用户名: 密码: 验证码:
煤矿动态安全评价及预测技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
煤炭工业是国民经济的基础产业,同时也是特殊的高安全风险的行业,煤矿安全是煤炭工业健康、可持续发展的关键问题。因此研究如何有效地控制煤矿安全风险具有十分重要的理论和现实意义。本文综述了国内外煤矿安全评价理论与技术的研究现状,建立了煤矿安全动态评价和预测模型,并结合现场数据进行了应用研究。
     煤矿井下生产系统是一个由人-机-环境构成的、空间极其复杂的灾害系统。虽然事故发生的机理各异,但引发事故的因素却相互关联,在时间、空间上各种灾害随时随地发生,且相互影响。因此,根据煤矿井下灾害系统的结构特点,对系统的危险程度进行评价,事先获得事故的可能后果及对整个生产系统的影响,从而使煤矿的技术和管理部门有针对性地采取措施,达到安全生产的目的。寻求并建立科学、合理的矿井安全评价模型,并与实际生产相结合,是矿井安全管理与控制的关键问题。矿井安全系统中的许多问题都是非线性的,传统的、事先设定变化规律和特性的评价方法已经显现出其局限性,且难以很好地解决从因素到结果的定权和变权问题。
     本文在分析我国煤矿安全现状的基础上探讨了开展煤矿安全评价工作的重要意义,综述了国内外安全评价理论和煤矿安全评价技术的发展现状,分析了人工神经网络技术的特点,提出课题研究的意义、研究思路和主要内容。
     根据现代事故致因理论,结合人-机-环分析法与层次分析法等分析了煤矿安全生产的主要影响因素,并总结为10大类。根据安全评价模型的要求,在遵循指标构成及其定量化处理等原则的前提下,构建了全面的煤矿安全评价指标体系,使煤矿安全生产过程中的各个重要影响因素在指标体系中得到体现。
     根据神经网络结构特点和己经建立的煤矿安全评价指标体系,确定以误差反向传播的前向BP网络作为煤矿安全评价算法模型,并探讨了煤矿安全评价模型的网络结构设计、训练学习流程、性能改进方法。讨论了MATLAB神经网络工具箱及其图形用户界面GUI在神经网络模型的设计和训练过程中的强大功能,为煤矿安全评价网络模型的应用奠定基础。
     利用神经网络工具箱GUI实现了煤矿安全评价的神经网络模型设计,并结合大量的现场实际数据实现了煤矿安全动态评价的应用研究,评价结果与实际情况基本一致。
     预测就是依据历史寻求事物的未来发展趋势,是对事物未来发展趋势的认识,目的就是根据事件的发展与变化趋势来采取相应的措施。煤矿安全的有效控制对生产和作业人员的安危具有重要意义。有效的管理与控制,必须有完善、可靠的过程监测,而过程控制的成功与否,取决于对煤矿安全性指标的超前把握,准确的预测是超前把握并采取有效技术和管理措施的先决条件,煤矿安全预测就是通过系统现有或过去的危险信息来预测未来的系统安全状态。
     本文根据宏观与微观、静态与动态的辨证关系,确定了矿井安全预测的基本原则,建立了神经网络预测、灰色系统预测的数学模型。神经网络应用于安全预测的数学模型擅长于解决具有大量的历史数据的预测问题;而灰色预测GM(1,1)模型适应于历史数据不充分的预测问题,并在其基础上提出了函数变换型GM(l,1)模型,引入了UGM模型,有效的解决了GM(1,1)模型在短期预测中的不足,从而使预测结果更具客观性和预见性。
As the basic industy of Chian’s national economy, the coal industy was also a special industy with high safety risk, so the coal safety was the key-point to the continuous development of the coal industry. It was vital in both theory and practice to study how to control effectively safety risk in coal mines. In this paper, the home and abroad theories and technologies of safety evaluation were summarized, the dynamic safety evaluation and safety prediction models of coalmine were established. The models which have been established were used to deal with the coalmines that data have been collected from.
     The production system underground in coal mine was a disaster system which consists of the human-machinery-environment and the extremely complex horizons. The mechanism of the disasters was different, but the factors initiating the disasters were interrelated each other. The disasters may take place at any time and every where, and affected from one to others. According to the structure features of the calamity in coal mine, we have to take the assessment to the hazard degree of the system, and previously acquire the effect of the possible results of the accidents to the whole production system, so that the technology and management administrators can adopt the measures, and the aim of the safety production will be obtained. The key problem to the safety management and control was to find and establish the scientific and reasonable safety evaluation models, and to combine the models with the practice production. Many problems in the safety system in coal mine were non-linear. The traditional and the previously function-setting evaluation methods have appear their localization, and the problems of the fixing and changing weight could not also be solved perfectly.
     In the paper, the chinese coalmine safety status was analyzed to put forward the importance and necessity to use safety evaluation. The home and abroad safety evaluation were summarized to analyze the problems of traditional coal mine safety evaluation methods, the characteristic of artificial neural network (ANN) were analyzed, the significances, ideals, methods and main contents of this subject were proposed.
     Based on the accidental incidence theory and other safety theories, the analytic hierarchy process were combined with other methods to analyze the primary factors affecting coal mine safety, classified into 10 types including human, mechanical, environmental factors. Based on the requirements of the safety evaluation model, under the precondition and the principles of the constitution and quantity of the indicators, the mine safety evaluation indicators system was completely constructed, and the every mportant factor during the production processes was incarnated in the indicator system.
     Based on the structure characteristic of artificial neural network (ANN) and the mine safety evaluation indicators system which has been established, error back-propagation algorithm (BP) was chosen to deal with the mine safety evaluation model. The designs of network structure, the training process and the methods to improve the performance of the model were discussed. The neural network (NN) tool box and the graphical user interfaces (GUI) of the MATLAB software were introduced in order to use the powerful function of them to deal with the designs and training of the mine safety evaluation model. The foundation to use the mine safety evaluation model was laid.
     The mine safety evaluation model was designed by the use of the neural network (NN) tool box, trained by the means of safety sample data to prove that the model was applicable for mine safety evaluation. The results calculated were similar to the actual situation.
     The prediction was to search the future developing trend according to the history, also was the recognition to the future developing tendency. The aim of the prediction was that the processing measures can be done according to the developing and changing trend. It was very important to control effectively the safety in coal-mine for the mine production and operators. The effective control and management relied on the perfected and reliable process supervision, and the safety process control was rested with the pre-holding for the safety indexes of the coal-mine, therefore, the exact prediction was the precondition to pre-hold and take the effective technology and management steps. The safety prediction for the coal-mine was to forecast the future safe statue based on the past or present dangerous information of the system. According to the differentiating and analyzing relations between the macroscopical and microcosmic status, static and dynamic features, in this paper, the basic principals was determined for the safety prediction in the mine, and the mathematical models based on the artificial neural network and the non-linear gray system theory were established. The artificial neural network model was suitable to data-rich, and the GM (1, 1) was suitable to data-poor. Based on GM (1, 1), functional transformation grey model (1, 1) and UGM model were proposed and used to solution the insufficient of GM (1, 1) in short-time prediction. The models make the safety predicting results more objectivity and foreseeing.
引文
[1]国家安全生产监督管理总局网站:http://www.chinasafety.gov.cn.
    [2]杨大明,尹贻勤.煤矿安全管理[M].徐州:中国矿业大学出版社,2002.
    [3]中国企业管理网:http://www.zqgl.com.
    [4]严涛.煤矿安全评价的作用和重点[J].劳动保护,2005,4:14-15.
    [5]蒋军成,郭振龙.安全系统工程[M].北京:化学工业出版社,安全科学与工程出版中心,2004.
    [6] Shi Shi-liang,Etc.Grey Evaluation of Operating Environment of Working Faces in a Coal Mine.Progress in Safety Science and Technology.Beijing:Science Press,1998.
    [7]周长春,向衍荪.生产系统危险源的危险性评价原理[J].中国安全科学学报,1995,1:50-54.
    [8]林柏泉等编著.安全学原理[M].北京:煤炭工业出版社,2002.
    [9] H. Heinrich.Industrial Accident Prevention.4th.Ed,McGraw-hill,New York,1959.
    [10]隋鹏程,陈宝智.安全原理与事故预测[M].北京:冶金工业出版社,1988.
    [11]宋镠.事故-安全科学研究的基本范畴之一[J].中国安全科学学报,1991,1:61-64.
    [12]曲和鼎,王恒毅.安全软科学的理论和应用[M].天津:天津科技翻译出版社,1990.
    [13]金龙哲,宋存义.安全科学技术[M].北京:化学工业出版社,安全科学与工程出版中心,2004.
    [14]何学秋等编著.安全工程学[M].徐州:中国矿业大学出版社,2000.
    [15]郑人权.预测学原理[M].北京:中国统计学出版社,1988.
    [16]罗云,樊运晓,马晓春.风险分析与安全评价[M].北京:化学工业出版社,安全科学与工程出版中心,2004.
    [17]吴宗之,高进东,张兴凯.工业危险辨识与评价[M].北京:气象出版社,2000.
    [18]肖贵平.铁路行车安全保障系统安全性评价理论和方法的研究[D].北方交通大,1994.
    [19]周长春.连续危险源危险性评价原理与方法及其在煤矿瓦斯灾害中的应用研究[D].中国矿业大学北京研究生部,1995.
    [20] David M. Siegel,Vasilios H. Frankos and Marvin A. Schneiderman.Formaldehyde risk assessment for occupationally exposed workers.Regulatory Toxicology and Pharmacology,1983,3(4):355-371.
    [21] Robert A.Bari.Decision making and probabilistic risk assessment.Nuclear Engineering and Design,1986,93(2-3):341-348.
    [22] Nick F. Pidgeon.Risk assessment and accident analysis.Acta Psychologica,Volume 68,Issues 1-3,September 1988,Pages 355-368.
    [23] Denby B,Kizil M.S.Application of expert systems in geotechnical risk assessment for surface coal mine design.International Journal of Rock Mechanics and Mining Science & Geomechanics Abstracts,1992,2(2):110.
    [24] W. Hatton,M. K. G. Whateley.Risk assessment applied to coal tonnage estimation in the United Kingdom.International Journal of Rock Mechanics and Mining Science & Geomechanics Abstracts,1995,32(6):276.
    [25] H.S.B Düzgün.Analysis of roof fall hazards and risk assessment for Zonguldak coal basin underground mines.International Journal of coal Geology,Volume 64,Issues 1-2,17 October 2005 Pages 104-115.
    [26] R. V.罗曼尼.评估危险和安全的工伤事故分析法[J].国外金属矿山,1993,7:57-60.
    [27] F. R. A. Coolen,P. R. Mertens,M. J. Newby.A Bayes-competing risk model for the use of expert judgement in reliability estimation.Reliability Engineering and System Safety,35(1992):23-30.
    [28]吴宗之,高进东,魏利军.危险评价方法及其应用[M].北京:冶金工业出版社,2001.
    [29]任建国.安全评价在我国的发展历程[J].劳动保护,2005,4:8-10.
    [30]冯治斌.煤矿安全评价方法.中州煤炭[J],2003,3:44-46.
    [31]田水承,屈奎,李华.对煤矿安全评价的几点浅见[J].陕西煤炭,2004,3:3-5.
    [32]张跃华.事故树分析法在煤矿中的应用[J].山东煤炭科技,2003,3:65-67.
    [33]冯治斌.基于事故树分析法的矿井水灾安全评价[J].中州煤炭,2003,4:43-44.
    [34]刘亚立,陈日辉,冯兴隆.某矿山冒顶片帮事故的事故树分析[J].矿业快报,2004,5:27-29.
    [35]王思鹏.事故树分析法在分析井下运输事故中的应用[J].煤炭科学技术,2004,5:37-39.
    [36]冯兴隆,陈日辉.矿山坠井伤亡事故的事故树分析[J].山东煤炭科技,2005,1:64-65.
    [37]鲁青,徐文尚,刘志海,孙秀娟.基于FTA的矿井提升机钢丝绳断绳故障分析[J].煤矿机械,2006,2:356-358.
    [38]史润水,张芝华.事故树定量分析与安全指标的数学模型的建立[J].中国安全科学学报,1997,2:14-17.
    [39]陈勇刚,田水承,孙斌.基于事故树分析法安全评价指标的确定[J].陕西煤炭,2003,3:20-22.
    [40]赵广兴,高新春,张建国,王国际.事故树分析法在煤矿专项安全评价中的应用[J].中国煤炭,2005,7:63-65.
    [41]凌学文.基于FTA的矿井运输安全评价指标的确定[J].陕西煤炭,2006,1:41-42.
    [42]田水承,李红霞.也论矿井开采系统安全可靠性的评价[J].煤炭工程师,1993,5:26-28.
    [43]王玉振,王连国,俞书伟.煤矿火灾危险性评价新方法[J].系统工程理论和实践,1997,4:138-144.
    [44]冯圣洪.矿井瓦斯危险状态评价研究[J].灾害学,1998,2:53-57.
    [45]崔岗,陈开岩.矿井通风系统安全可靠性综合评价方法探讨[J].煤炭科学技术,1999,12:40-43.
    [46]陈开岩,傅清国,刘祥来,李旭东.矿井通风系统安全可靠性评价软件设计及应用[J].中国矿业大学学报,2003,4:393-398.
    [47]孙斌.基于危险源理论的煤矿瓦斯事故风险评价研究[D].西安科技大学,2003.
    [48]林柏泉,钱立平,翟成.矿井瓦斯爆炸危险性分析评价系统[J].矿业安全与环保,2005,2:12-14.
    [49]施式亮,卢本陶.事故树分析可视化理论模型及系统开发[J].湖南科技大学学报(自然科学版),2004,2:1-5.
    [50]施式亮,卢本陶.基于可视化的事故树分析系统研究与开发[J].中国工程科学,2004,11:66-72.
    [51]沈斐敏.矿井安全可靠性的评定研究[J].煤矿安全,1993,3:41-45.
    [52]沈斐敏.矿井安全可靠性的评定[J].煤炭学报,1995,1:92-95.
    [53]王玉振,沈斐敏.矿井冒顶危险性评价新方法[J].中国安全科学学报,1997,5:51-56.
    [54]沈斐敏.安全系统工程理论与应用[M].北京:煤炭工业出版社,2001.
    [55]马云东.煤矿多维模糊数据仓库模型的建立及挖掘技术[J].中国煤炭经济学院学报,2002,3:264-267.
    [56]夏筱红,张华,杨伟峰.用模糊综合评判方法判定曹庄煤矿突水水源[J].西部探矿工程,2002,4:54-56.
    [57]高新春,冯洪渊.用模糊层次分析法评价矿井安全状况[J].矿业安全与环保,2003,5:6-8.
    [58]刘兰翠,朱明,杨中.基于模糊模块化神经网络的煤矿安全性评价[J].河北理工学院学报,2004,3:32-37.
    [59]麻兴斌,唐林炜,刁柏青,张来亮,高国成.二阶加权模糊评价模型在煤矿地质评价中的应用[J].山东科技大学学报(自然科学版),2004,4:22-26.
    [60]陈鸿章,高文华,李兴民,陈建新.煤矿安全评价中应用模糊决策控制的探讨[J].太原理工大学学报,2004,05:615-617.
    [61]丁霞军,王佰顺.模糊综合评价法在矿井安全评价中的应用[J].矿业安全与环保,2004,6:55-56.
    [62]王玉怀,潘德祥,李祥仪.应用层次分析法及模糊评价进行煤矿安全评价研究[J].煤炭工程,2005,3:60-62.
    [63]孙佳,孙殿阁,李莉莉,蒋仲安.煤矿“一通三防”安全状况的模糊综合评价[J].矿业安全与环保,2005,6:74-75.
    [64]汪吉林,姜波.煤矿采空区稳定性的模糊综合评判[J].矿山压力与顶板管理,2005,2:29-31.
    [65]王玉振,周文安.回采工作面安全评价的改进灰色统计方法[J].系统工程理论与实践,1997,9:118-123.
    [66]景国勋,姚嵘,张甫仁.矿井通风系统合理性的灰色综合评判[J].中国安全科学学报,2001,04:65-67.
    [67]张甫仁,景国勋,顾志凡.矿井通风系统安全可靠性的灰色多层次综合评判[J].煤炭技术,2001,6:41-45.
    [68]徐义勇,戴广龙.基于灰色系统理论的矿井安全评价[J].矿业安全与环保,2003,04:10-11.
    [69]曾宪禄.基于灰色关联分析的矿井通风系统优化评判[J].矿业工程,2005,05:54-56.
    [70]朱向彩,周伟.BP神经网络在矿井安全监测评价系统中的应用[J].山东科技大学学报(自然科学版),2003,2:60-62.
    [71]张士昌,孙健全.基于神经网络理论的矿井安全管理评价[J].煤矿安全,2003,10:53-55.
    [72]刘海波,施式亮,刘宝探.人工神经网络对矿山安全状态的评判能力分析[J].安全与环境学报,2004,5:69-72.
    [73]许春冬,张永亮.基于神经网络基础上的两种系统安全综合评价方法[J].有色矿冶,2004,5:51-53.
    [74]李树刚,刘志云,林海飞.基于神经网络的煤与瓦斯突出矿井等级划分方法[J].煤田地质与勘探,2005,1:19-21.
    [75]邓宝,宋瑞.基于BP神经网络的安全评价方法研究[J].安全与环境工程,2005,2:61-64.
    [76]田水承,李华,陈勇刚.基于神经网络的掘进面瓦斯爆炸危险源安全评价[J].煤田地质与勘探,2005,3:19-21.
    [77]张晓宇,窦世卿.应用神经网络评价矿井通风系统[J].有色矿冶,2005,4:11-13.
    [78]程磊,杨运良,熊亚选.基于人工神经网络的矿井通风系统评价研究[J].中国安全科学学报,2005,5:88-91.
    [79]王超,陈开岩,赵红梅.基于ANN的煤矿安全评价方法探讨[J].矿业安全与环保,2005,6:76-78.
    [80]徐君.矿井安全生产的神经网络评价[J].煤,2006,3:3-4.
    [81]李运强,程五一,南玮超.基于BP网络的矿井安全状况综合评价的研究[J].中国矿业,2006,7:80-83.
    [82]刘志云.基于神经网络的煤与瓦斯突出矿井等级划分方法研究[D].西安科技大学,2003.
    [83]王洪德.基于粗集-神经网络的矿井通风系统可靠性理论与方法研究[D].辽宁工程技术大学,2004.
    [84]崔晓红.人工神经网络技术在安全评价中的应用[D].西安建筑科技大学,2005.
    [85]施式亮.矿井安全非线性动力学评价模型及应用研究[D].中南大学,2000.
    [86]施式亮,王海桥.矿井安全非线性动力学[M].北京.煤炭工业出版社,2001.
    [87]李志宪.含爆炸性气体、粉尘系统爆炸危险性智能评价决策系统[D].中国矿业大学(北京校区),2002.
    [88]施式亮,王鹏飞,李润求.工业安全评价方法与矿井安全评价技术综述[J].湘潭矿业学院学报,2002,4:5-8.
    [89]邢福胜.浅析矿井安全评价[J].煤矿现代化,2002,06:21-22.
    [90]刘永立,刘晓军.矿井安全评价及其确定方法[J].煤炭技术,2002,8:37-38.
    [91]杨中,朱明,刘兰翠,赵亚军.开滦矿区煤矿安全相关性分析及趋势预测[J].煤炭科学技术,2002,5:56-57 .
    [92]张超,陆愈实,章博.影响因素对煤矿百万吨死亡率的回归分析及其应用[J].中国安全生产科学技术,2005,6:91-95.
    [93]付丽华,王晶.一元线性回归分析在煤矿企业中的应用[J].煤矿现代化,2006,3:87-88.
    [94]褚莹.灰色马尔柯夫模型在煤矿安全事故预测中的应用初探[J].能源技术与管理,2006,1:18-20.
    [95]吕品,周心权.灰色马尔可夫模型在煤矿安全事故预测中应用[J].安徽理工大学学报(自然科学版),2006,1:10-13.
    [96]王金国,江洪清,高永奎.基于MATLAB的矿井涌水量神经网络预测方法及应用[J].煤炭技术,2004,7:67-68.
    [97]张延波,王金国.运用神经网络预测矿井瓦斯涌出量方法的探讨[J].江西煤炭科技,2004,3:26-27.
    [98]黄炜伟,王强,卢爽,刘振江.基于混沌时间序列的神经网络对瓦斯涌出量预测[J].煤,2005,5:7-9.
    [99]孙忠强,郭立稳,张嘉勇,朱令起.人工神经网络模型在瓦斯预测中的应用[J].矿业快报,2006,9:24-26.
    [100]江洪清,梁汉东,高永奎.基于MATLAB的神经网络动态安全预测方法与应用[J].煤炭工程,2004,3:72-75.
    [101]郭忠平,王志军,李勇.基于神经网络的综合指标在煤矿安全预测中的应用[J].煤矿安全,2005,9:28-30.
    [102]肖有才,张秀成,王宏艳.灰色理论在预测深埋型矿井涌水量中的应用[J].辽宁工程技术大学学报(自然科学版),2004,2:175-177.
    [103]夏英志.灰色系统理论在预测矿井涌水量中的应用[J].中州建设,2004,7:65.
    [104]吕贵春,马云东.矿井瓦斯涌出量预测的灰色建模法[J].中国安全科学学报,2004,10:22-24.
    [105]徐君.基于GM (1, 1)模型的矿井瓦斯涌出量预测研究[J].矿业研究与开发,2005,3:77-78.
    [106]伍爱友,田云丽,宋译,何利文.灰色系统理论在矿井瓦斯涌出量预测中的应用[J].煤炭学报,2005,5:589-592.
    [107]姚建,王新民,伍爱友.矿井瓦斯涌出量预测的GM (1, 1)模型研究[J].工业安全与环保,2005,9:1-3.
    [108]景国勋.灰色预测理论在煤矿上的应用[J].地质勘探安全,1994,2:23-25.
    [109]杨建明,石建军,赵和仲,熊韶峰.灰色系统理论在矿山安全事故预测中的应用[J].矿业研究与开发,2004,1:56-58.
    [110]叶加冕.某矿山事故伤亡率的灰色预测[J].矿业快报,2004,8:12-13.
    [111]王从陆,尹长林.基于GM (1, 1)模型的安全管理目标值确定方法[J].中国安全科学学报,2005,8:29-31.
    [112]赵红梅,陈开岩,王超.关于我国煤矿百万吨死亡率的灰色预测探讨[J].矿业安全与环保,2006,8:76-79.
    [113]高隽.人工神经网络原理及仿真实例[M].北京:机械工业出版社,2003.
    [114]魏海坤.神经网络结构设计的理论与方法[M].北京:国防工业出版社,2005.
    [116]罗晓曙.人工神经网络理论·模型·算法与应用[M].桂林:广西师范大学出版社,2005.
    [115]胡伍生.神经网络理论及其工程应用[M].北京:测绘出版社,2006.
    [117]林柏泉,周延,刘贞堂.安全系统工程[M].徐州:中国矿业大学出版社,2005.
    [118]隋鹏程,陈宝智,隋旭.安全原理[M].北京:化学工业出版社,安全科学与工程出版中心,2005.
    [119]陈喜山等编著.系统安全工程学[M].北京:中国建材工业出版社,2006.
    [120]国家安全生产监督管理局.安全评价(第3版)[M].北京:煤炭工业出版社,2005.
    [121]刘铁民、张兴凯、刘功智.安全评价方法应用指南[M].北京:化学工业出版社,安全科学与工程出版中心,2005.
    [122] T. L. Saaty著,许树柏等译.层次分析法—在资源分配、管理和冲突分析中的应用[M].北京:煤炭工业出版社,1988.
    [123]王莲芬,许树柏.层次分析法引论[M].北京:中国人民大学出版社,1990.
    [124]杨永清,许先云.改进的层次分析法用于矿井安全管理的综合评价[J].系统工程理论与实践,1999,6:121-125.
    [125]殷志祥,李突汉.改进的层次分析法在矿井安全管理的综合评价[J].淮南工业学院学报(自然科学版),2000,2:65-67.
    [126]韩利,梅强,陆玉梅,季敏.AHP—模糊综合评价方法的分析与研究[J].中国安全科学学报,2004,7:86-89.
    [127]许福美.层次分析法在矿井地质灾害灾度评价中的应用[J].矿业快报,2004,7:47-49.
    [128]蔡卫,吴兵.层次分析法在矿井通风评价中的应用[J].辽宁工程技术大学学报(自然科学版),2005,2:149-152.
    [129]秦波涛,李增华.改进层次分析法用于矿井安全性综合评价[J].西安科技学院学报,2002,2:126-129.
    [130]张嘉勇,巩学敏,郭立稳.用层次分析法建立煤矿安全评价指标体系[J].中国矿业,2006,4:20-22.
    [131]杨大明.煤矿安全风险综合评级模型及其应用研究[D].中国矿业大学,2005.
    [132]曾强.煤矿安全评价指标体系确定原则及其应用分析[J].矿业安全与环保,2005,6:79-81.
    [133]李志宪等编著.实用安全检查表汇编,煤矿、非煤矿山分册[M].北京:煤炭工业出版社,2006.
    [134]韩其俊.安全检查表法在安全评价中的应用及改进[J].石油化工安全技术,2003,4:13-16.
    [135]姚有利,吴青银,毕强,刘铁艳.安全检查表分析法在矿井评价中的应用[J].煤矿安全,2004,12:52-54.
    [136]张嘉勇,郭立稳.煤矿安全评价中安全检查表的数据处理[J].河北理工学院学报,2005,1:11-13.
    [137]贾宏禹,周思柱,李美求.层次分析法在安全检查表中的运用[J].建筑安全,2006,2:13-14.
    [138]朱茵,孟志勇,阚叔愚.用层次分析法计算权重[J].北方交通大学学报,1999,5:119-122.
    [139]范金志,郭德勇,张建国.层次分析法确定煤与瓦斯突出影响因素的权重[J].矿业安全与环保,2004,3:4-5.
    [140]段莉琼,刘立国,郭黎,张玉洁.应用层次分析法确定道路属性指标的权重[J].海洋测绘,2004,3:44-46.
    [141]张文泉,俞海玲.应用层次分析法确定矿井顶板涌水影响因素的权值[J].矿业安全与环保,2006,2:50-52.
    [142]汤海滢,康晓平,康辉,胡永华.用层次分析法确定职业卫生管理综合评价指标的权重系数[J].中国卫生监督杂志,2006,2:88-91.
    [143]潘皖印.专家评分机理的研究[J].科学管理研究,1997,1:33-36.
    [144]裴学军.专家评分评价法及应用[J].哈尔滨铁道科技,2000,1:32.
    [145] Randall S. Sexton,Ram S. Sriram,Harlan Etheridge.Improving Decision Effectiveness of Artificial Neural Networks:A Modified Genetic Algorithm Approach.Decision Sciences.Volume 34,Issue 3,Page 421-442,Aug 2003.
    [146] Frans Tillema,Kasper M. van Zuilekom,Martin F. A. M. van Maarseveen.Comparison of Neural Networks and Gravity Models in Trip Distribution.Computer-Aided Civil and Infrastructure Engineering.Volume 21,Issue 2,Page 104-119,Feb 2006.
    [147] J. Hou.Evaluation of coal bed methane reservoirs from geophysical log data using an improved fuzzy comprehensive decision method and a homologous neural network.Geophysical Prospecting.Volume 50,Issue 5,Page 453-462,Sep 2002.
    [148] Peter Morgan,Bruce Curry,Malcolm Beynon.Comparing neural network approximations for different functional forms.Expert System.Volume 16,Issue 2,Page 60-71,May 1999.
    [149] Han de Vries.Learning How Neural Networks learn,Develop and Evolve.Princeton University Press,Princeton,2005,253pp.
    [150]罗长寿,周丽英.改进遗传算法的神经网络模型研究[J].情报杂志,2005,5:65-66.
    [151]胡飞,靳蕃.广义同余神经网络的算法改进与性能分析[J].西南交通大学学报,2001,7:136-139
    [152]刘晔,夏建生.MATLAB下神经网络工具箱的开发和应用[J].微型机与应用,2000,4:17-18.
    [153]闵惜琳,刘国华.用MATLAB神经网络工具箱开发BP网络应用[J].计算机应用,200l,8:163-164.
    [154]周开利,康耀红.神经网络模型及其MATLAB仿真程序设计.北京:清华大学出版社,2005.
    [155]飞思科技产品研发中心编著.神经网络理论与MATLAB 7实现.北京:电子工业出版社,2005.
    [156] William A. Watson,Toby L. Litovitz,Martin G. Belson,et al.The Toxic Exposure Surveillance System( TESS ): Risk assessment and real-time toxicovigilance across United States poison centers.Toxicology and Applied Pharmacology,Volume 207,Issue 2,Supplement1,1 September 2005,Pages 604-610.
    [157] Ying-Ming Wang and Taha M. S. Elhag.A comparison of neural network,evidential reasoning and multiple regression analysis in modeling bridge risks.Expert Systems with Applications,In Press,Corrected Proof,Available online 4 January 2006.
    [158] L. D. Arya,L. S. Titare and D. P. Kothari.Determination of probabilistic risk of voltage collapse using radial basis function (RBF) network.Electric Power Systems Research,Volume 76,Issues 6-7,April 2006,Pages 426-434.
    [159] Wan Xing-hua.Optimization method on weight in comprehensive assessment[J].China Sanitation Statistics(in Chinese),1996,(6):42-45.
    [160] Zeng Xian-bao.The research of combination[J].Forecast(in Chinese),1997,(5):69-72.
    [161] Cheng Wei-min,Cao Qing-gui and Wang Yi.The improve method and some problems in comprehensive safety assessment[J].China Safety Science Journa(lin Chinese),1999,9(4):75-78.
    [162]邓聚龙.灰色预测与决策[M].武汉:华中理工大学出版社,1986.
    [163]杨晴晴,唐卫平,屈鹏.灰色预测在平朔煤炭工业公司安全生产中的应用[J].工业安全与环保,2006,9:54-55.
    [164]侯德峰,崔宝宪.灰色预测在安全生产目标管理中的应用初探[J].西部探矿工程,2004,7:210-212.
    [165]景国勋.灰色系统理论在安全中的应用研究[D].北京理工大学,2000.
    [166]邓聚龙.灰预测与灰决策[M].武汉:华中科技大学出版社,2002.
    [167]邓聚龙.灰色系统理论教程[M].武汉:华中理工大学出版社,1990.
    [168]刘思峰,邓聚龙.GM(1,1)模型的适用范围[J].系统工程理论与实践,2000,5:121-124.
    [169]陈洁,许长新.灰色预测模型的改进[J].辽宁师范大学学报(自然科学版),2005,9:262-264.
    [170]毛英雄,刘策.一种改进的灰色预测模型及应用[J].天然气勘探与开发,2006,3:71-73.
    [171]沈继红,尚寿亭,赵希人.舰船纵摇运动函数变换型GM(1,1)模型研究[J].哈尔滨工业大学学报,2001,6:291-294.
    [172]沈继红.灰色系统理论预测方法研究及其在舰船运动预报中的应用[D].哈尔滨工程大学,2002.
    [173]邓聚龙.灰色系统基本方法(第2版)[M].武汉:华中科技大学出版社,2005.
    [174] Deng Ju-long.Undulating grey model (UGM) GM(1,1| tan(k-τ)p, sin(k-τ)p).The Journal of Grey System, 2001, 13 (3): 201-205.
    [175]王婕.矿井动态风险评价技术研究[D].中国矿业大学,2006.
    [176]魏绍敏.煤矿人因事故发生机理及防范对策研究[D].西安科技大学,2004.
    [177]周泽平.煤矿安全评价研究及其在掘进生产中的应用[D].西安科技大学,2005.
    [178]付建华.煤矿瓦斯灾害防治理论研究与工程实践[M].徐州:中国矿业大学出版社,2005.
    [179]姜启源.数学模型(第二版)[M].北京:高等教育出版社,2002.
    [180]许江.矿山矿井安全评价内容与评价体系[J].中国矿业,2005,8:11-14.
    [181]杨智懿,熊亚选,张乾林.工作面瓦斯涌出量的神经网络模型预测研究[J].煤炭工程,2004,10:73-75.
    [182]汪荣鑫.数理统计[M].陕西:西安交通大学出版社,1986.
    [183]赵红梅,陈开岩,张作华.矿井瓦斯涌出量一元线性回归及区间预测探讨[J].能源技术与管理,2007,3:144-145.
    [184]陶云奇,许江,李树春.改进的灰色马尔柯夫模型预测采煤工作面瓦斯涌出量[J].煤炭学报,2007,4:391-395.
    [185]陶云奇,许江,李树春.瓦斯涌出量灰色预测法[J].重庆大学学报:自然科学版,2007,6:121-124.
    [186]张林华,刘玉洲.利用灰色马尔可夫模型预测煤矿安全事故[J].煤炭科学技术,2006,11:26-30.
    [187] A. R. Green.New Technique in Assessment Mine Risk.26th international conference of safety in mines research instituties.Vol.3 1995.
    [188] R. V. Ramani.Times analysis of coal mine accident experience.Journal of Safety Research,1994(4):229-234.
    [189] M. Fllipek.Safety and accidents prevention in the polish hard coal mining.26th international conference of Safety in Mining Research Institute.1995.
    [190] W. Rowell.Practical risk assessment.Mining Engineering,1996(7).
    [191] T. Athinson.Risk management for mining projects.Mining Engineering,1996(5):131-136.
    [192] Health and Safety Commission.Advisory committee on major hazards.3rd report.The control of major hazards.London Her Majesty's stationery ogee.1983.
    [193] NNSA,2001.The first batch of review Comments for the Guangdong Daya Bay Nuclear Power Plant Probabilistic Safety Assessment report.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700