用户名: 密码: 验证码:
宏观结构的三参数三维断裂研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
大型复杂机械(如:航空飞行器、压力容器和高速铁路等等)的安全和可靠性要求对国防和国民经济都具有无可比拟的重要性。而对材料和结构进行损伤容限耐久性设计在很大程度上充分发挥了材料和结构的承载能力,进而提高了结构设计应用的可靠性和经济性。然而,实际工程中采用的损伤容限耐久性设计仍然基于二维断裂理论中的框架(如:线弹性主要采用K-T方法,弹塑性主要采用J-Q方法等等),而建立在二维理论基础之上的传统断裂理论和损伤容限分析方法已经无法满足其现代结构设计的可靠性和经济性要求,这使得人们必须进一步发展三维损伤容限设计理论。目前,虽然许多学者在三维断裂理论及剩余寿命预测方面已经做了大量优秀的工作,如:Guo建立的基于三维约束因子的三维疲劳断裂理论、准则和规律能够较好地解决实际工程中关键科学和技术问题。然而考虑三维离面约束影响的研究工作还主要集中在穿透直裂纹的研究上,对各种复杂形式一般三维裂纹的剩余寿命预测方面还没有很好地解决,而一般裂纹体的三维弹塑性裂纹的剩余强度方面也没有系统的研究,这种局面阻碍着三维断裂力学的广泛应用和断裂力学学科的发展。由于准确描述线弹性三维裂纹尖端应力场对准确评估结构剩余寿命起着关键性作用,同时,对于弹塑性材料,裂尖弹塑性应力场对结构剩余强度的评定也起着非常重要的作用,本文针对这类关键问题,采用连续介质力学理论和系统的三维弹性和弹塑性有限元计算,对各种形式的三维裂纹体进行了系统研究,取得了以下进展:
     1)由于一般的三维裂纹弹性端部场的解析解很难得到,针对目前工程实际中复杂三维结构广泛存在的各种典型的裂纹缺陷(包括:穿透直裂纹、内埋椭圆裂纹、半椭圆表面裂纹和1/4椭圆角裂纹),用三维弹性体单元及裂纹尖端的奇异单元建立各种形式裂纹的有限元模型,并通过对软件的二次开发分别求出了裂纹前沿的三个参数(应力强度因子K,T应力和离面约束因子T_z)的分布,同时考虑泊松比对三个参数的影响,从而建立起利用K-T-T_z完整描述各种裂纹弹性端部场的三维三参数方法,最后利用最小二乘法给出了描述三个参数的经验公式。这一系列成果为工程实际中有效地预测结构剩余寿命建立了坚实的理论桥梁。
     2)针对I型弹塑性平面应变裂纹,通过引入弹塑性泊松比veq(此时T_z=v_(eq))并进行详细的理论分析,给出了能准确描述平面应变裂纹前沿应力应变场的准解析解,该解可以将HRR解只能描述T_z=0.5区域内的应力应变场拓展到能完整描述整个裂纹前沿塑性区域内的应力场。同时给出了当给定一某个点(r/(J/σ_0),θ),通过方程的迭代就可以确定该点处的T_z,从而最终确定各点处各应力参数及能量参数,进而完整确定了裂纹端部场了。基于平面应变的理论结果,进而提出了三维裂纹端部场的一种在给定某个点(r/(J/σ_0),θ)及相应的veq(此时T_z≠v_(eq)),再确定T_z的方法,进而最终确定整个三维裂纹的端部场的思想。
     3)针对复杂弹塑性结构中各种典型的三维裂纹,利用三维弹塑性体单元建立了各种形式裂纹(内埋椭圆裂纹、半椭圆表面裂纹和1/4椭圆角裂纹)的有限元模型,并通过对软件的二次开发分别求出了裂纹前沿附近的J积分、Q应力和离面约束因子T_z的分布,再结合弹塑性断裂力学理论并引入弹塑性泊松比v_(eq),推导出利用已有弹性的T_z分布结果可以较好地描述弹塑性离面约束因子T_z分布的半解析公式,同时给出了能够准确描述等效应力σ_e和等效应变ε_e的近似公式,从而建立起利用三参数J-Q_T-T_z对三维裂纹前沿整个塑性区域端部场的完整描述的方法,这一系列成果为弹塑性结构的剩余强度评定提供了坚实的理论基础。
     在以上工作基础上,采用应变能密度因子理论和三维约束理论,对弹性和弹塑性三维断裂准则进行了探讨,发现建立在应变能密度因子理论基础上的三维断裂准则无法显示T应力的影响,最后通过试验结果验证了弹塑性断裂准则的有效性。同时给出了预测各种一般三维裂纹在疲劳载荷作用下裂纹扩展的近似经验公式。从而为三维结构的剩余寿命预测和剩余强度评估建立起联系的桥梁。
     此外,本文对珍珠贝的力学性能和基于BP神经网络的多裂纹柱体扭转问题进行了研究,相关结果在附件中给出。作为珍珠贝的力学性能研究的基础,其材料中方解石晶体的弹性参量几十年来有大量实验和理论研究,但数据分散。附录A给出了基于深入细致的第一原理计算得到的一组更客观的弹性参量,可为珍珠贝研究提供更好的基础。附录B给出了利用有限元模拟珍珠贝纳米压痕试验的初步结果。附录C提出一种基于BP神经网络的多裂纹柱体扭转问题的数据新处理方法,通过对BP神经网络的改进,给出了更精确、收敛速度更快的理想设计方案。
The safety and reliability of huge-scale mechanical systems are significant for national economy and national defence. With the extensive application of complex structures (e.g. airplane, pressure vessels, high-speed railway, etc.), the precision and reliability of them must be improved. The structure design based on the two-dimensional (2D) fracture theory and damage tolerance method (e.g. linear elastic K-T theory and elastic-plastic J-Q method etc.) has been difficult to meet the demand of reliability and economy. Therefore, people must develop the three-dimensional theory in order to grasp the mechanical behavior of structures under the complex stress state. Recently, though the three-dimensional (3D) fracture theory has obtained quite great progress (e.g. the 3D fatigue fracture theory and fracture criterion by Guo can be used to solve some key problem in engineering based on 3D out-of-plane constraint factor). However, a lot of research is focused on the through-thickness straight crack when the 3D constraint factor is considered. Many key problems have not been solved about many typical three-dimensional elastic and elastic-plastic cracks at home and abroad, and how to accomplish the object needs a lot of work from the lab to the engineering applications, which is becoming more and more severe drawback of the development and engineering application for fracture mechanics. Because the 3D stress field of linear elastic crack front and elastic-plastic crack front has an important role on predicting the residual life and evaluating the residual strength of 3D structures, various typical three-dimensional cracks have been investigated based on detailed continuum mechanics and finite element method (FEM) in the dissertation. The following main creativities are achieved:
     1) The analytical solution of elastic stress field near 3D cracks front is hardly available. Based on the 3D elastic FEM, we study four typical 3D cracks (through-thickness straight crack, embedded elliptical crack, semi-elliptical crack and quarter elliptical crack). The 3D singular elements with four mid-side nodes at the quarter points are used around the crack front to simulate the inverse square foot singularity at the crack tip, and then the 3D finite element model for the various 3D crack are completed. Through secondary development of finite element software, the distributions of the three parameters (stress intensity factor K, T-stress and out-of-plane constraint factor T_z) are all obained, and the effect of Poisson’s ratio is also consided. By fitting the numerical results with the least squares method, empirical fromulae have been given for the convenience of engineering applications. Finally, the three-parameter K-T-T_z approach is provided, which can accurately describe the stress field around the crack front. The series of achievements provide the firm theory bridge against predicting the residual life of 3D structures effectively.
     2) By introducing the elastic-plastic Poisson’s ratio v_(eq)(T_z=v_(eq)), the quasi-analytical solution for the mode I elastic-plastic plane strain crack tip fields is presented. The solution extends the dominating region from the region T_z=0.5 (HRR solution) to whole plastic zone. For a given point (r/(J/σ_0),θ), the value of v_(eq) at this point can be determined by an iteration procedure, and then various stress and energy parameters can be obtained. Based on the above results, the T_z can be determined by introducing veq (T_z≠veq) for 3D crack, and then the 3D crack tip fields can be described finally.
     3) Based on the 3D elastic-plastic FEM, we study three typical 3D cracks (embedded elliptical crack, semi-elliptical crack and quarter elliptical crack). Through secondary development of finite element software, the distribution of the three parameters (J-integral, Q-stress and out-of-plane constraint factor T_z) are all obained, By the numerical computation and theoretical analysis, the semi-analytical fromulae of T_z,σ_e andε_e have been given for the convenience of engineering applications. Finally, the three-parameter J-Q_T-T_z approach is provided, which can accurately describe the stress field around the crack front. The series of achievements provide the firm theory foundation against evaluating the residual strength of 3D structures effectively.
     From the above results, the 3D elastic and elastic-plastic fracture criteria are proposed based on the strain energy density factor theory and 3D constaint theory, and then they are used to the experimental results. The effects of T-stress effect are hardly displayed in the 3D fracture criteria. At the same time, the elastic-plastic fracture criterion has been proved to be effective by use of experimental data. Finally, the prediction of general 3D fatigue crack growth has been given by a series of experiential formulae. The achievements provide the firm theory bridge from the residual strength to the residual life of 3D structures.
     Furthermore, the mechanical properties of nacre and the multi-cracked prismatic shaft torsion problem are both investigated based on the Back-propagation Neural Network theory. As a fundamental issue for the mechanical properties of nacre, the elastic properties single-crystal of calcite have long been made great efforts to study, while the large scatter of the available data are arise widely. In appendix A, the elastic constants of single-crystal calcite (CaCO_3) have been obtained by extensive first-principles calculations based on the density functional theory. In appendix B, the nanoindentation process of nacre has been simulatied based on 3D elastic-plastic FEM. In appendix C, a new processing method for the multi-cracked prismatic shaft torsion problem is presented based on the Back-propagation Neural Network. We provide an optimizing project of Back-propagation training and fast simulate the experimental results of the torsion rigidity. The examples prove that the project introduced in this paper is accurate and converge quickly.
引文
[1] Grandt Jr AF. Material degradation & Fatigue in aerospace structures[R]. NASA No.19980010434, 1998.
    [2] Kinzie R, Cooke G. Corrosion in USAF aging aircraft fleets[R]. NASA1999002633, 1999.
    [3] Seife C. Columbia disaster underscores the risky nature of risk analysis. Science, 2003, 299:1001.
    [4]高镇同,熊峻江.疲劳/断裂可靠性研究现状及展望.机械强度, 1995,17(3): 61-80.
    [5]伍厚军,郑国磊,闫勇,柳泽,罗乖林. CAD/CAE在飞机改型中的应用.飞机设计, 2003, 2: 10-16.
    [6]郭万林,张田忠.飞机谱载荷下裂纹扩展的三维约束效应.航空学报, 2000, 21(4): 294-298.
    [7]郭万林.复杂环境下的三维疲劳断裂.航空学报, 2002, 23 (3): 215-220.
    [8]郭万林.飞机结构损伤容限设计中的三维问题研究.航空学报, 1995, 16(2): 129-136.
    [9] Han EH, Ke W. Methodologies for predicting corrosion fatigue life[C]. Proc.of Fatigue 99. 1999(4): 2229-2236.
    [10] Shilkrot LE, Miller RE, Curtin WA. Multiscal plasticity modeling: coupled atomostics and discrete dislocation mechanics. J. Mech. Phys. Solids. 2004, 52: 755-787.
    [11] Carrere N, Feyel F, Kruch S. Multi-scale modelling of silicon carbide einforced titanium MMCs: Application to advanced compressor design. Aero. Sci. Tech. 2003, 7: 307-315.
    [12] Newmen Jr J.C. A crack opening stress equation for fatigue crack growth. Int. J. Fract. 1984, 24: 131-135.
    [13] Du ML, Chiang FP, Kagwade SV, Clayton CR. Synergism between corrosion and fatigue of A12024-T3 alloy. Structural integrity in aging aircraft. ASME. 1995(A96-2399105-05): 119-128.
    [14] Krause R, Rank E. Multiscale computations with a combination of the h- and p-versions of the finite-element method. Comput. Methods Appl. Mech. Engng. 2003, 192: 3959-3983
    [15]张福泽.金属机件腐蚀损伤日历寿命的计算模型和确定方法.航空学报. 1999, 20(3): 75-79.
    [16]张福泽.飞机日历寿命确定的新方法研究.疲劳也与断裂2000,主编:柳春图.北京:气象出版社. 2000, 7-12.
    [17] Wei RP, Harlow DC. Corrosion and corrosion fatigue of aluminum alloys-An aging aircraft issue[C]. Proc. of Fatigue 99. 1999(4): 2197-2204.
    [18] Liu W, Li Y, Jia G. Evalution and supervision of service life for aircraft structures undercorrosive conditions[J]. J. Beijing University of Aeronautics and Astronautics, 1996, 22(3): 259-263.
    [19] Guo W. Elastoplastic three dimensional crack border field-I. Eng. Fract. Mech. 1993a, 46: 93-104.
    [20] Guo W. Elastoplastic three dimensional crack border field-II. Eng. Fract. Mech. 1993b, 46: 105-113.
    [21] Guo W. Elastoplastic three dimensional crack border field-III. Eng. Fract. Mech. 1995, 51: 51-71.
    [22] Guo W. Three-dimensional analysis of plastic constraint for through-thickness cracked bodies. Eng. Fract. Mech. 1999, 62: 383-407.
    [23] Chang T, Guo W. Effects of strain hardening and stress state on fatigue crack closure. Int. J. Fatigue. 1999, 21: 881-888.
    [24] Guo W. Theoretical investigation of elastoplastic notch fields under triaxial stress constraint. Int. J. Fract. 2002, 115:233-249.
    [25] Guo W, Wang C, Rose F. On the influence of cross sectional thickness on fatigue crack growth, Fatigue Fract. Mater. Struct. 1999, 22:437-444.
    [26] Griffith AA. The Phenomena of Rupture and Flow in Solids. Phil. Trans. R. Soc. Lond., 1921, A221: 163~197.
    [27] Irwin GR. Fracture Dynamics, in:" Fracturing of Metals", ASM Publications, 1948, 147-166.
    [28] Irwin GR. Fracture, Handbuch der physik, vol. VI, Flugge, (ed), Springer, 1958, 551-590.
    [29] Williams ML. On the stress distribution at the base of a stationary crack. J. Appl. Mech. 1957, 24: 109-114.
    [30] Hutchinson JW. Singular behaviour at the end of a tensile crack in a hardening material. J. Mech. Phys. Solids 1968, 16: 13-31.
    [31] Rice JR, Rosengren GF. Plane strain deformation near near a crack tip in a power-law hardening material. J. Mech. Phys. Solids 1968, 16: 1-12.
    [32] O’Dowd NP, Shih CF. Family of crack-tip fields characterized by a triaxiality parameter-I. Structure of fields. J. Mech. Phys. Solids 1991, 39: 989-1015.
    [33] O’Dowd NP, Shih CF. Family of crack-tip fields characterized by a triaxiality parameter-II. Fracture applications. J. Mech. Phys. Solids 1992, 40: 939-963.
    [34] Yang W, Freund LB. Transverse shear effects for through-cracks in an elastic plate. Int. J. Solids Struct. 1985, 21: 977~994.
    [35] Kong XM, Schluter N, Dahl W. Effect of triaxial stress on mixed-mode fracture. Eng. Fract. Mech. 1995, 52: 379-385.
    [36] Yuan H, Brocks W. Quantification of constraint effects in elastic-plastic crack front fields.J. Mech. Phys. Solids 1998, 46: 219~241.
    [37] Bellett D, Taylor D, Marco S, Mazzeo E, Guillois J, Pircher T. The fatigue behaviour of three-dimensional stress concentrations. Int. J. Fatigue 2005, 27: 207-221.
    [38] Guo WL. Recent advances in three-dimensional fracture mechanics. Key Eng. Mater. 2000, 183, 193-198.
    [39] Guo WL, Pitt SD, Jones R. Three-dimensional strength assessment for damage tolerant structures. In: Yu M, editor. Proceedings of the International Conference on Strength Theory (Xian, September 1998).
    [40] Wang CH, Guo W, Rose F. Elastic-plastic notch fields in strain hardening materials, ASME J. Eng. Mater. Tech. 1998, 121: 313~320.
    [41] Guo W, Dong H, Lu M, Zhao X. The coupled effects of thickness and delamination on cracking resistance of X70 pipeline steel. Int. J. Pres. Ves. Pip. 2002, 79: 403-412.
    [42]郭万林,董蕙茹,杨政,路民旭,赵新伟,罗金衡.厚度与分层耦合效应对X60管线钢断裂韧性的影响.金属学报, 2001, 37: 386~390.
    [43]董蕙茹,郭万林,杨政,路民旭,赵新伟,罗金衡. X60管线钢非穿透裂纹体的断裂研究.金属学报, 2001, 37: 579~584.
    [44] Neimitz A. Dugdale model modification due to the geometry induced plastic constraints. Eng. Fract. Mech. 2000, 67: 251-261.
    [45] Neimitz A. Modification of Dugdale model to include the work hardening and in- and out-of-plane constraints. Eng. Fract. Mech. 2004, 71: 1585-1600.
    [46] Neimitz A, Galkiewicz J. Fracture toughness of structural components: influence of constraint. Int. J. Pres. Ves. Pip. 2006; 83, 42-54.
    [47]张斌.材料结构宏观三维断裂和微观破坏行为研究.博士学位论文,南京,南京航空航天大学, 2005.
    [48] Nakamura TM, Parks DM. Determination of elastic T-stress along three-dimensional crack fronts using an interaction integral. Int. J. Solids Struct. 1992, 29: 1597-1611.
    [49] Kfouri AP. Some evaluation of the elastic T-term using Eshelby’s method. Int. J. Fracture 1986, 30: 301-315.
    [50] Henshell RD, Shaw KG, Crack tip FEs are unnecessary. Int. J. Numer. Meth. Eng. 1975, 9: 495-507.
    [51] Barsoum RS. On the use of isoparametric FEs in linear fracture mechanics. Int. J. Numer. Meth. Eng. 1976, 10: 25-37.
    [52] Zhang B, Guo WL. Tz constraints of semi-elliptical surface cracks in elastic plates subjected to uniform tension loading. Int. J. Fracture 2005, 131: 173-187.
    [53] Wang X. Elastic T-stress solutions for semi-elliptical surface cracks in finite thickness plates. Eng. Fract. Mech. 2003, 70: 731-756.
    [54] Zhao LG, Tong J, Byrne J. Stress intensity factor K and the elastic T-stress for corner cracks. Int. J. Fracture 2001, 109: 209-225.
    [55] Bellett D, Taylor D. The effect of crack shape on the fatigue limit of three-dimensional stress concentrations. Int J Fatigue 2006, 28: 114-123.
    [56] Sih GC. Handbook of Stress-Intensity Factors for Researchers and Engineers, Institute of Fracture and Solid Mechanics, Lehigh University, 1973, Bethlehem, Pennsylvania.
    [57] Shah RC, Kobayashi AS. Stress intensity factor for an elliptical crack under arbitrary normal loading, Eng. Fract. Mech. 1971, 3: 71-96.
    [58] Zhang B, Guo W, Three-dimensional stress state around quarter-elliptical corner crack in elastic plates subjected to uniform tension loading. Eng. Fract. Mech. 2007, 74: 386-398.
    [59] Newman JR JC, Raju IS. An empirical stress-intensity factor equation for the surface crack. Eng. Fract. Mech. 1981, 15: 185-192.
    [60] Rice J.‘A Path Independent Integral and the Approximate Analysis of Strain Concentration by Notches and Cracks’, Brown Univ. ARPA SD-86 Report E39, May 1967.
    [61] Evans WT, Light MF, Luxmoore AR. An experimental and finite element investigation of fracture in aluminium thin plates. J. Mech. Phys. Solids 1980, 28: 167-189.
    [62] Narasimhan R, Rosakis AJ. A finite element analysis of small-scale yielding near a stationary crack under plane stress. J. Mech. Phys. Solids 1988, 36: 77-117.
    [63] Mcmeeking RM. Finite deformation analysis of crack-tip opening in elastic-plastic materials and implications for fracture. J. Mech. Phys. Solids 1977, 25: 357-381.
    [64] Mcmeeking RM, Parks DM. 1979, On criteria for J-dominance of crack fields in large scale yielding, in Elastic-Plastic Fracture, ASTM STP 668, 1979, 175-194.
    [65] Shih CF, German MD. Requirements for a one parameter characterization of crack-tip fields by the HRR singularity. Int. J. Fracture 1981, 17: 27-43.
    [66] Li YC, Wang TC. Higher order asymptotic field of tensile plane strain non-linear crack problems. Sci. Sin. (Series A) 1986, 29: 941-955.
    [67] Bilby BA, Cardew GE, Goldthorpe MR, Howard IC. Size effects in fracture, Institution of Mechanical Engineers, London, UK, 1986, 37-46.
    [68] Betegon C, Hancock JW. Two-parameter characterization of elastic-plastic crack-tip fields. J. Appl. Mech. 1991, 58: 104-113.
    [69] Hancock JW, Reuter WG, Parks DM, Constraint and toughness parameterized by T constraint effects in fracture. ASTM. STP 1992, 1171: 21~40.
    [70] Xia L, Wang TC, Shih CF. Higher-order analysis of crack-tip fields in elastic power-law hardening materials. J. Mech. Phys. Solids 1993, 41: 665-687.
    [71] Yang S, Chao YJ, Sutton MA. Higher-order asymptotic crack-tip fields in a power-law hardening materials. Eng. Fract. Mech. 1993, 45: 1-20.
    [72] Sharma SM, Aravas N. Determination of higher-order terms in asymptotic elastoplastic crack-tip solutions. J. Mech. Phys. Solids 1991, 39: 1043-1072.
    [73] Tian C, Gao Y. Role of elasticity in elastic-plastic fracture. Analytical bi-linear crack-tip fields and finite element analysis. Int. J. Solids Struct., 2005, 42: 951-970.
    [74] Guo W, Zhao J, Kuang Z, Jiang J. Constraint effects of plane strain crack: Small scale yielding J-Tz description. Int. J. Fract. 2007, (under review)
    [75] Guo W, Zhao J, Kuang Z, Jiang J. Constraint effects of plane strain crack: Large scale yielding J-QT-Tz description. Int. J. Fract. 2007, (under review)
    [76] Nikishkov GP, Brucknerfoit A, Munz D. Calculation of the second fracture parameter for finite cracked bodies using a three-term elastic-plastic asymptotic expansion. Eng. Fract. Mech. 1995, 52: 685-701.
    [77] Yuan H, Lin GY, Cornec A. Quantifications of crack constraint effects in an austenitic steel. Int. J. Fract. 1995, 71: 273-291.
    [78] Newman JR JC, Raju IS. Stress-intensity Factor Equations for Cracks in Three-dimensional Finite Bodies Subjected to Tension and Bending Loads, in S. N. Atluri, Computational Methods in the Mechanics of Fracture, Amsterdam: Elsevier Science Publishers B. V., 1986, 321–324.
    [79] Shen H, Guo W. 3D constraint effect on 3D fatigue crack propagation. Int. J. Fatigue 2005, 27: 617-623.
    [80] Irwin GR. Fracture mode transition for a crack traversing a plate. J. Basic Eng. 1960, 82: 417-425.
    [81] Neimitz A, Galkiewicz J. Fracture toughness of structural components: influence of constraint. Int. J. Pres. Ves. Pip. 2006, 83: 42-54.
    [82]董蕙茹.三维复合型断裂的试验研究.博士学位论文,西安,西安交通大学, 2005.
    [83] Broek D. Elementary engineering fracture mechanics, 3rd, Martinus Nijhoff, the Hague, 1982.
    [84] Aoki S, Kishimoto K, Yoshida T, et al, Elastic-plastic fracture behavior of an aluminum alloy under mixed mode loading. J. Mech. Phys. Solids 1990, 38; 195~213.
    [85] Hiroshi M, Kenji M, Masanori K, Thickness effects of CCT specimens. Int. J. Numer. Meth. Engng. 1986, 22: 623~635.
    [86] Broek D, Schijve J, The effect of sheet thickness on the fatigue crack propagation in 2024-T3 alclad sheet material, NLR Report No. TR-M2129, National Aero and Astronautical Research Institute, 1963.
    [87] Broek D, Schijve J, The influence of sheet thickness on crack propagation. Aircraft Eng. 1966, 38: 31~33.
    [88] Mills WJ, Hertzberg RW, The effect of thickness on fatigue crack retardation in 2024-T3aluminum alloy. Eng. Fract. Mech. 1975, 7: 705~711.
    [89] Ting TCT, Anisotropic Elasticity: Theory and applications, Oxford University Press, New York, 1996.
    [90] Rigby RH, Aliabadi MH, Decomposition of the mixed-mode J-integral revised. Int. J. Solids Struct. 1998, 35: 2073~2099.
    [91]郭万林.三维断裂和疲劳裂纹扩展.博士学位论文,西安,西北工业大学, 1991.
    [92]佘崇民.飞机结构的三维断裂研究.博士学位论文,南京,南京航空航天大学, 2005.
    [93] Sih GC. Macdonald B. Fracture mechanics applied to engineering problems-strain energy density fracture criterion. Eng. Fract. Mech. 1974, 6(2): 361-386.
    [94] Paris PC, Edorgan F. Critical analysis of crack propagation laws. ASME, J. Bas. Eng. 1963, 85: 528-534.
    [95] Elber W. Fatigue crack closure under cyclic tension. Eng. Fract. Mech. 1970, 2: 37-45.
    [96] Newman JC Jr. A crack-closure model for prediction fatigue crack growth under aircraft spectrum loading, ASTM STP 1981, 748: 53-84.
    [97] Dodds RH, Shih CF, Anderson TL, Continuum and micromechanics treatment of constraint in fracture. Int. J. Fract. 1993, 64: 101~133.
    [98]官忠信,杨晓华.西北工业大学科技资料, JCH8799, 1987.
    [99] Wang C, et al. Biomimetic structure design-a possible approach to change the brittleness of ceramics in nature, Mater. Sci. Eng. C, 2000, 11: 9-12.
    [100] Okumura K, Gennes PG. Why is nacre strong? Elastic theory and fracture mechanics for biocomposites with stratified structures, Eur. Phys. J. E, 2001, 4: 121-127.
    [101] Rho JY, Kuhn-Spearing L, Zioupos P. Mechanical properties and the hierarchical structure of bone, Med. Eng. Phys., 1998, 20: 92–102.
    [102] John D, Peter Z, Peter D, et al. Mechanical properties of nacre and highly mineralized bone, Proc. R. Soc. Lond. B., 2001, 268: 107-111.
    [103] Evans AG, Suo Z, Wang RZ, Aksay IA, He MY, Hutchinson JW. Model for the robust mechanical behavior of nacre. J. Mater. Res. 2001, 16: 2475-2484.
    [104] Wang RZ, Suo Z, Evans AG, Yao N, Aksay IA. Model for the robust mechanical behavior of nacre. J. Mater. Res. 2001, 16: 2485-2493.
    [105] Gao HJ, Ji BH, Jager IL, Arzt E, Fratzi P. Materials become insensitive to flaws at nanoscale: Lessons from nature. PNAS 2003, 100: 5597-5600.
    [106] Lin A, Meyers MA. Growth and structure in abalone shell. Mater. Sci. Eng. A 2005, 390: 27-41.
    [107] Kamat S, Su X, Ballarini R, Heuer AH. Structural basis for the fracture toughness of the shell of the conch Strombus gigas. Nature 2000, 405: 1036-1040.
    [108] Majumder A, Ghatak A, Sharma A. Microfluidic Adhesion Induced by SubsurfaceMicrostructures. Science 2007, 318: 258– 261.
    [109] Rousseau M, Lopez E, Coute A. Sheet nacre growth mechanism: a Voronoi model. J. Struct. Biol. 2005, 149: 149-157.
    [110] Katti D, Katti K. Modeling microarchitecture and mechanical behavior of nacre using 3D finite element technique. J. Mater. Sci. 2001, 36: 1411-1417.
    [111] Barthelat F, Espinosa HD. Elastic properties of nacre aragonite tablets. Proceeding of the 2003 SEM Annual Conference and Exposition on Experimental and Applied Mechanics, June 2-4, Charlotte, North Carolina, Session 68, Paper 187, 2003.
    [112] Liu CH, Li WZ, Li HD. Simulation of nacre with TiC/metal multilayers and a study of their toughness. Mater. Sci. Eng. C 1996, 4: 139-142.
    [113] Voight W (1910). Lehrbuch der Kritallphysik, reprinted 1928. Teubner, Leipzig.
    [114] Bhimasenachar J. Elastic constants of diamond. Proc. Indian Acad. Sci. 1945, 22: 199-202.
    [115] Reddy J, Subrahmanyam SV. Thermo-elastic behaviour of calcite. Acta Cryst. 1960, 13: 493-494.
    [116] Peselnick L. Robie RA. Elastic constants of calcite. J. Appl. Phys. 1963, 34: 2494-2495.
    [117] Dandekar DP. J. Appl. Phys. 1968, 39: 2971-2973.
    [118] Hearmon RFS.“The elastic constants of crystals and other anisotropic materials. In K.H. Hellwege and A.M. Hellwege Eds., Landolt-Bornstein Tables, III/11, p. 1-244, Springer-Verlag, 1979, Berlin.
    [119] Vo Thanh D, Lacam A. Experimental study of the elasticity of single crystalline calcite under high pressure (the calcite I-calcite II transition at 14.6 kbar). Phys. Earth Planet. Interiors 1984, 34: 195-203.
    [120] Chen C, Lin C, Liu L, et al. Elasticity of single-crystal calcite and rhodochrosite by Brillouin spectroscopy. Am Mineral. 2001, 86:1525-1529.
    [121] Pavese A, Catti M, Price GD, Jackson RA. Interatomic potentials for CaCO3 polymorphs (calcite and aragonite), fitted to elastic and vibrational data. Phys. Chem. Minerals 1992, 19: 80-87.
    [122] Fisler DK, Gale JD, Cygan RT. A shell model for the simulation of rhombohedral carbonate minerals and their point defects. Am Mineral.2000, 85: 217-224.
    [123] Liu L, Chen C, Lin C. Elasticity of single-crystal aragonite by Brillouin spectroscopy. Phys. Chem. Minerals 2005, 32: 97-102.
    [124] Karki BB, Ackland GJ, Crain J. Elastic instabilities in crystals from ab initio stress–strain relations J. Phys.: Condens. Matter 1997, 9: 8579-8589.
    [125] Wu ZG, Chen XJ, Struzhkin VV, Cohen RE. Trends in elasticity and electronic structure of transition-metal nitrides and carbides from first principles. Phys. Rev. B 2005, 71: 214103-214106.
    [126] Dai YD, Wang JZ, Wu RH.“Biomineralogy”. Petroleum Industry Press, 1994, Beijing, China.
    [127] Hill R. The elastic behavior of a crystalline aggregate. Proc. Phy. Soc. London 1952, 65: 349-355.
    [128] Hill R. Elastic properties of reinforced solid: some theoretical principles. J. Mech. Phys. Solids 1963, 11: 357-367.
    [129] Kresse G, Hafner J. Ab initio molecular dynamics simulation of the liquid metal amorphous semiconductor transition in germanium, Phys. Rev. B 1994, 49: 14251-14269.
    [130] Kresse G, Furthmüller J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set, Comput. Mater. Sci. 1996, 6: 15-50.
    [131] Kresse G, Furthmüller J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set, Phys. Rev. B. 1996, 54: 11169-11186.
    [132] Vanderbilt D. Soft self-consistent pseudopotentials in a generalized eigenvalue formalism. Phys. Rev. B. 1990, 41: 7892-7895.
    [133] Perdew JP, Chevary JA, Vosko SH, et al. Atoms, molecules, solids, and surfaces: Applications of the generalized gradient approximation for exchange and correlation, Phys. Rev. B. 1992, 46: 6671-6687.
    [134] Kresse G, Hafner J. Norm-conserving and Ultrasoft pseudopotentials for first-row and transition elements, J. Phys.: Condens. Matter 1994, 6: 8245-8257.
    [135]李敏,梁乃刚,张泰华,王林栋.纳米压痕过程的三维有限元数值试验研究[J].力学学报, 2003, 35: 257-264.
    [136] Barthelat F, Tang H, Zavattieri PD, Li CM, Espinosa HD. On the methanics of mother-of-pearl: A key feature in the material hierarchical structure. J. Mech. Phys. Solids 2007, 55: 306-337.
    [137] Li XD, Chang WC, Chao YJ, Wang R, Chang M. Nanoscale structural and mechanical characterization of a natural nanocomposite material: The shell of red abalone. Nano Lett. 2004, 4: 613-617.
    [138] Oliver WC, Pharr GM. An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. J. Mater. Res. 1992, 7: 1564-1583.
    [139]范海荣,王树林,张可学.解多裂纹弹性柱体扭转问题的边界配置法,上海建材学院学报, 1991, 4 (2): 192 ~ 201.
    [140]王树林,范海荣,张可学.多裂纹受扭轴问题应力函数的特征展开式,上海建材学院学报, 1990, 3 (3): 203 ~ 211.
    [141]黄醒春,周斌,顾隽超.任意多裂纹应力强度因子的位移不连续数值算法,岩土工程学报, 2001, 23 (3): 370 ~ 373.
    [142] Alberto Carpinteri, Francesco Ciola, Nicola Pugno. Boundary element method for the strain-softening response of quasi-brittle materials in compression, Comput. Struct. 2001, 79: 389 ~ 401.
    [143]王树林,范海荣,张可学.电磁涡流比拟测多裂纹柱体K3的方法(二)-实验应力法,上海建材学院学报, 1989, 2 (4): 350 ~ 355.
    [144]王树林,王贵成,王柱.人工神经网络在实验断裂力学中的应用.实验力学, 2003, 18 (4): 473 ~ 478.
    [145]闻新,周露,李翔,张宝伟. MATLAB神经网络仿真与应用,科学出版社, 2003.
    [146]闻新,周露,王丹力,熊晓英. MATLAB神经网络应用设计,科学出版社, 2001.
    [147]郑君里,杨行峻,人工神经网络.高等教育出版社, 1992.
    [148]罗四维.人工神经网络建造.中国铁道出版社, 1998.
    [149]张明德,冯闻静,董敏,刘福祯,乔长阁.改进的BP神经网络收敛性的实验研究,计算机工程, 1998, 24 (5): 27 ~ 29.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700