon P R, Composite electroless nickel/PTTE coatings, Surface Engineering, 1987, 3(2): 114~116
    [55]张永忠, 化学镀Ni-P-PTFE的工艺及性能, 功能材料, 1999, 30(1): 23~25
    [56]李卫红, 周细应, 徐洲等, 电刷镀Ni-PTFE纳米复合镀层的摩擦特性研究, 摩擦学学报, 25(6): 520~524
    [57]阎逢元, 张绪寿, 薛群基等, 一种新型的减磨耐磨复合镀层, 材料研究学报, 1994, 8(6): 573~576
    [58]CHEN Xiaohua, XIA Jintong, PENG Jingcui,et a1.Carbon-nanotube metal-matrix composites prepared by electroless plating, Composites Science and Technology, 2000, 60: 301~306
    [59]黄新民, 吴玉程, 郑玉春等, 纳米功能复合涂层, 功能材料, 2000, 31(4): 419~421
    [60]刘颖, 陈家钊, 涂铭旌, ZrOB2B对于Ni-P镀层的抗高温氧化性能影响, 表面技术,1996, 25(5): 7~8
    [61]欧忠文, 纳米材料在表面工程中应用的研究进展, 中国表面工程, 2000, (2): 5~8
    [62]蒋斌, 徐滨士, 董世运等, n-ZrOB2B/Ni复合电刷镀层的微动磨损行为, 摩擦学学报, 2005, 25(6): 515~519
    [63]彭晓, 李铁藩, 李美栓等, Ni-LaB2BOB3B复合镀层对Ni抗高温循环氧化性能的影响, 金属学报, 1996, 32(2): 180~185
    [64]于杰, 刘建平, 赵国鹏等, Ni-SiC纳米复合镀层的耐高温氧化性能, 表面技术, 2004,33(6): 31~33
    [65]谭澄宇, 梁英, 夏长清, Ni/SiOB2B复合电镀层高温氧化性能的研究, 表面技术, 2000, 20(6): 16~19
    [66]Zhang Y, Peng X, Wang F, Development and oxidation at 800℃ of a novel electrodeposited Ni-Cr nanocomposite film, Materials Letters, 2004, 58(6): 1134~ 1138
    [67]黄忠平, 彭晓, 王福会, Cu-30Ni-20Cr纳米复合镀层的高温氧化行为, 金属学报, 2006, 42(3): 290~294
    [68]周月波, 彭晓, 王福会, Ni-28.0mass%Al纳米复合镀层的氧化研究, 腐蚀科学与防护技术, 2005, 17(4): 219~222
    [69]高加强, 刘磊, 沈彬, 纳米AlB2BOB3B粒子增强化学镀Ni-P复合镀层的组织结构, 上海交通大学学报, 2005, 39(2): 265~269
    [70]王健雄, 陈小华, 彭景翠等, 碳纳米管复合镀层材料耐腐蚀性能的初步研究, 腐蚀与防护, 2002, 23(1): 6~9
    [71]林文松, 周细应, 王思珺, 镍/碳纳米管复合镀层在NaCl和HB2BSOB4B溶液中的腐蚀特性, 材料科学与工程学报, 2005, 23(2): 218~220, 229
    [72]张刚, 李绍禄, 陈小华, 碳纳米管/镍基复合镀层的腐蚀行为, 中国有色金属学报, 2003, 13(4): 996~1000
    [73]马美华, 李峰, 李小华等, 镍-磷-锌盐纳米复合化学镀层抗腐蚀性能的研究, 应用化学, 2001, 18 (7): 509~512
    [74]李小华, 马美华, 龙琪, Cu-Sn-P-ZnCrB2BSB4B(CdCrB2BSB4B)纳米复合镀层的性质和组成研究, 材料保护, 2004, 37(4): 20~23
    [75]李小华, 马美华, 孙幼红, Cu-Sn-P-LiMnB2BOB4B纳米复合材料镀层的XPS和AES研究, 无机化学学报, 2003, 19(11): 1191~1196
    [76]彭元芳, 赵国鹏, 刘建平等, Ni-AlB2BOB3B纳米复合电镀工艺条件的研究, 电镀与涂饰, 2003, 22(5): 7~12
    [77]桑付明, 成旦红, 镍/纳米二氧化硅纳米复合镀层耐腐蚀性能的研究, 化学工业与工程技术, 2002, 25(1): 6~9
    [78]桑付明, 成旦红, 袁蓉, 镍基-纳米SiOB2B复合镀层抗腐蚀性能的研究, 材料导报, 2003, 17: 131~134
    [79]薛蒙伟, 李小华, 马美华, Cu-P-SiOB2B(CeOB2B)纳米复合化学镀层制备初探, 化学时刊, 2001(9): 18~21
    [80]骆心怡, 何建平, 朱正吼等, 纳米氧化铈颗粒对电沉积锌层耐蚀性的影响, 材料保护, 2003, 36(1): 1~4
    [81]周苏闽, 王红艳, 一种化学复合镀层的研制及其耐腐蚀性研究, 表面技术, 1999, 28(6): 7~9
    [82]Benea L, Bonora P L, Borello A et a1, Wear corrosion properties of nano- structured SiC-nickel composite coatings obtained by electroplating, Wear, 2001, 249(10-11): 995~1003
    [83]赵芳霞, 罗驹华, 张振忠, Ni-P-纳米TiOB2B复合镀层的耐蚀性研究, 特种铸造及有色合金, 2005, 25(5): 262~264
    [84]熊忠华, 魏锡文, 黄锋等, 化学复合镀Ni-P-TiOB2B光催化降解次甲基蓝, 材料开发与应用, 2002, 17 (1): 11~13
    [85]黄新民, 张胡海, 刘岩, 化学复合镀Ni-P-TiOB2B纳米颗粒涂层功能特性, 应用化学, 2006, 23(3): 264~267
    [86]Hajime Iwasaki, Kenji Higashi, T.G. Nieh, Tensile deformation and microstructure of a nanocrystalline Ni–W alloy produced by electrodeposition, Scripta Materialia, 2004, 50: 395~399
    [87]Nicolae Sulitanu, Structural origin of perpendicular magnetic anisotropy in Ni–W thin films, Journal of Magnetism and Magnetic Materials, 2001, 231: 85~93
    [88]Tohru Yamasaki, High-strength nanocrystalline Ni-W alloys produced by electrodeposition and their embrittlement behaviors during grain growth, Scripta Materialia, 2001, 44: 1497~1502
    [89] P. Choi, T. Al-Kassab, F.Gartner et al, Thermal stability of nanocrystalline nickel-18 at.% tungsten alloy investigated with the tomographic atom probe, Materials Science and Engineering A, 2003, 353: 74~79
    [90]Hongzhi Wang, Suwei Yao, Sowjun Matsumura, Preparation, characterization and the study of the thermal strain in Ni–W gradient deposits with nanostructure, Surface and Coatings Technology, 2002, 157: 166~170
    [91]H. Somekawa, T.G. Nieh, K. Higashi, Instrumented indentation properties ofelectrodeposited Ni–W alloys with different microstructures, Scripta Materialia, 2004, 50: 1361~1365
    [92] 郭鹤桐,张三元,复合镀层,天津大学出版社,1991:392~398
    [93] 王红美, 徐滨士, 马世宁等, 纳米AlB2BOB3B颗粒增强镍基复合镀层的制备及微观力学性能, 材料热处理学报, 2005.26(1):81~85
    [94] 姚素薇,郭鹤桐,曹立礼等,复合镀电触点耐电蚀机理的研究,天津大学学报,1991, 3: 93~97
    [95]车剑飞, 周莉, 马佳郡等,纳米SiC表面接枝修饰的XPS研究,真空科学与技术学报,2005,25(4):252~255
    [96]王宏智, 梯度功能材料的电化学制备、表征及其热应变特性的研究:[博士学位论文],天津;天津大学,2001
    [97]张立德,牟季美,纳米材料和纳米结构,北京:科学出版社,2001.61~63
    [98]涂伟毅, 徐滨士, 董世运等, 纳米二氧化硅对镍电沉积影响及在复合镀层中的化学键合状态, 电刷镀技术, 2005, 3,4: 6~11
    [99]涂伟毅, 徐滨士, 董世运, 纳米陶瓷颗粒的电催化效应及其在复合刷镀层中的化学状态, 无机化学学报, 2005, 21(8): 1137~1142
    [100]杜岩滨,朱立群,刘慧丛等, 含SiOB2B,ZrOB2B微粒复合镀镍层抗高温氧化性能, 北京航空航天大学学报, 2004,30 (10): 1003~1007
    [101]T.C. Wang,R.Z. Chen,W.H. Tuan, Oxidation resistance of Ni-toughened AlB2BOB3B, Journal of the European Ceramic Society. 2003, 23: 927~934
    [102]D.B. Lee, J.H. Ko, S.C. Kwon, High temperature oxidation of Ni–W coatings electroplated on steel, Materials Science and Engineering A, 2004, 380: 73~78
    [103]D.B. Lee, J.H. Ko, S.C. Kwon, Oxidation of Ni–W coatings at 700 and 800 ℃ in air, Surface & Coatings Technology, 2005, 193: 292~296
    [104]G.N.K. Ramesh Bapu, Sobha Jayakrishnan, Oxidation characteristics of electrodeposited nickel–zirconia composites at high temperature, Materials Chemistry and Physics, 2006, 96(2-3): 321~325
    [105]Zhu Xiao-Yun, Xu Rui-Dong, Guo Zhong-Cheng, Studies on high temperature oxidation of electrodeposited RE-Ni-W-P-SiC composite materials, Transactions of Materials and Heat Treatment, 2004,25(5): 1126~1129
    [106]李宁,黎德育,翟淑芳, Ni-P/CaFB2B复合镀层的高温抗氧化及耐磨性能, 材料工程, 2001(3): 25~27
    [107]Yang Xianwan, Guo Zhongcheng, Zheng Yanping, et al, High temperature oxidation of multifunctional electrodeposited RE-Ni-W-P-SiC composite coating,Proceedings of the Second International Conference on Processing Materials for Properties, 2000, 131~134
    [108]彭晓, 唐兆麟, Ni-LaB2BOB3B复合镀层对γ-TiAl抗氧化性能的影响, 金属学报, 1998,34(3): 319~324
    [109]张欢, 郭忠诚, RE-Ni-W-P-SiC脉冲复合镀层的抗高温氧化性能, 材料保护, 2004,37(10): 9~11
    [110]刘建平, 于杰, 胡承刚, Ni-SiC 纳米复合镀层耐高温氧化性能的分析, 电镀与环保, 2005, 25(1): 8~10
    [111]Wu S K ,Chu C L,Yen Y C, Oxidation behavior of equiatomic TiNi alloys in high temperature air environment, Materials Science and Engineering A, 1996, 216 (10): 193~200
    [112]李美栓, 金属的高温腐蚀, 北京:冶金工业出版社,2001. 253~274
    [113]武刚, 李宁, 周德瑞等, 电沉积Co-Ni-AlB2BOB3B复合镀层微观结构及高温性能, 复合材料学报, 2004, 21(2): 8~13
    [114]朱立群,丁学谊,王建华等, 化学镀非晶态镍磷合金镀层抗氧化性性能研究,电镀与精饰,1999,18(3): 22~26
    [115]Yamasaki T, Schlossmacher P, Ehrlich K et al, Formation of amorphous electrodeposited Ni-W alloys and their nanocrystallization, NATO Advanced Study Institute (ASI) on Nanostructured Materials, Aug 1997, 375~388 ,
    [116]Takuya Ohira, Hiroyuki Teramoto, Masato Saito et al, An analysis of the surface of the Ni–W layer of a tungsten film coating cathode, Applied Surface Science, 1999, 146: 47~50
    [117]Birry L, Lasia A, Studies of the hydrogen evolution reaction on Raney nickel-molybdenum electrodes, Journal of Applied Electrochemistry, 2004, 34 (7): 735~749
    [118]Huang L, Yang FZ, Sun SG et al, Studies on structure and electrocatalytic hydrogen evolution of nanocrystalline Ni-Mo-Fe alloy electrodeposit electrodes, Chinese Journal of Chemistry, 2003, 21 (4): 382~386
    [119]Meguro S, Sasaki T, Katagiri H et al, Electrodeposited Ni-Fe-C cathodes for hydrogen evolution, Journal of The Electrochemical Society, 2000, 147 (8): 3003~ 3009
    [120]Qing Han, Kuiren Liu, Jianshe Chen et al, A study on the electrodeposited Ni–S alloys as hydrogen evolution reaction cathodes, International Journal of Hydrogen Energy, 2003, 28: 1207~1212
    [121]Qing Han, Jianshe Chen, Kuiren Liu et al, The heat-treatment of amorphous Ni–S(La) electrode on the hydrogen evolution reaction in an alkaline media, International Journal of Hydrogen Energy, 2004, 29: 597~603
    [122]Hanwei He, Hongjiang Liu, Fang Liu et al, Distribution of sulphur and electrochemical properties of nickel sulphur coatings electrodeposited on the nickel foam as hydrogen evolution reaction cathodes, Materials Letters, 2005, 59, 3968~ 3972
    [123]Y.L. Shi, Z. Yang, M.K. Li et al, Electroplated synthesis of Ni–P–UFD, Ni–P–CNTs, and Ni–P–UFD–CNTs composite coatings as hydrogen evolution electrodes, Materials Chemistry and Physics, 2004, 87: 154~161
    [124]Gang Wu, Ning Li, Chang Song Dai et al, Electrochemical preparation and characteristics of Ni–Co–LaNiB5B composite coatings as electrode materials for hydrogen evolution, Materials Chemistry and Physics, 2004, 83: 307~314
    [125]Losiewicz B, Budniok A, Lasia A et al, Composite Ni-P-TiOB2B electrocoatings for hydrogen evolution reaction in alkaline solutions, Polish Journal of Chemistry, 2004, 78 (9): 1457~1476
    [126]Losiewicz B, Budniok A, Rowinski E et al, Effect of heat-treatment on the mechanism and kinetics of the hydrogen evolution reaction on Ni-P-TiOB2B-Ti electrodes, Journal of Applied Electrochemistry, 2004, 34 (5): 507~516
    [127]武刚, 李宁, 周德瑞, Ni-Co-LaNiB5B复合电极材料在碱性介质中的电催化析氢性能, 无机化学学报, 2003, 19 (7): 739~744
    [128]朱龙章, 陈宇飞, 张庆元,(Ni-Co)-WC复合电极的析氢催化性能, 应用化学, 1999, 16(4): 52~54
    [129]邹勇进,肖作安,费锡明, 电沉积Co-Ni-W 合金电极在碱性溶液中的析氢电催化活性, 稀有金属,2004,28(5): 954~957
    [130]王为,郭鹤桐,高建平等,复合镀层中ZrOB2B微粒对基质Ni晶体结构的影响,应用化学,1997, 14(1): 6~10
    [131]王为,郭鹤桐,高建平等,Ni/ZrOB2B复合镀层中界面轨道相互作用及析氢反应,材料研究学报,1997,11(2): 143~147
    [132]W Wang, H T Guo, J P Gao, XPS, UPS and ESR studies on the interfacial interaction in Ni-ZrOB2B composite plating, Journal of Materials Science, 2000, 35: 1495~1499
    [133]Ezaki H, Morinaga M, Watanabe S et al, Hydrogen overpotential for intermetallic compounds, TiAl, FeAl and NiAl, containing 3d transition metals,Electrochimica Acta, 1994, 39(11-12): 1769-1773
    [134]Amutha K, Shakkthivel P, Sathiyamoorthi R et al, Electroless Ni-P alloy on zincated aluminium substrates from tartrate bath, Bulletin of Electrochemistry, 2006,22(4): 169~175
    [135]Xu J, Xiong WH, Zeng AX, Electroless deposition of Ni-P alloys on cenospheres by using silver as the catalyst, Modern Physics Letters B, 2006, 20 (12): 715~723
    [136]Krishnan KH, Praveen J, Ganesan M et al, Electroless Ni-P-based composite coatings, Materials Performance, 2006, 45 (8): 36~39
    [137]Shi YL, Yang Z, Xu H et al, Preparation of electroplated Ni-P-ultrafine diamond, Ni-P-carbon nanotubes composite coatings and their corrosion properties, Journal of Materials Science, 2004, 39 (18): 5809~5815
    [138]Wu YT, Gao JQ, Shen B et al, Process and properties of electroless Ni-P-PTFE composite coatings, Plating and Surface Finishing, 2005, 92 (8): 38~42
    [139]Liu Y, Zhao Q, Study of PTFE content & anti-corrosion properties of electroless Ni-P-PTFE coatings, Plating and Surface Finishing, 2004, 91 (4): 48~51
    [140]Balaraju JN, Narayanan TSNS, Seshadri SK, Electroless Ni-P composite coatings, Journal of Applied Electrochemistry, 2003, 33 (9): 807~816
    [141]Kong JL, Zhou SQ, Ren Q et al, Study of electroless Ni-P-CNTs composite plating, Chinese Journal of Chemical Physics, 2006,19 (3): 259~264
    [142]Chao TY, Shen GR, Cheng YT, Comparative study of Ni-P-diamond and Ni-P-CNT nanocomposite films, Journal Of The Electrochemical Society, 2006, 153 (1): G98~G104
    [143]Zhao GG, Deng FM, Electroless plating of Ni-P-CNTs composite coating, High-Performance Ceramics III, Pts 1 and 2 Key Engineering Materials, 2005, 280~283: 1445~1448, Part 1~2
    [144]Deng FM, Chen XH, Chen WX,Electroless plating Ni-P matrix composite coating reinforced by carbon nanotubes, Transactions of Nonferrous Metals Society of China, 2004, 14 (4): 681-685
    [145]王振廷, 陈华辉, 碳化钨颗粒增强金属基复合材料涂层组织及其摩擦磨损性能, 摩擦学学报, 2005, 25, (3): 203~206
    [146]邓刚, 宋延沛, 王文焱, WC颗粒增强铁基梯度功能复合耐磨材料研究, 热加工工艺, 2005, 5: 14~16
    [147]尤显卿, 任昊, 郑玉春, 电渣熔铸WC/钢复合材料的磨损性能研究,特种铸造及有色合金, 2003, 6: 19~21
    [148]蔡莲淑,程秀,揭晓华等,Ni-P-SiC(纳米)化学复合镀工艺的研究,表面技术,2003,32(5):38~40,45
    [149]赵芳霞,罗驹华,张振忠等, Ni-P-纳米TiOB2B复合镀层的耐蚀性研究,特种铸造及有色合金, 2005, 25(5): 262~264
    [150] Yating Wu, Bin Shen, Lei Liu et al, The tribological behaviour of electroless Ni–P–Gr–SiC composite, Wear, 2006, 261: 201~207
    [151] M. Ebrahimian-Hosseinabadi, K. Azari-Dorcheh, S.M. Moonir Vaghefi, Wear behavior of electroless Ni–P–BB4BC composite coatings, Wear, 2006, 260:123~127
    [152] T.Z. Zou, J.P. Tu, S.C. Zhang et al, Friction and wear properties of electroless Ni-P-(IF-MoSB2B) composite coatings in humid air and vacuum, Materials Science and Engineering A, 2006, 426: 162~168
    [153]丁雨田,戴雷,尹建军等,铝合金表面Ni-SiC复合镀层的摩擦磨损性能,机械工程学报,2004,40(3):173~177
    [154]陈小华,李德意,李学谦等,碳纳米管增强镍基复合镀层的形貌及摩擦磨损行为研究,摩擦学学报,2002,22(1):6~9
    [155] 陈传盛,陈小华,李学谦等,碳纳米管增强镍磷基复合镀层研究,物理学报,2004,53(2):531~536
    [156]吴玉程, 邓宗钢, 镍磷合金碳化硅复合镀层的制备与磨损性能研究, 稀有金属, 1998,22(4): 254~258
    [157]候峰岩, 王为, 刘家臣等, ZrOB2B纳米颗粒在Ni-ZrOB2B复合镀层中的分散性对镀层结构及性能的影响, 材料工程, 2004, (3): 21~23
    [158]王红美, 蒋斌, 徐滨士等, 纳米SiOB2B颗粒增强镍基复合镀层的组织与微动磨损性能研究, 摩擦学学报, 2005, 25(4): 289~293
    [159]薛玉君, 朱荻, 靳广虎, 电沉积Ni-LaB2BOB3B纳米复合镀层的摩擦磨损性能, 摩擦学学报, 2005, 25(1): 1~6
    [160]薛玉君, 段明德, 李济顺, 纳米和微米LaB2BOB3B颗粒增强镍基复合镀层的摩擦磨损性能,中国机械工程,2006,17(3): 311~314
    [161]莫少波,杨业智,王龙彪等,非晶态Ni基合金电极电子结构的XPS研究,化学物理学报,2000,13(4):487~491
    [162] Asami K, Kimura H. M., Hashimoto K.et al, Characterization of surfaces of amorphous Ni-Fe-P alloys, Journal of Non-Crystalline Solids, 1984, 64(1-2): 149~161

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700