用户名: 密码: 验证码:
对流干燥过程中明胶软胶囊传热传质性能的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
软胶囊作为一种剂型,在药品、食品、化妆品等领域有着广泛的应用发展前景。在软胶囊的干燥过程中,尚有粘连、破裂、能耗大、能源利用不合理等问题,研究对流干燥过程中软胶囊的热质传递性能对降低能耗、提高产品质量、指导生产具有重要的理论意义和实用价值。本文从实验和理论两个角度进行了研究。
     在本研究中,采用有代表性的脉通软胶囊和维E软胶囊为研究对象,以红外热像仪和精密电子天平为主要测试仪器,研究了加热空气温度、风速及相对湿度对软胶囊传热和传质过程的影响。实验结果表明,提高热空气的温度,虽然提高了传热速率,但在第二降速阶段干燥速率下降,当热空气温度超过30℃时,最终湿含量反而偏高;随着热空气风速的提高,传热速率增加,干燥速率在第一降速阶段呈现加快趋势,软胶囊的最终湿含量稍有降低;而热空气相对湿度的变化,对传热过程影响很小,但随着热空气相对湿度的降低,干燥速率提高,最终湿含量明显降低。根据实验结果,本文提出在强化外界干燥条件时,应采用降低空气相对湿度,适当增大热空气速度的方法,而热空气温度不要过于提高,反之,将达不到理想的干燥效果。
     理论研究以扩散理论为基础,建立了对流干燥过程中明胶软胶囊热质传递的耦合模型,随后对该模型采用有限单元法离散并进行了数值模拟。经验证,数值模拟结果与实验数据吻合较好,可以用于预测囊皮为明胶且药液中不含水分的软胶囊在干燥过程中温度和湿含量的分布。数值模拟结果表明软胶囊在干燥过程中温度和湿含量的分布及变化规律是:传热过程中,软胶囊从外向里温度逐渐降低,主要的传热阻力存在于囊皮中;囊皮的湿含量分布呈现不均匀的状态,同一时刻囊皮表层的湿含量最低,囊皮内层的湿含量最高,在干燥的整个过程中,湿含量的分布一直处于这种不均匀的状态,干燥结束后,囊皮表层与内层之间还保持着较大的湿含量差。
     本文研究表明,湿明胶软胶囊是一种难于干燥的物料,在对流干燥的热质传递过程中,质量扩散起控制作用,干燥一定时间后,没有必要继续为软胶囊提供大量的热量,而应该对胶囊进行缓苏,等到内部的湿分向外扩散后,再提供热量,去除湿分,对于年产10亿粒软胶囊的生产规模,预计每年可节约能量约100吨标准煤。
Soft capsule as a drug form prospects well in the field of medicine, food and cosmetics. But there exist many problems such as conglutination, cracking, large energy consumption and unreasonably using energy in its drying process. It is very important to research the properties of heat and mass transfer in soft capsules during convective drying process for cutting down energy consumption and improving the quality of products. The research carried out at the angle of experiment and theory.
     In order to research the drying characteristics of soft gelatin-capsules, the experiment was engaged in the convective drying apparatus and MaiTong soft gelatin-capsules and Vitamin E soft gelatin-capsules were used as the object. The surface temperature of soft gelatin-capsules was measured by an infrared thermal imager and the weight was tested by electronic balance with high accuracy. The results show that with the increase of the air temperature the rate of heat transfer increase, but the drying rate in the second falling rate period decrease and which causes the final moisture content of soft capsules higher when the air temperature is over 30℃;With the increase of the air velocity the heat transfer rate and drying rate in the first falling rate period all increase , the final moisture content of soft capsules slightly drop;The change of the hot air relative humidity influences on heat transfer very small, but the drying rate raises as decreasing the air relative humidity and which leads to the final moisture content of soft capsules obviously drop. According to the experimental results the method of decreasing the air relative humidity, suitable increasing the air velocity and not over increasing the air temperature is presented.
     On the base of diffusion theory the coupled model of heat and mass transfer was established. The equation was simulated by the method of finite element. The simulated results were validated to agree well with the experimental data and can be used to forecast the distribution of temperature and moisture content in the soft gelatin-capsules whose liquid drug don’t contain water. The simulated results indicate that the temperature of the soft capsules decrease gradually from the exterior to interior and the main resistance of heat transfer centralize on the shell of the soft capsules;The distribution of moisture is not uniformly. The moisture content is the highest on the outer surface of shell of soft capsules and is the lowest in the inner surface. After drying the big moisture difference exists between the outer surface and inner surface.
     The paper presents that the wet soft gelatin-capsules are difficult to dry. Heat and mass transfer process is mainly controlled by mass transfer. After a period of drying it is not necessary to continuously provide a great deal of heat but to temper the capsules. After the moisture diffuses from the inner of soft capsules to the outer the hot air need to be provided again. It is estimated that about 100 ton standard coal can be saved for the production scale of 100 million soft capsules per annum.
引文
[1] 中华人民共和国国家药典委员会,《中华人民共和国药典》,北京:化学工业出版社,2000
    [2] 中华人民共和国国家药典委员会,《中华人民共和国药典》,北京:化学工业出版社,2005
    [3]庄越,曹宝成,萧瑞祥,实用药物制剂技术,北京:人民卫生出版社,1999
    [4] 吕小文,吕飞杰,台建祥,付琴,王静. 青稞胚芽油软胶囊的生产工艺研究,食品科技 ,2004,29(6):10~12
    [5] 罗璇,李小芩,杨岳隆等, 复方鱼腥草软胶囊的鉴别和含量测定方法研究中国中药杂志 ,2004,29(7):702~704
    [6] Oppenheim R C. Non-gelatin based capsules. WO:03009832, 2003-02-06
    [7] Gennadios A. Gum acacia substituted soft gelatin capsules. US:6193999,2001-02-27
    [8] Gennadios A . Non-gelatin substitutes for oral delivery capsules, their composition and process of manufacture. US:6214376,2001-04-10
    [9] Laba D.Gambino J. Flexible gelatin free encapsulation material useful for phamaceuticals paint balls and other formulation . US:6210709,2000-09-27
    [10] Cilleland G M. Turner J L. Patton P A. et al. Highly flexible starch-based films.US:6528088,2003-03-04
    [11]]Gill J. Feinberg J. Saquinavir soft gelatin capsule:a comparative safety review. Drug Saf,2001,24(3):223~232
    [12] Baes E A. Scherer R.P. Soft shell capsules. Manuf Chem Aero New,1981, 52(3):33~42
    [13]Curtis J J. Differences in bioavailablity between oral cyclosporine formulations in maintenance renal transplant patients filiation .Am J kidney Dis ,1999,34(5):869~874
    [14] Min D I .Bioavailability and patient acceptance of cyclosporine soft gelatine capsules in renal allograft recipients. Ann Pharmacother,1992,26(2):175~179
    [15] Kovarik J M. Bioequivalence of soft gelatine capsules and oral solution of a new cyclosporine formulation. Pharmacotherapy, 1993,13(6):613~617
    [16] Arnesen J A. Prepartion and characterization of gelatin from the skin of harp seal. Bioresourse Technology,2002,(82),191~194
    [17] 李慧,王一涛,近 10 年软胶囊剂的国内外研究进展,中国中医药信息杂志,2003,10(2):78~80
    [18]崔颖,屠锡德,国外口服软胶囊剂的研究.药学进展,2003,27(6):340~345
    [19] 肖连生 胡旺生,论口服胃溶软胶囊的崩解,天津药学,1995,7(3):4~7
    [20] 墓田透,平野弘之,饭岛昌夫, 软胶囊的贮存温度对崩解时间的影响,药剂学,1981,43(2):120
    [21] 徐莲英,侯世祥,中药制剂工艺技术解析,北京:人民卫生出版社,2003,410
    [22] Kolcak J. Stuchlik M. Robiskova M. Migration of water in soft gelatin capsules. Ceska Slov Fam,2003,52(4):181~185
    [23] George A D. Thomas B G. Vinod P S . Cross-linking of gelatine capsules and it’s revaleance to their invitro-in vivo performance. J Pharm Sci,1994,83(7):915~921
    [24] Hagen P W.Burger D M.Koopmans P P. et al. Saquinavir soft gel capsules (Fortovase) give lower exposure them expected even after a high-fat break fast. Pham WorldSci,2000,24(3):83~86
    [25] Meyer M C. Straughn A B. Mhartre R M. et al. The effect of gelatin cross-linking on the bioequivalence of hard and soft gelatin acetam in ophen capsules. Pham Res.2001,18(5):718~719
    [26] 刘建平,马 旭,翁凌骧.软胶囊崩解迟缓现象机理的初步研究,中国医药工业杂志,2005,36(2):81~83
    [27] Hom F S. veresh S A. Eberl W R. Soft gelatin casulesII: Oxygen permeability study of capsule shell. J Pham Sci, 1975,64: 851~857
    [28] 彭智聪,李芳艳,软胶囊剂有待解决问题的探讨,湖北中医杂志,2004, 26(4): 50~51
    [29] 李少霞,李 海,连晓文,片剂、胶囊型保健食品崩解时限检测,中国卫生检验杂志,2004,14(3):298~299
    [30] Hakata T. Hirano H. Stao H. Effect of desiccating agents on disintegration time of soft gelatin capsules. Yakuzaigaku, 1992, (52): 99~105
    [31] 李加兴,陈双平,秦 轶,加工储存条件对猕猴桃籽油软胶囊崩解时限的影响,吉首大学学报,2006,27(2):111~114
    [32] 初世龙,时玉静,鱼油烯康软胶囊生产中应注意的几个问题,中国药业,2002,11(10):60-60
    [33] 周银龙,软胶丸的生物利用度和崩解,中国药学杂志,1993,28(7):427~430,
    [34] Hom F S.Miskel J J, Oral dossage form design and its influence on dissolution dates for series of drugs. J Pharm Sci, 1970,59(6):827~832
    [35] 李泓,中药软胶囊质量控制及发展方向,中医药学刊,2006,24(6):1144~1144
    [36] 田晓亮,孙晖,王兆俊.软胶丸干燥工艺流程的分析,青岛大学学报,1998,13(3):85~87
    [37] 田晓亮,孙 晖,王兆俊,热泵系统干燥软胶丸的工艺,中国医药工业杂志,1998,29(9):418~419
    [38] 郑俊民,药用高分子材料学,北京:中国医药科技出版社,2002
    [39] 田晓亮,孙 晖,王兆俊,热泵节能系统在软胶丸干燥工艺中的应用,青岛大学学报,1999,14(1):71~73
    [40] 田晓亮,孙 晖,王兆俊,软胶丸干燥机的研究与开发,化工进展,1998,17(6):41~45。
    [41] Patrice T T. Stephanie B. Hatem F.Preparation of redispersible dry nanocapsules by means of spray-drying: Development and characterisation. European Journal of Pharmaceutical Sciences, 2007,30(2):124-135
    [42] Adamiec J. Kalemba D. Analysis of microencapsulation ability of essential oils during spray drying. Drying Technology, 2006,24(9): 1127~1132
    [43] Teixeira M I. Andrade L R. Farina M. et al. Characterization of short chain fatty acid microcapsules produced by spray drying. Materials Science and Engineering C, 2004, 24(5): 653~658
    [44] 田晓亮,孙晖 ,王兆俊等,软胶丸干燥特性的系统分析和研究,青岛大学学报,1997,12(3):59~63
    [45] 施明恒,多孔介质传热传质研究的进展与展望,中国科学基金,1995,(1):29~32
    [46] Luikov AV,Drying Theory,Moscow:Energia,1986
    [47] 林瑞泰,多孔介质传热传质引论,北京:科学出版社,1995
    [48] 潘永康,现代干燥技术,北京:化学工业出版社, 1998
    [49] Abdulagatov I.M, Emirov S.N, et al. Thermal conductivity of fused quartz ceramic at high temperature and high pressure. Journal of Physics and Chemistry of Solids,2000,(61):779~787
    [50] Ravigururajan T S, Bergles A E, Development and verification of general correlations for pressure drop and heat transfer in single_phase turbulent flow in enhanced tubes , Experimental Thermal and Fluid Science,1996,(13):55~70
    [51] Schiffman R F, Microwave and Dielectric Drying ,New Yoke and Basel:Harcel Dekker Inc,1995.345~372
    [52]Tamir A. Impinging-stream reactors,1994,Elsevier science publishers, Amsterdam
    [53] Polat S,Heat and mass transfer in impingment drying, Drying Technology,1993,11(6):1147~1176
    [54] Kudra T, Mujumdar, A S. Novel Drying Technologies,New York and Basel:Marcel Dekker,Inc.1996
    [55] Mujumdar, A S. Research and development in drying: Recent trends and future prospects. Drying Technology, 2004,22 ( 1-2): 1~26
    [56] 潘永康,中国现代干燥技术发展概况,通用机械,2005,(8):42~43
    [57] Ginzburg A S. Present problems and tasks of development of drying science,Drying Technology,1985,3(3):445~457
    [58] 田晓亮 王兆俊,对流干燥领域中几个值得研究和探讨的问题,青岛大学学报,1997,12(4):76~79
    [59] David Reay. Modelling continuous convection dryers for particulate solids-progress and problems, Drying’85,67~74
    [60] Lewis W K. The rate of drying solid materials,IEC,1921,(13):427-432
    [61] Sherwood T K. The drying of solid-1,IEC,1929,(21):12~16
    [62]Sherwood T K. The drying of solid-2,IEC,1929,(21):876~980
    [63] Sherwood T K. The drying of solid-3,IEC,1930,(22):132~136
    [64] Newman A B. The drying of porous solid: diffusion and surface emission equation, Trans AICHE,1931,(27):203~220
    [65] Sherwood T K.Application of the theoritical diffusion equation to the drying of solids, Trans AICHE,1931,(27):190~202
    [66] Ceaglske N H. Hougen O A. Drying granular solids,IEC,1937,(29):805~815
    [67] Hougen O A. Mccauley H J. Marshall W R. Limitation of diffusion equations in drying . Trans AICHE,1940,(36): 183~210
    [68] Henry P S H. Diffusion in absorbing media, Proc R Soc London,1939,(171A):215~241
    [69] Luikov A V. Moisture content gradients in the drying of clay,Trans ceramic Soc,1936,(Xxxv):123~129
    [70] Krischer O. Fundamental law of Moisture movement in drying by capillary flow and vapor diffusion,Z.VDI.1938,(82):373~378
    [71] Gurr C G. Movement of water in soil due to a temperature gradient.Soil Sci,1952,74:335~345
    [72] Phillip J R. De Vries D A.Moisture movement in porous materials under temperature gradients.Transactions of American Geophysics Union, 1957,38(2):222~232
    [73] De Vries D A. Simutaneous transfer of heat and moisture in porous media. Transactions of American Geophysics Union,1958,39(9):909~916
    [74] 卢涛,毛细多孔介质干燥过程中传热传质模型研究及其应用,博士论文,大连理工大学,2003
    [75] Luikov A V. Systems of differential equations of heat and mass transfer in capillary-porous bodies. Int.J.heat Mass Transfer, 1975, 18(1):1~14
    [76] Whitaker S. Simutaneous heat,mass and momentum transfer in porous media:a theory of drying. Advances in Heat Transfer,1977,(13):119~203
    [77] Berger D. Pei D C T. Drying and hygroscopic capillary porous solids:A theoretical approach. Int J Heat Mass Transfer,1973,(16):293~302
    [78] Bruin S. Luyben K C A M.Drying of food materials ,A review of recent development, New Yoke: Hemisphere publishing corp.1980
    [79] Ilic M. Turner I W. Convective drying of a consolidated slab of wet porous material. Int.J.Heat Mass Transfer,1989,32(12):2351~2362
    [80] Wei C K. Davis H T. Adavis E. et al.Heat and Mass transfer in water-laden sandstone:convective heating. AICHE J,1985,(31):1338~1348
    [81] Lei S Y.Wang B X. A practical seepage model for heat and mass transfer in porous media, Proc.of the 6th International Symposium on Transport Phenomena in Thermal Engineering, Seoul KOREA,1993,(1):221~226
    [82] Lei S Y.Wang B X.Lu T J.et al. Investigation of the transient heat and mass transfer process in unsaturated porous media around a buried pipe.ASME94-WA/HT-13,Chicago USA,1994
    [83] 雷树业,卢太金,贾兰庆等,多孔介质传热传质模型与毛细滞后,中国力学学会第三界环境流体力学学术会议论文集,青岛:海洋大学出版社,1994,306~310
    [84] Rogers J A.Kaviany M. Funicular and evaporative-front regimes in convective drying of granular beds. Int.J.Heat Mass Transfer,1992, 35(2):469~480
    [85] 虞维平,王补宣,施明恒,非饱和多孔介质毛细滞后的成因分析,工程热物理论文集,西安:西安交通大学出版社,1990,329~332
    [86] 虞维平,王补宣,施明恒等,多孔介质非饱和渗流的阈梯度理论,工程热物理学报,1992,13(1):74~76
    [87] 虞维平,王补宣,施明恒,考虑毛细滞后效应的未饱和含湿多孔介质传热传质理论,工程热物理论文集,北京,1992:25~30
    [88] Partrick P. Turner I W. A 3-D version of transpore:a comprehensive heat and mass computational model for simulating the drying of porous media. Int.J.Heat Mass Transfer,1999,42(24):401~452
    [89] 蔡亮,虞维平,施明恒,干燥过程中物料收缩特性及其复水特性的实验研究,工程热物理学报,2000,21(6):734~737
    [90] 蔡亮,虞维平,施明恒,生物材料的收缩特性及其对干燥过程的影响,东南大学学报增刊,1998,28(9):7~11
    [91] 施明恒,王馨,快速干燥过程中多孔介质内部湿分迁移机理的研究,工程热物理学报,2000,21(2):216~219
    [92] 王馨,王海,施明恒,虞维平。多孔介质内部超常传质的非斐克效应,应用科学学报,2001,19(3):257~260
    [93] 王馨,王海,施明恒,虞维平。多孔介质内部高强度传热的非傅里叶效应,东南大学学报,1999,29(5):96~99
    [94] 张浙,刘登瀛,超急速传热时球体内非稳态热传导的非傅立叶效应,工程热物理学报,1998,19(5):601~605
    [95] 杨荣贵,雷树业,杜建华,突发高温下多孔介质的热质迁移模拟,清华大学学报,1999,39(6):78~82
    [96] 陈永平,施明恒,基于分形理论的多孔介质渗透率的研究,清华大学学报,2000,40(12):94~97
    [97] 陈永平,施明恒,基于分形理论的多孔介质导热系数研究,工程热物理学报,1999,20(5):608~612
    [98] Datta, A K. Porous media approaches to studying simultaneous heat and mass transfer in food processes. I: Problem formulations . Journal of Food Engineering, 2007,80(1): 80~95
    [99] Datta, A K. Porous media approaches to studying simultaneous heat and mass transfer in food processes. II: Property data and representative results. Journal of Food Engineering, 2007,80(1):96~110
    [100] Sterner D. Sunden B. Skjoldebrand C. Modelling of heat and mass transfer in capillary-porous food products. Computational Engineering, Computational Methods and Experimental Measurements X, 2001, 597~605
    [101] Stakic M T. Evangelos Model-based analysis of convective grain drying processes .Drying Technology, 2005,23(9-11):1895~1908
    [102] Aregba A.W. Nadeau, J.P. Comparison of two non-equilibrium models for static grain deep-bed drying by numerical simulations. Journal of Food Engineering, 2007,78(4): 1174~1187
    [103]Nishiyama,Y. Cao W. Li B M. Grain intermittent drying characteristics analyzed by a simplified model. Journal of Food Engineering, 2006,76(3): 272~279
    [104] Stern T. Anderson W G. High temperature light weight heat pipe panel technology development. American Nuclear Society Embedded Topical Meeting - 2005 Space Nuclear Conference, 2005, 198~202
    [105] Abd El-Baky, Mostafa A. Mohamed, Mousa M. Heat pipe heat exchanger for heat recovery in air conditioning . Applied Thermal Engineering, 2007,27(4):795~801
    [106] Prek M .Thermodynamic analysis of human heat and mass transfer and their impact on thermal comfort. International Journal of Heat and Mass Transfer, 2005,48( 3-4):731~739
    [107]Jiang M. Gebremedhin K G. Albright L D. Numerical simulation of coupled heat and mass transfer through the hair coat. ASAE Annual International Meeting, 2004,4739~4770
    [108] Gebremedhin K G. Wu B X. A model of evaporative cooling of wet skin surface and fur layer. ASAE Annual Intenational Meeting, Technical Papers: Engineering Solutions for a New Century, 2000,2: 4757~4773
    [109] Kolunin V S. Heat and mass transfer in porous media with ice inclusions near the freezing-point. International Journal of Heat and Mass Transfer, 2005,48(6): 1175~1185
    [110] Meszaros C S. Farkas I. Balint A.et al. Modeling of the coupled heat and mass transfer through porous media on the base of the wave approach. Drying Technology, 2004, 22( 1-2): 71~80
    [111] Dantas L B. Orlande H R B. Cotta R M. An inverse problem of parameter estimation for heat and mass transfer in capillary porous media. International Journal of Heat and Mass Transfer, 2003,46(9): 1587~1598
    [112] Manjeet S C. James H Y.A study of diffusion equation descrbing moisture movement in peanut pods-I comparison of vapor and liquid diffusion equations. Transactions of the ASAE,1977,20(5):539~546
    [113]Analia L G. Rita M A. Sergio A G. Wheat drying kinetics:Diffusivities for sphere and ellipsoid by finite elements. Journal of Food Engineering 2002,(52):313~322
    [114] Irudayaraj J. Haghighi K. Stroshine R L.Finite element analysis of drying with application to cereal grains. J.agric.engng.Res., 1992, 37(53):209~229
    [115]Hougen O A. et al. Limitations of diffusion equation in drying .Trans AICHE,1940,36(2):183~206
    [116] Babbit J D. On the differential equations of diffusion .Can J Res Sect A,1950,(18):419~474
    [117] Sherwood T K. Air drying of solids. Trans AICHE,1936,32:150~168
    [118] King C J. Clark J P. Water removal processes: Drying and concentration of foods and other materials. AIChE Symposium Series, 1977,73( 163): 124~130
    [119] Ouelhazi N. Arnaud G. Fohr J P. Two-dimensional study of wood plank drying: The effect of gaseous pressure below boiling point. Transport in Porous Media, 1992, 7(1):39~61
    [120] van der Zanden A J J. Schoenmakers A M E. Kerkhof P J A M. Isothermal vapour and liquid transport inside clay during drying. Drying Technology, 1996,14(10): 2183~2211
    [121] Misra R N. Young J H.Numerical solution of simultaneous moisture diffusion and shrinkage during soybean drying. Transactions of the ASAE,1980,23(5):1277~1282
    [122] Miller E E. Miller R D. Theory of Capillary flow: I.Practical implications. Proc Soil Sci Soc Am,1955,19:267~271
    [123] Miller E E. Miller R D. Theory of Capillary flow: Ⅱ.Experimental information. Proc Soil Sci Soc Am, 1955,19:271~275
    [124] 刘相东,杨彬彬,多孔介质干燥理论的回顾与展望,中国农业大学学报,2005,10(4):81~92
    [125] 丁小明,多孔介质干燥的孔道网络模拟及试验,[硕士学位论文],北京:中国农业大学,2003
    [126] 魏琪,林建海,含湿多孔介质通过研究发现内部热质传递规律的国内外研究概况,四川工业学院学报,1995,14(2):121~124
    [127] Whitaker S.The method of volume averaging. Dordrecht/Boston/London: Kluwer Academic Publishers,1999
    [128] Turner I W. Patrick P. The use of implicit flux limiting schemes in the simulation of the drying process: A new maximum flow sensor applied to phase mobilities. Applied Mathematical Model,2001,25(6):513~540
    [129] Quintard M. Whitaker S. One and two-equation models for transient diffusion processes in two-phase system. Advances in Heat Transfer,1993,23:369~464
    [130]Nowicki S C. Davis H T. Scriven L E. Microscopicde termination of transport parameters in drying porous median. Drying Technology, 1992,10(4):925~946
    [131]Tsimpanogiannis I N. Yortsos Y C. Scaling theory of drying in porous media. The American Phy Soc.1999,59(4):4353~4356
    [132] Tarafdar S. Franz A. Schulzky C. et al. Modelling porous structures by repeated sierpinski carpets .Physica A,2001,(292):1~8
    [133] Perrier E M A. Bird N R A. ,Modelling soil fragmentation:the pore solid fractal approach. Soil and Tillage Research,2002,(64):91~99
    [134] Yu B, Cheng P. A fractal permeability model for dispersed porous media.International Journal of Heat and Mass Transfer,2002, 45:2983~2993
    [135] 吴江航,黄社华,James Glimm等,多尺度科学:面向21世纪的挑战,力学进展,1998,(4):545~551
    [136] Haghighi K. Segerlind L J. Modeling simultaneous heat and mass transfer in an isotropic sphere-A finite element approach.Transactions of the ASAE,1988,31(2):629~637
    [137] Jia C C. Sun D W. Mathematical simulation of temperature and moisture fields within a grain kernel during drying.,Drying Technology,2000,18:(6)1305~1325
    [138] Yang W. Jia C C. Siebenmorgen I J.et al.Intra-kernel moisture responses of rice to drying and tempering treatments by finite element simulation. Transactions of the ASAE,2002,45(4):1037~1044
    [139] Analia L G.Abalone R M.GinerS A. Wheat drying kinetics. Diffusivities for sphere and ellipsoid by finite elements. Journal of Food Engineering,2002,52(4):313~322
    [140] Maria A. Stefano C. Vincenze C. et al. An analysis of transport phenomena occurring during food drying process. Journal of Food Engineering,2007,78(3):922~932
    [141] Roger P W. Niall H. Predicting moisture movement during the drying of concrete floors using finite elements. Construction and Building Materials, 2005,19(9):674~681
    [142] Kristen W Z. Walter H. Helene F. Moisture diffusion in printed circuit boards: Measurements and finite element simulations. Microelectronics Reliability,2005,45(9~11):1662~1667
    [143] Awadalla H S F. Eldib A F. Mohamad M A. et al. Mathematical modeling and experimental verification of wood drying process. Energy Conversion and Management,200445(2):197~207
    [144] Joshia B. Barboura S L. Krauseb A.E. et al. A finite element model for the coupled flow of heat and moisture in soils under atmospheric forcing. Finite Elements in Analysis and Design,1993,15(1):57~68
    [145] Fuller M P.Wisniewski M.The use of infrared thermal imaging in the study of ice nucleation and freezing of plants.J.Thermal.Biol,1998,23(2):81~89
    [146] Jun Yamada.Yasuo Kurosaki.Tomoyuki Morikawa.Radiation emitted from fluidizing particles adjacent to a heated surface in a fluidized bed.Int .J .therm..Sci. 2001,40:104~113
    [147] Wisniewski M. Lindow S E. Aahworth E N. Obersavations of ice nucleation and propagation in plants using infrared video thermography.Pl. Phys,1997,113: 327~346
    [148] Xie Z. Gao K M.Shan G H.Development of the infrared blackbody source of gravity-type heatpipe and study of its characteristics.Proceedings of SPIE, 1990,1311:415~419
    [149] 章熙民,诸凯,李惟毅,应用红外热像技术测试舌面温度的研究,天津大学学报,1991,24(3):20~24
    [150] Jurgen Hartmann. Joachim Fischer.Calibration and investigation of infrared camera systems applying blackbody radiation.Proceedings of SPIE,2001,4360:402~411
    [151] 刘鸿雁,王一平,袁兵等,标定红外热像仪的一种新型黑体辐射源,仪器仪表学报,2006,27(5):533~535
    [152] Ulrich Mester.Peter Winter.New blackbody calibration source for low temperatures from –20 to +350℃.Proceedings of SPIE,2001,4360:372~380
    [153] 黄荣华,红外技术及其在工业生产中的应用,北京:水利电力出版社,1987
    [154] 孔祥谦,有限单元法在传热学中的应用,北京:科学出版社,1986
    [155] 王沫然,MATLAB 与科学计算,北京:电子工业出版社,2004
    [156] 苏金明,张莲花,刘波等,MATLAB 工具箱应用,北京:电子工业出版社, 2004
    [157] Bonazzi C.Ripoche A.Michon C. Moisture diffusion in gelatin slabs by modeling drying kinetics. Drying Technology,1997,15(6-8):2045~2059
    [158] Michel A R.Fethi Z.Paulo D A S. Modelisation principles for drying of gels.Drying Technology,1994,12(6)1245~1262
    [159] 王绍亭,陈涛,动量、热量与质量传递,天津:天津科学技术出版社,1986
    [160] 杨世铭,传热学,北京:高等教育出版社,1980
    [161] 天津大学化工原理教研室,化工原理,天津:天津科学技术出版社,1987
    [162] 杨浩林,玉米内部传热传质的理论分析及其数值模拟,硕士,东北大学,2001

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700