用户名: 密码: 验证码:
无线多跳Ad Hoc网络中TCP公平性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着无线网络越来越广泛地应用于我们的工作和生活中,如何在保证效率的同时提高TCP公平性成为一个重要的研究课题。本论文主要研究多跳无线Ad Hoc网络中TCP业务的公平性问题,分析了造成TCP业务不公平性的多种原因,推导出802.11 MAC层的多跳延迟,在此基础上提出基于MAC层传输延迟的邻居区域随机提前检测机制(D_NRED)。另外,本文提出自适应暂停机制(Adaptive_Pause)来动态分布式实现提高TCP公平性。
     无线网络中传输的业务有些对延迟是非常敏感的,而且延迟也是一个很重要的公平性指标。本文对IEEE 802.11 MAC层的延迟进行分析,首先分析不饱和业务下的单跳平均延迟,进而扩展到多跳情况下进行分析,得到端到端的平均延迟。分析过程中引入了二进制指数退避机制的二维Markov模型和M/G/1排队模型。通过大量的仿真对分析结果进行了验证,结果显示模型求解的分析值与仿真结果拟合的很好。
     MAC层延迟与信道竞争的激烈程度之间存在着定性的关系,MAC层的介质访问延迟能够反映出无线信道的拥塞程度。本文提出基于MAC层传输延迟的D_NRED机制来检测拥塞、调节丢包率并提高TCP公平性。每个节点测量数据包从离开MAC层队列到成功收到ACK的时间延迟,以此作为判断邻域拥塞情况的标准,调节丢包概率,达到提高公平性的目的。该机制主要包括三部分内容:判断拥塞发生在哪里;发出拥塞通知;节点计算丢包概率。本方法测量MAC层传输延迟不需要修改硬件,通过修改驱动程序就可以在实际应用中实现,具有更好的可行性。仿真结果表明该机制可以提高无线网络中TCP流的公平性。
     Adaptive_Pause机制是一种用以提高TCP公平性的动态分布式控制机制。节点根据竞争信道的邻居节点数目计算自己应该占有的无线信道带宽份额。如果节点占用的带宽超过了公平性份额,就在一段时间内主动地暂停发包,使得其他节点有机会发送数据。该机制的特点是:对网络中的不公平情形反应迅速,在信道竞争中处于有利地位的节点主动让出信道,而不是等受压制的节点发出通知才开始做出反应。我们利用二维Markov模型分析带有pause状态的MAC层指数退避机制,给出最优pause时间和带宽比例阈值。通过仿真验证了理论推导的正确性和Adaptive_Pause机制对于提高TCP公平性的效果。
As wireless networks are becoming increasingly prevalent, the problem of ensuring TCP fairness is an increasingly important issue. In this dissertation, we investigate the problem of TCP fairness in multi-hop wireless Ad Hoc networks. The causes of TCP unfairness are studied and the multi-hop MAC delay is analyzed. We propose a MAC delay based Neighborhood RED scheme (D_NRED) to improve the TCP fairness. Moreover, a dynamic distributed scheme—Adaptive_Pause is proposed.
     Much traffic in Wireless Ad Hoc networks is very sensitive to delay, and delay is an important metric of fairness. We analyze the average packet delay on IEEE 802.11 DCF under finite load traffic in multi-hop Ad Hoc networks. We employ a Markov chain model to analyze the channel access delay. We model each node using an M/G/1 queue and derive the queueing delay. Thus the average packet delay in single-hop scenario can be obtained. The model is also extended to evaluate the end-to-end packet delay in multi-hop Ad Hoc networks. To validate our analytic results, we have done extensive simulation. The results from analysis and simulation match closely.
     As it is known, the packet delay is large if the wireless channel is very busy and the overall traffic load exceeds the capacity of the channel. Thus the packet delay can reflect whether or not the channel is busy. In this dissatation, we propose D_NRED scheme to detect channel congestion, tune the dropping probability, and improve TCP fairness. The scheme detects congestion according to MAC delay and notifies the nodes which use too much channel capacity to drop their packets. Thus the expressed node can get a chance to transmit. This scheme includes three parts: how to find out the congestion center correctly and effectively; how to inform its neighbors about the congestion; and how the neighbors to calculate their local packet drop probability. The MAC delay can be measured by modifies the driver instead of the hardware.
     Therefore, D_NRED scheme has a good practical implement. Simulation results show that D_NRED scheme can improve the TCP fairness.
     We propose a simple but efficient fairness mechanism: Adaptive_Pause, which is distributed and low cost at implementation. Each node monitors the occupation of the channel due to its emissions and determines whether it should pause an interval in order to avoid channel capture. The characteristic of the scheme is that the nodes which consume too much bandwidth share will actively pause their emission. Comparing to the passive scheme in which the node controlling their transmission when received a message packet from the node at the expressed location, the proposed scheme is more promptly and with less overhead. By using a two dimensional Markov model, the optimal parameters are found. These parameters can be used by the nodes to dynamically determine their fair share. Simulation results validate the correction of our analysis and the scheme’s effect in TCP fairness improvement.
引文
[1] Bluetooth Special Interest Group, http://www.bluetooth.com/
    [2] http://www.homerf.org/
    [3] E. M. Royer and C. K. Toh, A review of current routing protocols for ad hoc mobile wireless networks, IEEE Personal Communications, April. 1999, 6(2): 46~55
    [4] L. Subramanian and H. Randy, An Architecture for Building Self-Configurable Systems, IEEE Workshop on Mobile Ad Hoc Networking and Computing (MobiHOC 2000), Aug. 2000, 63~73
    [5] Z. D. Chen, H. T. Kung, and D. Vlah, Ad Hoc Relay Wireless Networks over Moving Vehicles on Highways, ACM Symposium on MobiHoc, Oct. 2001, 247~250
    [6] IEEE STD. 802.11. Wireless LAN medium access control (MAC) and physical layer (PHY) specifications. 1999.
    [7] http://portal.etsi.org/bran/kta/hiperlan/hiperlan2.asp.
    [8] http://grouper.ieee.org/groups/802/.
    [9] K. C. Chen, Medium Access Control of Wireless LANs for Mobile Computing, IEEE Network, Sep. 1994, 8(5): 50~63
    [10] A. S. Tanenbaum, Computer Networks, 3rd Edition, Englewood Cliffs, N. J.: Prentice-Hall, 1996
    [11] T. S. Rappaport. Wireless Communications: Principles and Practice, Englewood Cliffs, N.J.: Prentice-Hall, 2002
    [12] J. Walrand and P. Varaiya, High-Performance Communication Networks, 2nd Edition, San Francisco: Morgan Kaufmann, 1996
    [13] S. Keshav, An Engineering Approach to Computer Networking: ATM Networks, the Internet, and the Telephone Network, 3rd Edition, Reading, MA: Addison-Wesley, 1997
    [14] E. Royer and C. K. Toh, A review of current routing protocols for ad hoc mobile wireless networks, IEEE Personal Communications, April. 1999, 6(2): 46~55
    [15] L. M. Feeney, A taxonomy for routing protocols in mobile ad hoc networks, Swedish Institute of Computer Science Technical Report T99/07, October.
    [16] C. E. Perkins and P. Bhagwat. Highly dynamic destination-sequenceddistance-vector routing (DSDV) for mobile computers, Computer Communications Review, 1994, 234~244
    [17] C. C. Chiang, H. K. Wu, W. Liu, and M. Gerla, Routing in clustered multihop, mobile wireless networks with fading channel, IEEE SICON 1997, 197~211.
    [18] S. Murthy and J. J. Garcia-Luna-Aceves, An efficient routing protocol for wireless networks, ACM Mobile Networks and Applications Journal, Special Issue on Routing in Mobile Communication Networks, 1996,1(2): 183~197
    [19] D. B. Johnson and D. A. Maltz, Dynamic source routing in ad-hoc wireless networks, Mobile Computing, New York: Kluwer Academic Publishers, 1996, 153~181
    [20] C. E. Perkins and E. M. Royer, Ad-hoc on-demand distance vector routing, Proceedings of the 2nd IEEE Workshop on Mobile Computing Systems and Applications, New Orleans, LA, February 1999, 90~100
    [21] V. D. Park and M. S. Corson, A highly adaptive distributed routing algorithm for mobile wireless networks. Proceedings of Proceedings of IEEE Conference on Computer Communications (INFOCOM’97), April. 1997, 1405~1413
    [22] R. Dube, C. D. Rais, K. Y. Wang, and S. K. Tripathi, Signal stability based adaptive routing (SSA) for ad hoc mobile networks, IEEE Personal Communications Magazine, 1997, 4(1): 36~45
    [23] C-K. Toh, A novel distributed routing protocol to support ad-hoc mobile computing, Proceedings of IEEE 15th Annual International Phoenix Conference Computer and Communication, Mar. 1996, 480~486
    [24] M. S. Corson and A. Ephremides, A distributed routing algorithm for mobile wireless networks. ACM/Baltzer Wireless Networks Journal, 1995, 1(1): 61~81
    [25] G. Holland and N. Vaidya. Analysis of TCP performance over mobile ad hoc networks, Wireless Networks, 2002, 8(2): 275~288
    [26] M. Gerla, K. Tang, and R. Bagrodia, TCP performance in wireless multi-hop networks, Proceedings of IEEE WMCSA’99, February 1999, 41~50
    [27] S. Xu and T. Saadawi. Does the IEEE 802.11 MAC protocol work well in multi-hop wireless ad hoc networks, IEEE Communications Magazine, June 2001, 39(6): 130~137
    [28] D. D. Perkins and H. D. Hughes, A survey on quality of service support in wireless ad hoc networks, Journal of Wireless Communication and Mobile Computing (WCMC), Special Issue on Mobile Ad Hoc Networking: Research, Trends, and Application, 2002, 2(5): 503~513
    [29] K. Wu and J. Harms, QoS support in mobile ad hoc networks, Grossing Boundaries-an Interdisciplinary Journal, 2001, 1(1): 92~107
    [30] A. Muir and J.J. Garcia, An efficient packetsensing MAC protocol for wirelessnetworks, ACM/Baltzer Mobile Networks and Applications (MONET), 1998, 3(2): 221~234
    [31] J.L. Sobrinho and A.S. Krishnakumar, Quality-of-service in ad hoc carrier sense multiple access wireless networks, IEEE Journal on Special Areas in Communications, 1999, 17(8): 1353-1368
    [32] R. Sivakumar, P. Sinha, and V. Bharghavan, CEDAR: a coreextraction distributed ad hoc routing algorithm, Proceedings of IEEE Conference on Computer Communications (INFOCOM'99), New York, March 1999, 202~209
    [33] S. H. Shah and K. Nahrstedt, Predictive locationbased qos routing in mobile ad hoc networks, Proceedings of IEEE International Conference on Communications (ICC 2002), 2002, 1022~1027
    [34] X. Yuan and A.Saifee, Path selection methods for localized quality of service routing, Proceedings of the 10th IEEE International Conference on Computer Communications and Networks (ICCCN2001), October 2001, 15~17
    [35] R. Lin and J.S. Liu, QoS routing in ad hoc wireless networks, IEEE Journal on Selected Areas in Communications, 1999, 17(8): 1415~1425
    [36] S. Chen and K. Nahrstedt, An overview of quality-of-service routing for the next generation high-speed networks: problems and solutions, IEEE Network, Special Issue on Transmission and Distribution of Digital Video, November 1998, 64~79
    [37] S.-B. Lee and A.T. Campbell, INSIGNIA: in-band signaling support for Qos in mobile ad hoc networks, Proceedings of the 5th International Workshop on Mobile Multimedia Communications (MoMuC’98), October 1998, 12~14
    [38] M. Mirhakkak, N. Schult, and D. Thomson, Dynamic quality-of-service for mobile ad hoc networks, Technical Report, The MITRE Corporation, April 2002.
    [39] F. A. Tobagi and L. Kleinrock, Packet switching in radio channels: Part II - the hidden terminal problem in carrier sense multiple-access modes and the busy-tone solution, IEEE Transaction on Communications, 1975, 23(12): 1417~1433
    [40] C. Ware, J. Judge, J. Chicharo, and et.al, Unfairness and capture behaviour in 802.11 ad hoc networks, Proceedings of IEEE International Conference on Communications (ICC2000), 2000, 1:159~163
    [41] Janczak, Tomasz, Wozniak, et al., Fair access to shared radio channel in IEEE 802.11 networks, Systems Science, 2002, 28:129~140
    [42] K. Tang and M. Gerla, Fair sharing of MAC under TCP in wireless ad hoc networks, Proceedings of IEEE Multiaccess, Mobility and Teletraffic for Personal Communications (MMT'99), October 2000, 127~133
    [43] K. Tang, M. Correa, and M. Gerla, Effects of ad hoc MAC layer medium access mechanisms under TCP, Proceedings of Mobile Networks and Applications, August 2001, 317~329
    [44] K. Chandran, S. Raghunathan, S. Venkatesan, and et al, A feedback-based scheme for improving tcp performance in ad hoc wireless networks, IEEE Personal Communications Magazine, 2001, 8(1): 34~39
    [45] T. D. Dyer, and R. V. Boppana, A Comparison of TCP Performance over Three Routing Protocols for Mobile Ad Hoc Networks, Proceedings of ACM Symposium on Mobile Ad Hoc Networking & Computing 2001 (MobiHoc’01), 2001, 56~66
    [46] Y. Zhang and F. Wang, Improving tcp performance over mobile ad-hoc networks with out-of-order detection and response, Proceedings of the third ACM international symposium on Mobile ad hoc networking & computing, 2002, 217~225
    [47] K. Xu, S. Bae, S. Lee, and et al, TCP behavior across multihop wireless networks and the wired internet, Proceedings of ACM WoWMoM’02, 2002, 41~48
    [48] S. Xu and T. Saadawi, Revealing tcp unfairness behavior in 802.11 based wireless multi-hop networks, Proceedings of IEEE PIMRC’01, 2001, 2:E83~E87
    [49] IEEE, IEEE standard for wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) specifications, ISO/IEC 8802-11:1999(E), Aug. 1999.
    [50] T. Nandagopal, T.-E. Kim, X. Gao, and et. al, Achieving MAC layer fairness in wireless packet networks, Proceedings of MOBICOM, 2000, 87~98
    [51] T. Ozugur, M. Naghshineh, P. Kermani, and et. al, Balanced media access methods for wireless networks, Proceedings of MOBICOM, 1998, 21~32
    [52] Z. Fang, B. Bensaou, Y. Wang, Performance evaluation of a fair backoff algorithm for IEEE 802.11 DFWMAC, Proceedings of MOBIHOC, 2002, 48~57
    [53] V. Bharghavan, A. Demers, S. Shenker, and et al., MACAW: a Media Access Protocol for Wireless LAN’s, Proceedings of Conf. Commun. Architectures, Protocols and Applications, 1994,212~225
    [54] B. Bensaou, Y. Wang, and C. C. Ko, Fair Medium Access in 802.11 Based Wireless Ad-Hoc Networks, Proceedings of 1st International Workshop on Mobile Ad Hoc Networking and Computing, August 2000, 99~106
    [55] N. H. Vaidya, P. Bahl, S. Gupta, Distributed fair scheduling in a wireless LAN, Proceedings of MOBICOM, 2000, 167~178
    [56] H. Luo, P. Medvedev, J. Cheng, and et al., A self-coordinating approach todistributed fair queueing in ad hoc wireless networks, Proceedings of Proceedings of IEEE Conference on Computer Communications (INFOCOM’01), 1370~1379
    [57] V. Kanodia, C. Li, A. Sabharwal, and et al., Ordered packet scheduling in wireless ad hoc networks: Mechanisms and performance analysis, Proceedings of MOBIHOC, 2002, 58~70
    [58] Kaixin Xu, Mario Gerla, Lantao Qi, and et al., TCP Unfairness in Ad Hoc Wireless Networks and a Neighborhood RED Solution, ACM Wireless Networks (WINET), 2004, 383~399
    [59] D. Bertsekas and R. Gallager, Data Networks, Prentice-Hall, 1987
    [60] Chiu, Dah-Ming, Jain, R, Analysis of the increase and decrease algorithms for congestion avoidance in computer networks, Computer Networks and ISDN Systems, 1989,17(1): 1~14
    [61] F. P. Kelly, Charging and rate control for elastic traffic, European Transactions on Telecommunications, 1997, 8(1): 33~37
    [62] USC/ISI. Ns-2 Network Simulator [EB/OL]
    [63] E. Altman, K. Avrachenkov, and C. Barakat, A Stochastic Model of TCP/IP with Stationary Random Losses, Proceedings of ACM SIGCOMM'00, Stockholm, Sweden, August 2000, 231~242
    [64] K. Liu and A. Fukuda, Adaptive Acquisition Collision Avoidance Multiple Access for Multi-hop Ad Hoc Wireless Network, IEEE communication Magazine, 2001, 2880~2884
    [65] T. Ozugur and M. Naghshineh, Fair Media Access for Wireless LANs, Proceedings of the IEEE Global Telecommunications Conference (Globecom'99), 1999, 570~579
    [66] T. Ozugur and M. Naghshineh, Optimal MAC-layer Fairness in 802.11 Networks, Proceedings of IEEE International Conference on Communications (ICC2002), 2002, 675~681
    [67] M. Gerla and R. Bagrodia, TCP over Wireless Multi-hop Protocols: Simulation and Experiment, IEEE communication Magazine, 1999, 1089~1094
    [68] S. Xu and A. Saadawi, Reveal TCP Incompatibility Problem in 802.11-based Wireless Multi-hop Network, IEEE communication Magazine, 2001,2847~2851
    [69] S. Shakkottai, T. S. rappaport, and P. C. Karlsson, Cross-layer design for wireless networks, IEEE Communication Magazine, 2003, 41(10): 74~80
    [70] H. Zhai, X. Chen, and Y. Fang, Alleviating Intra-flow and Inter-flow Contentions for Reliable Service in Mobile Ad Hoc Networks, Proceedings of IEEE Military Communications Conference (Milcom'04), 2004, 3:1640~1646
    [71] X. Wang and K. Kar, Cross-Layer Rate Control for End-to-End ProportionalFairness in Wireless Networks with Random Access, Proceedings of the 6th ACM international symposium on Mobile ad hoc networking and computing, 2005, 157~168
    [72] J. Wang, H. Zhai, W. Liu, et al., Reliable and Efficient Packet Forwarding by Utilizing Path Diversity in Wireless Ad Hoc Networks, Proceedings of IEEE Military Communications Conference (Milcom'04), 2004, 1: 258~264
    [73] S. Biswas and R. Morris, Opportunistic Routing in Multi-Hop Wireless Networks, Computer Communication Review, 2004, 34(1): 69~74
    [74] R.R Choudhury and N. Vaidya, MAC-Layer Anycasting in Wireless Ad Hoc Networks, Proceedings of the 2nd Workshop on Hot Topics in Networks (HotNets II), MIT, Nov, 2003.
    [75] S. Jain, Y. Lv, and S.R. Das, Exploiting Path Diversity in the Link Layer in Wireless Ad Hoc Networks, Technical Report, WINGS Lab, July 2003
    [76] J. Dunn, M. Neufeld, A. Sheth, et al., A Practical Cross-Layer Mechanism For Fairness in 802.11 Networks, First International Conference on Broadband Networks (BROADNETS'04), 2004, 355~364
    [77] K. Sundaresan, V. Anantharaman, H.-Y. Hsieh, et al., ATP: a reliable transport protocol for ad-hoc networks, Proceedings of ACM Mobihoc, Maryland,USA, June 2003, 64~75
    [78] M.Gerla, K.Tang, and R.Bagrodia, TCP Performance in Wireless Multihop Networks, Proceedings of 2nd IEEE Workshop on Mobile Computing Systems and Applications (WMCSA’99), New Orleans, USA, Feb. 1999, 41~50
    [79] M.Gerla, R.Bagrodia, and L.Zhang et al, TCP over Wireless Multihop Protocols: Simulation and Experiments, Proceedings of International Conference on Communications (ICC’99), Vancouver, Canada, Jun. 1999, 1089~1094
    [80] L. Yang, W. Seah, Q. Yin, Improving fairness among TCP flows crossing wireless ad hoc and wired networks, Proceedings of the 4th ACM Int’l Symp. on Mobile Ad Hoc Networking and Computing (MOBIHOC’03). Annapolis: ACM Press, 2003. 57~63.
    [81] H. S. Chhaya and S. Gupta, Performance of Asynchronous Data Transfer Methods of IEEE 802.11 MAC Protocol, IEEE Personal Communications, 1996, 3(5): 8~15
    [82] G. Bianchi, L. Fratta, and M. Oliveri, Performance Evaluation and Enhancement of the CSMA/CA MAC Protocol for 802.11 Wireless LANs, Proceedings of PIMRC'96, 1996, vol. 2, 392~396
    [83] G. Bianchi, Performance Analysis of the IEEE 802.11 Distributed Coordination Function, IEEE Journal on Selected Areas in Communications, March 2000, 18(3): 535~547
    [84] Y. C. Tay and K. C. Chua, A Capacity Analysis for the IEEE 802.11 MAC Protocol, ACM/Baltzer Wireless Networks, vol. 7, 2001, 159~171
    [85] H. Wu, Y. Peng, K. Long, et al., Performance of Reliable Transport Protocol over IEEE 802.11 Wireless LAN: Analysis and Enhancement, Proceedings of IEEE Conference on Computer Communications (INFOCOM’02), New York, USA, June 2002, 599~607
    [86] G. H. Wang, Y. T. Shu, O. Yang, and et al., Delay Analysis of the IEEE 802.11 DCF, Proceedings of the 14th IEEE International Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC’03), Beijing, China, Sep. 2003, 7~11
    [87] P. Chatzimisios, A. C. Boucouvalas and V.Vitsas, IEEE 802.11 Packet Delay – A Finite Retry Limit Analysis, Proceedings of Global Telecommunications Conference (Globecom’03), San Francisco, USA, 2003, 950~954
    [88] M. M. Carvalho and J. J. Garcia-Luna-Aceves, Delay Analysis of IEEE 802.11 in Single-Hop Networks, Proceedings of the 11th IEEE International Conference on Network Protocols (ICNP’03), Atlanta, USA, 2003, 146~155
    [89] F. A. Shabdiz and S. Subramaniam, A Finite Load Analytical Model for the IEEE 802.11 Distributed Coordination Function MAC, Proceedings of Workshop on Modeling and Optimization in Mobile, Ad Hoc and Wireless Networks (WiOpt’03), INRIA Sophia Antipolis, France, March 2003, 3~5
    [90] G. R. Cantieni, Q. Ni, C. Barakat, et al., Performance Analysis under Finite Load and Improvements for Multirate 802.11, Elsevier Computer Communications Journal, special issue on Performance Issues of Wireless LANs, PANs, and Ad Hoc Networks, June 2005, 28(10): 1095~1109
    [91] O. Tickoo, B. Sikdar, Queueing Analysis and Delay Mitigation in IEEE 802.11 Random Access MAC based Wireless Networks, Proceedings of IEEE Conference on Computer Communications (INFOCOM’04). Hong Kong, China, March 2004, Vol.2, 1404~1413
    [92] Y. Chen, Q-A. Zeng, and D. P. Agrawal, Performance of MAC Protocol in Ad Hoc Networks, Proceeding of the Communication Networks and Distributed Systems Modeling and Simulation Conference (CNDS'03), Orlando, Florida, Jan. 2003, 55~61
    [93] F. Alizadeh-Shabdiz, S. Subramaniam, MAC Layer Performance Analysis of Multi-Hop Ad Hoc Networks, The IEEE Global Telecommunications Conference (Globecom’04), NEW YORK, USA, Vol.5, 2004, 2781~2785
    [94] H. Takagi, L. Kleinrock, Optimal Transmission Range of Randomly Distributed Packet Radio terminals, IEEE Transactions on Communications, Vol. COM-32, No. 3, 1984, 246~57
    [95] Scalable Network Technologies, “Qualnet simulator version 3.7,” ww.scalable-networks.com.
    [96] Hashem. E., Analysis of random drop for gateway congestion control, Report LCSTR-465, Laboratory for Computer Science. MIT. Cambridge. Ma. 1989: 103
    [97] K. K. Ramakrishnan and R. Jain, A binary Feedback Scheme for Congestion Avoidance in Computer Networks, ACM Transactions on Computer Systems, May 1990, 8(2): 158~181
    [98] S. Floyed and V. Jacobson, Random Early Detection Gateways for Congestion Avoidance, IEEE/ACM Transactions on Networking, 1993, 1(4): 397~413.
    [99] L. F. Chane and J. J. Garcia Luna Aceves, Floor Acquisition Multiple Access for Packet Radio Networks, ACM SIGCOMM’95, Cambridge, MA, 1995, 262~273
    [100] L. F. Dong, Y. T. Shu, H. M. Chen, et al., Estimation and Application of End-to-end Delay under Unsaturation Traffic in Wireless Ad Hoc Networks,Proceedings of the Second International Conference on Mobile Technology, Applications and Systems (Mobility2005), Guangzhou, China, 2005
    [101] K. Medepalli and F. A. Tobagi, Towards Performance Modeling of IEEE 802.11 based Wireless Networks: A Unified Framework and its Applications, Proceedings of IEEE Conference on Computer Communications (INFOCOM’06), Barcelona, Spain, April 2006,
    [102] 汪广洪,IEEE 802.11 无线局域网 MAC 层性能及服务质量研究:[博士学位论文],天津,天津大学,2003

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700