用户名: 密码: 验证码:
近红外无创血液成分测量—动态光谱检测理论及信号提取方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
血液中各种化学物质的成分,是临床诊断中常用的重要生理指标。采用近红外光谱法进行无创血液成分检测已经成为生物医学工程领域的研究热点之一。本文将差分光谱概念引入近红外光谱无创人体成分检测技术中,力图解决个体差异以及某些测量条件对检测结果的影响。对利用循环系统中血液的脉动特性采集动脉血液差分光谱的动态光谱检测技术进行了深入的研究,完善了动态光谱信号提取方式,并对动态光谱检测的两个主要干扰因素——接触压力以及散射影响进行了研究。
     对混浊介质中的透射差分光谱进行了研究。结果显示,只要在检测过程中维持组织初始厚度不变,并获得差分前后的组织厚度变化量。差分光谱由组织光学参数决定,而后者反映了组织成分的浓度信息。文中给出了三种可应用于人体组织成分检测的差分光谱检测方式,其中最为典型的为利用人体血液的脉动现象,从多波长光电容积脉搏波中提取动脉血液差分光谱的动态光谱检测。
     根据动态光谱的定义,给出了三种动态光谱检测方法。提出在多波长动态光谱检测中存在相移波形误差,并基于误差分析结果,对动态光谱信号检测和提取技术中的检测频率、信号截取位置、信号截取长度等进行了多方面的研究。
     提出基于多波长动态光谱幅值比的奇异值剔除方法,该方法更适合于在含有基线波动的光电容积脉搏波中,可以很好地区别由于基线漂移引起脉搏波绝对幅值的变化,和基于由于单一光谱幅值异动产生的奇异点。
     通过实验方法,测定了接触压力的改变对光电容积脉搏波交流分量、直流分量、各波长交流分量比值等特征参数的影响。结果显示,接触压力对光电容积脉搏波的直流分量、交流分量均有明显的影响,但对各波长交流分量间的比值,即归一化动态光谱的影响很小。
     分别研究了薄层脉动动脉血液层以及各层静态组织的散射作用对动态光谱检测结果的影响。结果显示静态组织对动态光谱检测有一定的影响,且脉动动脉血液中的等效光程长具有一定的波长特性,这些因素在检测中必须予以考虑。
     动态光谱为近红外光谱技术在无创人体成分检测技术中提供了一个全新的思路,具有广阔的发展前景。本文的研究成果为该方法的成功实施奠定了理论和实验基础。
The various chemical components present in human body carry important information about health status. Such chemical information also serves as an important indicator to a number of clinical diagnostics and therapeutic effects. Near-infrared spectroscopy receives global attention as a principal non-invasive diagnostic means. But there is still a long way to go for clinic application, because the near infrared (NIR) spectrum technology is disturbed by many factors, and the precision of the final result is restricted. The difference detect method is employed to the non-invasive blood component concentration sensing in this paper, trying to eliminate the influence of the skin and other tissues. Dynamic Spectrum (DS) which obtain the difference spectrum of artery blood from the pulse wave of blood is focused on in this paper.
     Firstly, the transmittance difference spectrum is studied. Results show that when the basic thickness of tissues and the additional thickness of the interested tissue are known, the difference spectrum is a function of the optical parameters of the tissues, and the latter is relative with the component concentration of the tissues. Three kinds of application of difference spectrum in the non-invasive sensor are proposed in this paper including the DS.
     Based on the definition of DS, three kinds of dynamic spectroscopy system are described. The phase shift error of the dynamic spectrum among different pulse wave is discussed. The detect frequency, data intercept position and the data length are studied to perfect the DS data processing.
     A new method to detect outliers of DS is proposed. This method can distinguish the base line wave of the pulse waves and the abnormity change of signal pulse wave, and is fit for the DS abstract.
     The influence of contact force is studied by experiment. Result shows that the contact force between the photoplethysmographic sensor and the measurement site influenced the photoplethysmographic signal recorded on the fingertip from young healthy subjects, but it has little influence on the rate between the normalized DS.
     Based on the Monte Carlo simulation, the influence of scatter in the DS detect is researched. The simulation model of signal layer blood and multilayer tissue of finger tip are founded. The normal thickness of blood layer in the models is searched by Monte Carlo simulation based on the statistical result of pulse signal. Results of the simulations show that the absolute magnitudes and relative differences in path-length factors is a function of wavelength, and the signal of DS is relative with the basic thickness of the stable tissues. The first one can be minified evidently by using the subsection equivalent path-length, and the second one indicates that the DS must be normalized before it is used.
     The dynamic spectrum method proposed a new idea to the NIR non-invasive detection. It has great value in this field. Theory and experimental results disclosed by this dissertation laid solid basis for the successful application of this method.
引文
[1] Khalil O. S., Non-invasive glucose measurement technologies: An update from 1999 to the dawn of the new millennium, Diabetes Technology & Therapeutics, 6(5): 660~697
    [2] Khalil O. S., Spectroscopic and clinical aspects of noninvasive glucose measurements, Clinical Chemistry, 1999, 45(2): 165~177
    [3] Malin S. F., Ruchti T. L., Blank T. B., et al., Noninvasive Prediction of Glucose by Near-Infrared Diffuse Reflectance Spectroscopy, Clinical Chemistry, 1999, 45(9): 1651~1658
    [4] Gabriely I., Wozniak R., Mevorach M., et al., Transcutaneous glucose measure- ment using near-infrared spectroscopy during hypoglycemia, Diabetes Care, 22(12): 2026~2032
    [5] Kohl M., Cope M., Essenpreis M., et al., Influence of glucose-concentration on light-scattering in tissue-simulating phantoms, Optics Letters, 1994, 19(24): 2170~2172
    [6] Maier J. S., Walker S. A., Fantini S., et al., Possible correlation between blood glucose concentration and the reduced scattering coefficient of tissues in the near infrared, Optics Letters, 1994, 19(24): 2062~2064
    [7] Berger A. J., Itzkan I., and Feld M. S., Feasibility of measuring blood glucose concentration by near-infrared Raman spectroscopy, Spectrochimica Acta. Part A, Molecular and Biomolecular Spectroscopy, 1997, 53A(2): 287~292
    [8] Berger A. J., Koo T. W., Itzkan I., et al., Multicomponent blood analysis by near-infrared Raman spectroscopy, Applied Optics, 1999, 38(13): 2916~2926
    [9] A. Berger, Y. Wang, M. Feld, Rapid, non-invasive concentration measurements of aqueous biological analyses by near infrared Raman spectroscopy, Applied Optics, 1996, 35: 209~212
    [10] Y. Xu, J. F. Ford, C. K. Mann, et al., Raman measurement of glucose in bioreactor materials, Proceedings of SPIE, 1997, 2976: 10~19
    [11] J. S. Kanger, d. M. f. F.M., C. Otto, Non-invasive detection of glucose using Raman spectroscopy, Proceedings of SPIE, 1999, 3570: 123~129
    [12] Cote G. L., Fox M. D., and Northrop R. B., Noninvasive optical polarimetric glucose sensing using a true phase measurement technique, IEEE Transactions on Biomedical Engineering, 1992, 39(7): 752~756
    [13] Russell R. J., Pishko M. V., Gefrides C. C., et al., A fluorescence-based glucose biosensor using concanavalin A and dextran encapsulated in a poly(ethylene glycol) hydrogel, Analytical Chemistry, 1999, 71(15): 3126~3132
    [14] A. Duncan, J. Hannigan, S. S. Freeborn, et al., Portable non-invasive blood glucose monitor, International Conference on Solid-State Sensors and Actuators, and Eurosensors IX, Proceedings 2, 1995: 455~458
    [15] A. A. Bednov, A. A. Karabutov, E. V. Savateeva, et al., Monitoring glucose in vivo by measuring laser-induced acoustic profiles, Proceedings of SPIE, 2000, 3916: 9~18
    [16] Z. M. Zhao, R. A. Myllylae, Photoacoustic determination of glucose concentra- tion in whole blood by a near-infrared laser diode, 2001, 4256: 77~83
    [17] Z. M. Zhao, Pulsed photoacoustic techniques and glucose determination in human blood and tissue, Ph.D thesis, University of Oulu, May, 2002
    [18] J. T. Bruulsema, J. E. Hayward, T. J. Farrell, et al., Correlation between blood glucose concentration in diabetics and nonivasively measured tissue optical scattering coefficient, Optics Letters, 1997, 22(3): 190~192
    [19] Caduff A., Hirt E., Feldman Y., et al. First human experiments with a novel non-invasive, non-optical continuous glucose monitoring system, Biosensors & Bioelectronics, 2003, 19(3): 209~217
    [20] Herschel W., Investigation of the Powers of the prismatic Colours to heat and illuminate Objects; with Remarks that prove the different Refrangibility of radiant Heat. To which is added an Inquiry into the Method of viewing the Sun advantageously with Telescopes of large Apertures and high magnifying Powers, Philosophical Transactions, 1800, 90: 255~83
    [21] Herschel W.,Experiments on the refrangibility of the invisible rays of the sun, Philosophical Transactions, 1800, 90: 284~293
    [22] Abney W., Festing, E. R., On the influence of the atomic grouping in the molecules of organic bodies on their absorption in the infra-red region of the spectrum, Philosophical Transactions, 1881, 172: 887
    [23] F. S. Brackett, Proc. Natl. Acad. Sci., 1928, 14: 857
    [24] W. Kaye, Theory and principles of near infrared spectroscopy, Spectrochim Acta, 1955, 7: 181
    [25] Ben-Gera I., K. H. Norris, Direct spectrophotometric determination of fat and moisture in meat products, Journal Food Science, 1968, 33: 64
    [26] N. Kaiser, Method for determining the contents of metabolic products in the blood, USP 4169676, 1979
    [27] C. Dahne, D. Gross, Spectrophotometric method and apparatus for the non-invasive, USP 4655225, 1987
    [28] G. L. Coté, Noninvasive optical glucose sensing - An overview, Journal of Clinical Engineering, 1997, 22(4): 253~259
    [29] R. W. Waynant, V. M. Chenault, Overview of non-invasive fluid glucose measurement using optical techniques to maintain glucose control in diabetes mellitus, LEOS Newsletter, 1998, 4: 3~6
    [30] R. J. McNichols, G. L. Coté, Optical glucose sensing in biological fluid: an overview, Journal of Biomedical Optics, 2000, 5(1): 5~16
    [31] M. Cope, P. Van der Zee, M. Essenpreis, S. R. Arridge, and D. T. Delpy, Methods of uantitating near-infrared spectroscopy data, Pro.SPIE, 1991, 1431: 107~126
    [32] O. Hazeki and M. Tamura, Quantitative analysis of hemoglobin state of rat brain by ear-infrared spectroscopy, J.Biochem, 1988, 103: 796~802
    [33] C.A.Piantadosi, Methods Toxicol, 1993, 2: 107~26
    [34] A. Seiyama, O. Haxeki, and M. Tamura, Noninvasive quantitative analysis of blood xygenation in rat skeletal muscle, J. Biochem, 1988, 103: 419~24
    [35] K. Yamamoto, M. Niwayama, L. Lin, T. Shiga, N. Kudo, and K. Shimizu, Influence of ubcutaneous fat layer on muscle oxygenation measurement using NIRS, Selected Proceedings from International Symposium on Non-invasive Ppticsl Diagnosis, 1996: 7~45
    [36] Robinsin M. R., Eaton R. P., Haaland D. M., et al., Noninvasive glucose monitoring in diabetic patients: a preliminary evaluation, Clin.Chem., 1992, 38: 1618~1622
    [37] Schrader. Wolfgang, Meuer. Petra, Popp. Jürgen, et.al., Non-invasive glucose determination in the human eye, Journal of Molecular Structure, 2005, 735-736: 299~306
    [38] Burmeister J. J., Arnold M. A., Small G. W., Noninvasive blood glucose measurements by near infrared transmission spectroscopy across human tongues, Diabetes technology & therapeutics, 2000, 2: 5~16
    [39] K. Murayama, K. Yamada, R. Tsenkova, et al.,Near-infrared spectra of serum albumin and g-globulin and determination of their concentrations in phosphate buffer solutions by partial least squares regression, Vibrational Spectroscopy, 1998, 18: 33~40
    [40] Shun-Li Wang, Yen-Shan Wei, Shan-Yang Lin,Subtractive similarity method used to study the infrared spectra of proteins in queous solution, Vibrational Spectroscopy, 2003, 31: 313~319
    [41] Gérard Déléris, Cyril Petibois, Applications of FT-IR spectrometry to plasma contents analysis and monitoring, Vibrational Spectroscopy, 2003, 32: 129~136
    [42] Mcshane J Michael, Cote L Gerard, Appl. Spectrosc., 1998, 52(8): 1073~1076
    [43] 黄岚,丁海曙,王广志,用近红外漫反射光谱无损检测血糖的初步研究,光谱学与光谱分析,2002, 22(3): 387~391
    [44] 许棠,张春平,王新宇等,用 CCD 测量生物组织的漫反射率和透射率,光谱学与光谱分析,2004, 24(4): 392~395
    [45] 余江胜,骆清铭,阮玉,时间分辨技术测量高散射介质光学参量, 光子学报, 2003, 32(7): 860~863
    [46] 余江胜,骆清铭,阮玉,新型门控光子计数法测量高散射介质的光学参量,光学学报, 2003, 23(10): 1269~1272
    [47] 王峰,李炜,林方等,用近红外光谱技术实现生物组织含氧量的无损检测,清华大学学报自然科学版,1999, 39(7): 6~19
    [48] 崔厚欣,徐可欣,陈民森,安林,人体血糖浓度近红外光谱无创检测过程中温度对结果的影响,光谱学与光谱分析,2006, 26(5): 828~841
    [49] 赵军,丁海曙,腾轶超,频域近红外光谱方法定量测量组织氧饱和度,光子学报,2005, 34(3): 386~389
    [50] 蒋景英,人体内成份无创光谱检测中测量条件的研究,[博士学位论文],天津:天津大学,2002
    [51] 刘方,骆清铭,李鹏程,基于 RF 无线数据传输技术的近红外血氧监测仪的研制,中国医疗器械杂志,2003, 27(3): 162~165
    [52] H. Koizumi, Y. Yamashita, A. Maki, et al., Higher-Order Brain Function Analysis by Trans-Cranial Dynamic Near-Infrared Spectroscopy Imaging, Journal of Biomedical Optics, 1999, 4(4): 403~413
    [53] C. W. Yoxall, A. M. Weindling, Measurement of peripheral venous oxyhaemoglobin saturation by near infra red spectroscopy and venous occlusion, Early Human Development, 1995, 41(3): 231
    [54] I. Vályi-Nagy, K. J. Kaffka, J. M. Jákó, et al., Application of near infrared spectroscopy to the determination of haemoglobin, Clinica Chimica Acta, 1997, 264(1): 117~125
    [55] 王强,无创伤红外光谱脑血氧监测仪,国外医学,1998, 21(1): 19~26
    [56] J. Tong, M. Meurens, H. Noel, Near Infrared Spectroscopy: The Future Waves, NIR Publications, 1996, 334
    [57] M. Kathlen, Near Infrared Spectroscopy: The Future Waves, NIR Publications, 1996, 328~333
    [58] O. S. Khalil., Non-Invasive Glucose Measurement Technologies: An Update from 1999 to the Dawn of the New Millennium, Diabetes technology & therapeutics, 2004, 6(5): 660~697
    [59] 郭硕鸿等,电动力学,北京:人民出版社,1979, 119~142
    [60] 张汉辉,郑威,波谱学,厦门:厦门大学出版社,1998, 1~56
    [61] 吴瑾光等,近代傅里叶变换红外光谱技术及应用(上卷),北京:科学技术文献出版社,1994, 253~255,686~687
    [62] 王惠文,偏最小二乘回归方法及其应用,北京:国防工业出版社,2000
    [63] H. M. Heise, Glucose, In Vivo Assay of, Encyclopedia of Analytical Chemistry, 2000
    [64] L. Ryzhik, G. Papanicolaou and J. B. Keller, Transport equations for elastic and other waves in random media, Wave Motion, 1999, 24: 327~370
    [65] B. Chance and R. R. Alfano, Opticaltomography and spectroscopy of tissue: theory, Proc. SPIE, 1997, 2979: 428~437
    [66] J. A. Izatt, M. D. Kulkarni, S. Yazdanfar, et al., In vivo bidirectional doppler flow imaging of picoliter blood volumes using optical coherence tomography, Optics letters, 1997, 22(18): 1439~1441
    [67] M. S. Patterson, B. Chance and B. C. Wilson. Time resolved reflectance and transmittance for the non-invasive measurement of tissue optical properties, Applied Optics, 1989, 28(12): 1331~2336.
    [68] D. T. Delpy,M. Cope,P. van der Zee,S. Arridge,S. Wray and J. Wyatt,Estimation of optical pathlength through tissue from direct time-of-flight measurements, Physics in medicine and biology, 1988, 33: 1433~1442
    [69] I. S. Gradsteyn and I. M. Ryzhik,Table of Integrals, Series and Products (Academic, New York), 1980: 340
    [70] 王景阳,现代麻醉机.呼吸机.检测仪的基本原理,北京:人民出版社,2001.5, 56~64
    [71] Hertzman A. B. and Spielman C. R.,Observations on the finger volume pulse recorded photoelectrically, American Journal of Physiology, 1937, 119: 334~335
    [72] A. B. Hertzman, The blood supply of various skin areas as estimated by the photoelectric plethysmograph, American Journal of Physiology, 1938, 124(2): 328~340
    [73] Spigulis J., Venckus G. and OzolsM., Optical sensing for early cardiovascular diagnostics, Proc. SPIE, 2000, 3911: 27~31
    [74] Eldrup-Jorgensen S., Schwartz S. I. and Wallace J. D.,A method for clinical evaluation of peripheral circulation: photoelectric hemodensitometry, Surgery, 1966, 59: 505~513
    [75] Barschdorff D. and Zhang W., Respiratory rhythm detection with photoplethysmographic methods, Engineering in Medicine and Biology Society: Proc. 16th Ann. Int. Conf. of the IEEE, 1994: 912~913
    [76] Nakajima K., Tamura T and Miike H, Monitoring of heart and respiratory rates by photoplethysmography using a digital filtering technique, Med. Eng. Phys., 1996, 18: 365~372
    [77] Johansson A. and Oberg P. A., Estimation of respiratory volumes from the photoplethysmographic signal: part I. Experimental results, Medical & biological engineering & computing, 1999, 37: 42~47
    [78] Nilsson L., Johansson A. and Kalman S., Respiratory variations in the reflection mode photoplethysmographic signal. Relationships to peripheral venous pressure, Medical & biological engineering & computing, 2003, 41: 249~254
    [79] López-Beltrán E. A.,Blackshear P. L.,Finkelstein S. M. and Cohn J. N.,Noninvasive studies of peripheral vascular compliance using a non-occluding photoplethysmographic method, Medical & biological engineering & computing, 1998, 36: 748~53
    [80] Penaz J., HonzikovaNand Jurak P., Vibration plethysmography: a method for studying the visco-elastic properties of finger arteries, Medical & biological engineering & computing, 1997, 35: 633~637
    [81] Weinman J. and Sapoznikov D., Equipment for continuous measurements of pulse wave velocity, Medical & biological engineering, 1971, 9: 125~138
    [82] Sapoznikov D., Weinman J. and Eliakim M., Left ventricular preejection period and pulse wave velocity during complete heart block and artificial pacing in man, European journal of cardiology, 1974, 1: 447~157
    [83] Loukogeorgakis S., Dawson R., Phillips N., Martyn C N and Greenwald S E, Validation of a device to measure arterial pulse wave velocity by a photoplethysmographic method, Physiol. Meas., 2002, 23: 581~596
    [84] Webster J. G., Design of Pulse Oximeters, Bristol: Institute of Physics Publishing, 1997
    [85] Davis D.L and Baker C. N., Comparison of changes in blood volume and opacity in dog digital pad and tongue, Journal of applied physiology., 1969, 27: 613~618
    [86] Inukai H. and Ogura T., Blood pressure monitor apparatus, 5,776,071, US patent, 1998
    [87] J. Lass, K. Meigas, D. Karai, et al., in Proceedings of the 26th Annual International Conference of the IEEE EMBS, 2004, 2239~2242
    [88] 刘晓风,测振式自动血压测量中的一种脉搏波检测方法,中国医疗器械杂志,1990, 14(2): 73~77
    [89] X. Zhang, M. Fatemi, J. F. Greenleaf, Frequency dispersion of wave velocity in arterial vessels, Biomedical Imaging: Macro to Nano, 2004. IEEE International Symposium on, 2004: 1347~1350
    [90] E. J. Rue, R. K. Wang, Y. Wickramasinghe, A new four channel continuous wave near infrared spectroscopy device for regional cerebral oxygenation monitoring, Proceedings of the SPIE - The International Society for Optical Engineering, 2000, 3911: 218~229
    [91] J. Allen, J. R. Frame, A. Murray, Microvascular blood flow and skin temperature changes in the fingers following a deep inspiratory gasp, Physiological Measurement, 2002, 23: 365~373
    [92] 陈敏莲,何平,吴雄文等,基于 Windows 平台的多生理参数网络监护系统,2000, 24(2): 73~77,81
    [93] Challoner A. V. J.,Noninvasive Physiological Measurements, 1 ed P Rolfe(London: Academic): 1979, 125~151
    [94] 李庆波,徐可欣,倪勇等,声光可调谐滤光器分光系统光学特性的研究,中国激光,2003, 30: 329~333
    [95] M. Kohl, M. Essenpreis, M. Cope, The influence of glucose concentration upon the transport of light in tissure-simulating phantoms, Phys. Med. Biol., 1994, 40: 1267~1287
    [96] 戴逸松,测量低信噪比电压的数字相敏解调算法及性能分析,计量学报,1996, 18(2): 126~132
    [97] 朱虹,林君,吴忠杰等,近红外光谱仪中的数字锁相技术研究,仪器仪表学报,2006, 27(10): 1258~1261
    [98] G. J. Gerritsma, W. J. Weezep, e. a. J.A. Overweg, An on-line digital phase sensitive detector in the 2mHz~2kHz, Phys E: Sci Instrum, 1983, 16: 270~277
    [99] A. Babchenko, E. Davidson, Y. Ginosar, et al., Photoplethysmographic measurement of changes in total and pulsatile tissue blood volume, following sympathetic blockade, Physiological Measurement, 2001, 22: 389~396
    [100] 张虹,孙卫新,金捷,脉搏血氧仪中光电容积脉搏波的软件检出方法,第四军医大学学报,2001, 22(1): 94~95
    [101] 杨福生,小波变换的工程分析与应用,北京:科学出版社,1999
    [102] 李建平,小波分析与信号处理-理论、应用及软件实现,重庆:重庆出版社,1997
    [103] 飞思科技产品研发中心,小波分析理论与 MATLAB 7 实现,北京:电子工业出版社,2005
    [104] I. Daubechies, The wavelet transform, time-frequency localization and signal, IEEE Trans, 1990, IT-36(5): 961~1005
    [105] S. Mallat, Multiresolution approximation and wavelet orthonormal bases of L 2, Trans Amer Math Soc, 1989, 315: 69~87
    [106] S. Mallet, A theory for multiresolution signal decomposition, the wavelet representation, IEEE Trans, 1989, 1989 On PAMI-11(7): 674~693
    [107] 胡昌华,张军波,夏军等,基于 MATLAB 的系统分析与设计-小波分析,西安:西安电子科技大学出版社,1999
    [108] 李水根,吴纪桃,分形与小波,北京:科学出版社,2002, 208~318
    [109] Nieveen J., van der Slikke L. B. and ReichertWJ., Photoelectric plethysmography using reflection light, Cardiologia, 1956, 29: 160
    [110] de Pater I. W., van den Berg A. A. and Bueno A. A., A very sensitive photoplethysmography using scattered light and a photo-sensitive resistance, Acta Physiol. Pharmacol. Neerl., 1962, 10: 10378~10390
    [111] Driscoll M. D., Arnold J. M., Marchiori G. E., Harker L. A. and Sherebrin M. H., Determination of appropriate recording force for non-invasive measurement of arterial pressure pulses, Clinical science, 1997, 92: 559~566
    [112] Driscoll M. D., Arnold J. M. and Sherebrin M. H., Applied recording force and noninvasive arterial pulses, Clinical and investigative medicine, 1995, 18: 370~379
    [113] Elsner P., Berardesca E., Wilhelm K. P., et al., eds., Bioengineering of the skin: skin biomechanics, CRC Press, Boca Raton, London, New York, Washington D.C.: 2002
    [114] 章燕程,杨美林,高英茂等, 组织学与胚胎学, 北京:中国医药科技出版社,1989
    [115] X. F. Teng and Y. T. Zhang, The effect of contacting force on photoplethysmographic signals, Physiological Measurement, 2004, 25: 1323~1335
    [116] Allen J. and Murray A., Variability of photoplethysmography peripheral pulse measurements at the ears, thumbs and toes, IEE Proc. Sci. Meas. Technol., 2000, 147: 403~407
    [117] Webster J. G., Medical Instrumentation: Application and Design 3rd edn, New York: Wiley, 1998
    [118] Yamakoshi K., Shimazu H. and Togawa T., Indirect measurement of instantaneous arterial blood pressure in the human finger by the vascular unloading technique, IEEE transactions on bio-medical engineering, 1980, 27: 150~155
    [119] Mauck G. W., Smith C. R., Geddes L. A. and Bourladn J. D., The meaning of the point of maximum oscillations in cuff pressure in the indirect measurement of blood pressure: part II, Journal of biomechanical engineering, 1980, 102: 28~33
    [120] Mascaro S. A. and Asada H. H., Photoplethysmograph fingernail sensors for measuring finger forces without haptic obstruction, IEEE Trans. Robot. Autom., 2001, 17: 698~708
    [121] Martin H., Claudia H., Michael J., Anke S., Daniel Z., Thomas K., Alexandra B., Gernot R. and Vladimir B., Local cold exposure test with a new arterial photoplethysmographic sensor in healthy controls and patients with secondary Raynauds phenomenon, Microvascular research, 1999, 57: 187~198
    [122] Gowda, et al., Development of an implantable skin port sensor for use as an in vivo optical glucose sensing platform, Proceedings of the SPIE - The International Society for Optical Engineering, 2001, 4263: 11~19
    [123] D. E. Honigs, G. M. Hieftje, T. Hirschfeld, An optimization of detetor- noiselimited infrared multiwavelength determinations, Applied Spectroscopy, 1985, 39(2): 253~256
    [124] T. Hirschfeld, D. E. Honigs, G. Hieftje, Optimization of sample absorbance for quantitative analysis in the presence of pathlength error in the IR and NIR regions, Applied Spectroscopy, 1985, 39(3): 430~433
    [125] Xu K., Yamasaki Y., Uenoyama H., et. al., USP, 5602647, 1997-02-11
    [126] L. H. Wang, et al., Hybrid model of Monte Carlo simulation diffusion theory for light reflectance by turbid media, Journal of the Optical Society of America, 1993, A10: 1746~1752
    [127] C. M. Gardner and A. J. Welch, Monte Carlo simulation of light transport in tissue: unscattered absorption events, Applied Optics, 1994, 33: 2743~2745
    [128] L. Wang, S. L. Jacques, L. Zheng, MCML-Monte Carlo modeling of light transport in multi-layered tissues, Computer Methods and Programs in Biomedicine, 1995, 47: 131~146
    [129] L. Bergougnoux, J. Misguich-ripault, J.-L. Firpo, et al., Monte Carlo calculation of bachscattered light intensity by suspension: comparison with experimental data, Applied Optics, 1996, 35(10): 1735~1741
    [130] L.H. Wang, S.L. Jacques, L.Q. Zheng, CONV-Convolution for responses to a finite diameter photon beam incident on multi-layered tissues, Computer Methods and Programs in Biomedicine, 1997, 54: 141~150
    [131] Jacques S L, Tissue fluorescence, Proceedings of SPIE, 1995, 2371: 2~13
    [132] 江世臣,马宁,李和杰,金浩,张学学, 热水滴烫伤皮肤的传热分析,中国工程热物理学会 2002 年学术会议,编号:023069, 2002:
    [133] T. L. Troy,S. N. Thennadil, Optical properties of human stein in the NIR wavelength range of 1000-2200nm, Journal of Biomedical Optics, 2001, 6(2): 167~176
    [134] C. R. Simpson, M. Kohl, M. Essenpreis, et al., Near-infrared optical properties of ex vivo human skin and subcutaneous tissues measured using the Monte Carlo inversion technique, Physics in medicine and biology, 1998, 43: 2465~2478
    [135] R. Graaff, C. M. Dassel, M. H. Koelink, et al., Optical properties of human dermis in vitro and in vivo, Applied optics, 1993, 32(435~447):
    [136] J. Laufer, C. R. Simpson, M. Kohl, et al., Efect of temperature on the optical properties of ex vivo human dermis and subdermis, Physics in medicine and biology, 1998, 43: 2479~2489
    [137] V. V. Tuchin, Tissue Optics-Light scattering methods and instruments for medical diagnosis, SPIE Press , The International Society for Optical Engineering,Bellingham,Washington,USA, 2000: 3~98
    [138] M. J. C. van Gemert, S. L. Jacques, H. J. Sterenborg, et al, Skin Optics, IEEE Transactions on Biomedical Engineering, 1989, 36(12): 1146~1154
    [139] G. W. Hopkins, G. R. Mauze, In-vivo NIR difuse-reflectance tissue spectroscopy of human subjects, Hewlett-Packard Company, 1999, Report:
    [140] W. F. Cheong, S. A. Prahl, A. J. Welch, A review of the optical properties of biological tissues, IEEE journal of quantum electronics, 1990, 26(12): 2166~2183
    [141] I. V. Yarostavskii, V. V. Tuchin, Light propagation in multilayer scatering media: Modeling by the Motile Carlo method, Optics and Spectroscopy(USSR), 1992, 72(4): 505~509
    [142] V. V. Tuchin, Light scatering study of tissues, Physics-Uspekhi, 1997, 40(5): 495~515
    [143] B. C. Wilson, S. L. Jacques, Optical reflectance and transmitance of tissues: principles and applications, IEEE Journal of Quantum Electronics, 1990, 26(12): 2186~2199
    [144] A. N. Yaroslavsky, I. V. Yaroslavsky, T. Goldbach and H.-J. Schwarzmaier, The Optical Properties of Blood in the Near Infrared Spectral Range, Proc. SPIE 2678C, 1996
    [145] A. N. Yaroslavsky, I. V. Yaroslavsky, T. Goldbach, and H.-J. Schwarzmaier, Influence of the Scattering Phase Function Approximation on the Optical Properties of Blood Determined from the Integrating Sphere Mesurements, Journal of biomedical optics, 1999, 1(4): 47~53
    [146] John Allen and Alan Murray, Modelling the relationship between peripheral blood pressure and blood volume pulses using linear and neural network system identification techniques, Physiological measurement, 1999, 20: 287~301
    [147] 唐元升,张秀珍,韩殿存,人体医学参数与概念,济南:济南出版社,1995

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700