用户名: 密码: 验证码:
加小突片喷口射流增强混合的机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
小突片射流作为一种射流被动控制的有效方法,被广泛用于增强混合、涡轮机叶片气膜冷却以及消除超音速射流啸叫等方面。开展小突片对射流流场影响机理的研究,对于优化小突片结构、数量,从而增强射流流体的混合效果具有重要意义。
     本文综合采用流动显示、双丝热线测量和数值计算三种研究方法,研究加装不同尺寸、不同数目小突片对于射流流场及涡结构的影响。通过综合的研究方法,获得更多的流场变化信息,探索小突片影响流场的机理。
     本文主要研究内容如下:
     1.改造作为射流发生装置的VEB型小型吹入式射流风洞。通过增加阻尼网、蜂窝器和反扭导流片消除轴流风扇叶片影响,从而提高流场品质。设计制造加装不同尺寸、不同数目小突片的射流喷嘴。其中包括按照Zaman给出的最优化小突片结构,加装2、4、6、8个大尺寸小突片的射流喷嘴;以及为了研究小突片个数对射流影响,而自行设计的加装4、8、16、32个小尺寸小突片的射流喷嘴。
     2.采用风洞发烟结合激光片光源的流动显示实验方法,对不同尺寸、不同数目小突片射流的近场横截面进行流场可视化研究。观察了不同尺寸、不同数目小突片产生的流向涡结构。在证实前人工作中得到的流向涡对①的基础上,还得到了由流向涡对①诱导出的反向流向涡对②。同时发现了小突片齿尖位置存在的流向涡对③,以及涡对③随着小突片增多而强度增大的分布规律。
     3.采用双丝热线技术,精细测量了各种小突片湍射流不同流向横断面上各点的瞬态二维速度分量(流向、径向速度信号)。对热线探针测量得到的不同小突片射流平均流场的速度分量、湍流度、周向涡量场等流动参数进行了分析,对比研究了圆射流及加装不同尺寸、不同数目的小突片射流。
     4.选用基于重整化群(Renormalization Group)理论的RNG k-ε湍流模型,利用CFD软件对圆射流和各种小突片射流流场进行数值仿真计算;从而获得完整流场信息。将计算结果与实验测量结果进行对比,通过数值计算真实再现了小突片射流三维流场。结合流动显示,进一步定量研究了流向涡量场,分析不同小突片对流场中流向涡对①②③的影响;结合热线测量结果,研究了各种射流的周向涡量场。发现了周向涡上游的“反向周向涡”结构,以及小突片较多情况下,射流场中的“双排涡结构”。从流向涡结构与周向涡结构角度进一步研究小突片强化混合的机理。
As one of effective methods of passive control jet flow, tabbed nozzle has been widely used in mixing enhancement, turbine blade coolant film insulation and screech elimination at exit of jet flow. Research on the mechanism of tabs’effect on the jet flow field is highly important for the optimization of tab’s configuration, size and number; thereby improve entrainment behavior of the jet fluid with ambient fluid.
     Flow visualization, two-component hot wire anemometry and numerical simulation are combined to investigate the influence of the size and number of tabs on jet flow field and vortex structure generation. Using all these research methods, more information of the flow field has been obtained and further investigations of mechanism of tab’s influence on the jet flow have been carried out.
     Main research work in this paper includes the followings:
     1. The flow field quality of the wind tunnel has been improved by mounting more damped screens, honeycomb and flow deflectors to eliminate the influence of fan blade. Design and manufacture various nozzle mounted tabs with different size and number. It includes 2, 4, 6 and 8-big-size-tabbed nozzle. And also design 4, 8, 16 and 32-small-size-tabbed-nozzle in order to study the effect of the size and number of tabs on jet flow control.
     2. Flow visualizations at different cross sections with different tabbed nozzle are carried out using artificial seeding smoke combined with laser sheet illumination. Longitudinal vortex generated by the tabs with different size and different number has been observed carefully from the flow visualization pictures. No.①longitudinal vortex pair which has been found in previous work is reconfirmed here. Furthermore it has been found that a series of reversed longitudinal vortexes No.②is induced by No.①. And there exists a pair of longitudinal vortexes No.③at the apex of the tab. Vortex No.③gets stronger as tabs get more.
     3. Instantaneous two-component velocity signals at different cross sections with different tabbed jet nozzles are finely measured using hot-wire anemometer. Longitudinal and transverse velocity components at different locations of jet flow are obtained from the output signals of hot-wire anemometer. Mean flow field parameters of tabbed jet flow such as mean velocity, turbulence intensity, azimuthal vortex and flow flux are analyzed and the effects of tabs with different configurations, sizes and numbers have been compared with circular jet flow.
     4. k-εturbulence model based on Renormalization Group theory is introduced in the numerical computation study on the mean flow fields of circular jet and tabbed jets. More abundant information of the flow field has been achieved to be compared with experimental results; numerical results reexhibit the tridimensional circular and tabbed jet flow fields. Numerical computational studies combined with flow visualizations and hot-wire measurements, give a quantitative insight of the effect of longitudinal vortexes in various tabbed jet flows. Together with hot wire measurement results, azimuthal vortex fields of various jet flows have been investigated. It has been found that there exists reversed azimuthal vortex at the upstream of the azimuthal vortex. And as more tabs mounted to the nozzle, there will be the phenomenon of“double-row azimuthal vortex”. Investigations on mechanism of mixing enhancement of tab are carried out from the view of longitudinal vortex and azimuthal vortex generation.
引文
[1] 胡晖,波瓣喷管及小突片强化射流混合研究,[博士学位论文],北京,北京航空航天大学,1996
    [2] L. J. S. Bradshaw & A. H. Khadem, The distortion of a jet by tabs, J Fluid Mech., 1975, 70, 801-813
    [3] K. K. Ahuja, Mixing enhancement and jet noise reduction through tabs plus ejectors, AIAA, 93, 4347
    [4] K. B. M. Q. Zaman, M. F. Reeder & M. Smimy, Supersonic Jet Mixing Enhancement By Delta-Tabs, AIAA, 1992, 3548
    [5] K. B. M. Q. Zaman, M. F. Reeder & M. Smimy, Effect of tabs on the evaluation of an axisymmetrical jet, NASA, 1991, 2263
    [6] D G. Bohl, J. F. Foss, Characteristics of the Velocity and Streamwise Vorticity Fields in a Developing Tabbed Jet, AIAA, 1995, 0102
    [7] K. B. M. Q. Zaman, M. F. Reeder & M. Smimy, Control of an axisymmetric jet using vortex generators, Phys. Fluids, 1994, 6, n.2
    [8] W. J. Gretta C. R. Smith, The Flow Structure and Statistics of a Passive Mixing Tab, J. Fluids Eng., Trans. ASME, 1993, 115, 255-263
    [9] R. Elavarasan, Hui Meng,Flow visualization study of role of coherent structures in a tab wake, Fluid Dynamics Research, 2000, 27, 183-197
    [10] K. B. M. Q. Zaman, Effect of `delta-tabs' on mixing and axis switching in jets from asymmetric nozzles, AIAA, 1994, 0186
    [11] J. K. Foss & K. B. M. Q. Zaman,Large- and small-scale vortical motions in a shear layer perturbed by tabs,J. Fluid Mech., 1999, 382, 307-329
    [12] K. B. M. Q. Zaman, Spreading characteristics of compressible jets from nozzles of various geometries, J. F1uid Mech., 1999, 383, l97-228
    [13] Shucheng Zhang, Steven P. Schneider, MOLECULAR-MIXING MEASUREMENTS AND TURBULENT STRUCTURE VISUALIZATIONS IN A ROUND JET WITH TABS, AIAA, 1994, 3082
    [14] D. G. Bill & J. F. Foss, Enhancement of passive mixing tabs by the addition of secondary tabs, AIAA, 1996, 0545
    [15] Simon C. M. Yu, Y. X. Hou, Near-Field Velocity Measurements of Confined Square Jet with Primary and Secondary Tabs,AIAA, 1998, 36, No.2,February
    [16] S. C. M. Yu, P. K. Koh, Experimental Investigation of Two-stream Mixing Multiple Tabs, AIAA Journal,2001, 39, No.6,June
    [17] D. G. Bohl, J. F. Foss, Near Exit Plane Effects Caused by Primary and Primary-Plus-Secondary Tabs,AIAA Journal, 1999, vol.37, No.2, February
    [18] Dr. Walter, M. Presz, Jr. Dr. Duane McCormic, THRUST AUGMENTATION USING MIXER-EJECTOR-DIFFUSER SYSTEMS, AIAA, 1994, 0020
    [19] M. J. Carletti, C. B. Rogers, D. E. Parekh, Use of Streamwise Vorticity to Increase Mass Entrainment in a Cylindrical Ejector, AIAA Journal, 1995, 33, No.9
    [20] C. B. Rogers, D. E. Parekh, Mixing Enhancement by and Noise Characteristics of Streamwise Vortices in an Air Jet,AIAA Journal, 1994, 32, No 3, March.
    [21] D. R. Reddy, C. J. Stefen Jr, K. B. M. Q. Zaman, Computation of Three-Dimensional Compressible Flow From a Rectangular Nozzle With Delta Tabs, Journal of Engineering for Gas Turbines and Power ,APRIL 1999, 121
    [22] C. E. Grosch, J. M. Seiner, M. Y. Hussaini,and T. L. Jackson,Numerical simulation of mixing enhancement in a hot supersonic jet, Phys. Fluids, 9(4), April 1997.
    [23] 黄勇,郭志辉,魏福清等,“小突片对热射流红外辐射的影响研究”.推进技术.2001.2.
    [24] 黄勇,郭志辉,魏福清,吴寿生,收扩喷管加小突片对尾射流红外辐射的影响.航空动力学报.2001. 1
    [25] 黄勇.吴建航,吴寿生,小突片强化混合研究, 推进技术,1999, 20 (5)
    [26] 黄勇,郭志辉,魏福清,吴寿生,小突片对收敛喷管推力特性的影响研究,北京航空航天大学学报,2001. 12.
    [27] 王广振,吴寿生,王之珊,魏福清,矩形主喷管带小突片的排气引射混合系统的试验研究,航空动力学报,2000.4
    [28] E. J. Gutmark, F. F. Grinstein, Flow Control with Noncircular Jets, Annu Rev. Fluid Mech., 1999, 31, 239-272
    [29] H. K. Tanna, “An experimental study of jet noise, Part Ⅱ: Shock associated noise,” J. Sound Vib. 50, 1997, 429
    [30] 倪 萌,朱惠人,裘云,许都纯,刘松龄,航空发动机涡轮叶片冷却技术综述,燃气轮机技术,2005,18(4),25-33
    [31] D. R. Reddy, K. B. M. Q. Zaman, Computational study of effect of tabs on a jet in a cross flow,Computers & Fluids, 2006, 35, 712-723
    [32] 周光坰,严宗毅,许世雄,章克本,流体力学,北京:高等教育出版社,2000,下册:175~176
    [33] 戴昌晖,流体流动测量,北京:航空工业出版社,1992
    [34] I. Wygnanski, H. Fiedler, Some measure ments in the self-preserving jet, J. Fluid Mech., 1969, 38(3): 577-612
    [35] 张兆顺,湍流,北京:国防工业出版社,2002
    [36] 颜大椿,实验流体力学,北京:高等教育出版社,1992,119~121
    [37] J. Cohen and I. Wygnanski, The evolution of instabilities in the axisymmetric jet. Part2. The flow resulting from the interaction between two waves, J. Fluid Mech. 1987, 176, 221
    [38] 盛森之,徐月亭,袁辉靖,热线热膜流速计,北京:中国科学技术出版社,2003
    [39] 叶旭初,胡道和,SLC-S 分解炉内燃烧、分解的数值模拟研究,硅酸盐学报,1994,22(4):325~326
    [40] 赵蔚琳,李兆峰,FLS 分解炉二维流场的数值模拟计算,工业炉,2002,24(2):45~47
    [41] Muralami S, Mochida A, 3-D numerical simulation of airflow around a cubic model by means of the k -ε model, Journal of Wind Engineering and Industrial Aerodynamics, 1988, 31(1): 327~338
    [42] Muralami S, Mochida A, On turbulent vortex shedding flow past 2D square cylinder predicted by CFD, Journal of Wind Engineering and Industrial Aerodynamics, 1995, 54(3): 191~211
    [43] Yu Dahai, Ashan Kareem, Numerical simulation of flow around rectangular prism, Journal of wind Engineering and Industrial Aerodynamics, 1997, 67(2): 195~208
    [44] Yakhot V, Orzag S A, Renormalization group analysis of turbulence, Journal of Scientific Computing, 1986,1(1): 3~5
    [45] Yakhot C, Orszag S A, Development of turbulence models for shear flows by a double expansion technique, Phys Fluids A, 1992, 4(1): 1510~1515
    [46] Speziale G G, Thangam S, Analysis of an RNG fased turbulence model for separated flows, Int J Engrg Sci, 1992, 30(2): 1379~1384
    [47] 徐江荣,气固两相的湍流模型的研究与煤粉浓淡燃烧器两相流动的数值模拟,[博士论文],浙江:浙江大学,1999
    [48] 王少平,曾扬兵,沈孟育,用 RNG 模型数值模拟 180 度弯管道内的湍流分离流动,力学学报,1996,28(3):257~263
    [49] 马福喜,一个新湍流模式的检验及其应用,水科学进展,1997,8(2):142~147
    [50] 童兵,周本宽,方柱绕流的数值模拟,力学季刊,2002,23(1),77~81
    [51] 蒋莉,王少平,沈孟育,应用 RNG K ?ε湍流模拟 90 度曲槽道内的湍流流动,水动力学研究与进展,1998,13(1):8~13
    [52] 李玲,李玉梁,应用基于 RNG 方法的湍流模型数值模拟钝体扰流的湍流流动,水科学进展,2000,11(4):357~361
    [53] 岑可法,樊建人,工程气固多相流动的理论与计算,浙江:浙江大学出版社,1990:230~232
    [54] 王远成,吴文权,基于 RNG k ?ε湍流模型钝体扰流的数值模拟,上海理工大学学报,2004,26(6):519~523
    [55] Amano R. S., Development of a Turbulence Near-Wall Model and its Application to Separated and Reattached Flows, Number. Heat Transfer, 1984(7): 59~75
    [56] Gupta A.K., Lilley D. G., Flowfield Modelling and Diagnostics, Abacus Press, 1985: 36~39
    [57] Pourahmadi F., Humphrey J. A. C., Prediction of Curved Channel Flow with an Extended K-ε Model of Turbulence, AIAA.J., 1983, 21(10): 1365~1373
    [58] Gambit 2.0, User’s Guide, Fluent Inc
    [59] Shih T.I.-P., Bailey R. T., Algebraic grid generation for complex geometries, Int. J. Mumer. Meth. In Fluids, 1991, 13(1): 1~13
    [60] Thompson J.F., A survey of dynamically-adaptive grids in the numerical solution of partial differential equations, Applied Numerical Mathematics, 1 1985, 1(1): 3~27
    [61] Spekreuse S.P., Elliptic grid generation based on Laplace equation and algebraic transformations, J. of Compu. Phys, 1995, 118(1): 38~61
    [62] Kennichi Matsuno, High-order upwind method for hyperbolic grid generation, Computer & Fluids, 1999, 28(7): 825~851
    [63] Thompson J. F., Composite grid generation code for 3-D regions-the Eagle code, AIAA. J., 1998,26: 271~272
    [64] Steinbrener J.P., Chawner J. R., Multiple block grid generation in the interactive environment, AIAA(paper), 90-1602
    [65] Spragle G.S., McGrory W. R., Comparison of 2-D unstructured grid generation Technique., AIAA (Paper), 90-0726
    [66] 张来平,非结构网格、矩形/非结构混合网格复杂无粘流场的数值模拟,[博士学位论文], 北京:中国空气动力研究和发展中心, 1997
    [67] 王福军,计算流体动力学分析 CFD 软件原理与应用,北京:清华大学出版社,21~22
    [68] 陈汉平,计算流体力学,北京:水利电力出版社,1995,8~11
    [69] 韩占忠,王敬,兰小平,FLUENT:流体工程仿真计算实例与应用,北京:北京理工大学出版社,2004,21~22
    [70] FLUENT 6.1, User Guide, Fluent Inc.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700