用户名: 密码: 验证码:
基于纳米金和三维自组装膜界面的环境电化学传感器制备及应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文借助“种子媒介纳米金生长法”,制备了新型纳米金修饰玻碳电极(Au/GCE);并在此基础上,将纳米金粒子与自组装膜技术相结合构建了新型三维自组装膜修饰电极。通过场发射扫描电子显微镜(FE-SEM)、紫外-可见光谱分析(UV-vis)、电化学分析等测试技术,对修饰电极的表面形貌、结构以及电化学性能进行了详细研究;并以Au/GCE电极为基础,制备了系列环境电化学传感器,成功用于水体中NO2-、多种痕量苯酚类衍生物、尿酸(UA)和抗坏血酸(AA)以及Cu2+的电化学检测。主要研究结果如下:
     (1)实现了粒径为50-90 nm的纳米金修饰玻碳电极的制备;证明了纳米金粒子能有效促进电极表面的电子传递速率;发现L-半胱氨酸(L-cys)组装膜的电化学氧化产物(L-cysoxid)在纳米金修饰电极表面出现了氧化还原反应;[Fe(CN)6]3-/[Fe(CN)6]4-在三维自组装膜电极表面的电子传递速率是二维组装膜修饰电极的2.5倍;且纳米金表面的L-cys膜组装量随粒径的增加而增加。
     (2) Au/GCE电极对NO2-的氧化反应表现出显著的电催化活性,响应峰电流是平面电极表面的1.6倍,并伴随有明显的氧化电位降低;NO2-的氧化过程受扩散步骤控制,传质系数α=0.3,同时不受溶液pH的影响;在1.0×10-5– 5.0×10-3 mol/L范围内,修饰电极表面的响应电流与NO2-浓度成很好的线性关系(r=0.9995),灵敏度为22.2μA/mmol·L-1;Au/GCE实现了对实际废水中NO2-浓度的准确测定,同时表现出良好的稳定性、抗干扰能力和明显的实际应用价值。
     (3) Au/GCE电极对15种苯酚衍生物的电化学氧化过程表现出不同程度的电催化作用;与GCE和平面金电极相比,苯酚衍生物的氧化峰电流出现不同程度的增加,氧化电位的变化受待测物反应活性影响较大;修饰电极实现了对多种水中酚类物质的痕量测定;水杨酸在Au/GCE电极表面的响应迅速,响应灵敏度是GCE电极表面的1.8倍;同时建立了苯酚类衍生物在Au/GCE电极表面的氧化电位与分子结构参数之间的多元线性方程模型。
     (4) Au/GCE电极对AA的氧化有明显的电催化作用,氧化电位比GCE表面降低了100 mV;实现了UA和AA氧化峰170 mV的分离;两者在修饰电极表面的分离效果受溶液pH影响显著,酸性条件有利于两者的同时测定;L-cysoxid/Au/GCE对AA的氧化有进一步的电催化作用;在pH为6.4时,UA和AA混合液在L-cysoxid/Au/GCE电极表面实现了150 mV的峰电位分离;L-cysoxid/Au/GCE电极对UA和AA的分离同样受到溶液pH的影响,但适用范围更宽,同时比Au/GCE电极具有更好的分离效果; L-cysoxid/Au/GCE修饰电极对UA和AA有较好的响应灵敏度,分别为10.065μA/mmol·L-1和18.101μA/mmol·L-1,线性检测范围:2.0×10-6– 1.0×10-3 mol/L。
     (5) Cu2+在L-cys/Au/GCE表面有较好的响应电流;该氧化还原反应为表面控制过程,同时存在有质子得失,修饰电极在pH为7.0时具有最佳电流响应;L-cys膜的组装量对修饰电极的电流响应有显著影响;线性浓度测定范围:1.0 - 500.0μg/L;修饰电极具有良好的抗干扰能力、稳定性和重现性;3-巯基丙酸(3-MPA)三维自组装膜有效避免了溶出伏安法中的欠电位沉积(UPD)效应; pH对修饰电极同样存在明显的影响;在0.1 - 80.0μg/L的浓度范围内,3-MPA修饰电极表面的溶出电流-浓度成良好的线性关系(r=0.9993),且检测灵敏度比L-cys/Au/GCE在自然富集条件下的提高了10倍以上;3-MPA修饰电极实现了对实际水样中Cu2+的浓度测定,同时具有较好的重现性。
“seed-mediated gold nano-particles growth method”was introduced to electrode modification, and gold nano-particles modified glassy carbon electrode (Au/GCE) was prepared in this thesis. Based on Au/GCE, gold nano-particles and self-assembled monolayers were further combined in electrode modification to fabricate three-dimensional monolayer modified electrode. Field emission scanning electron microscope (FE-SEM), ultraviolet-visible (UV-vis) spectroscopy analysis and electroalaylsis were employed to study the morphology, structure of modified electrodes, and their electrochemical performances. Series of environmental-electrochemical sensors were prepared based on Au/GCE. These sensors have been successfully used in electrochemical determination of nitrite, phenolic compounds, uric acid (UA) and ascorbic acid (AA), and Cu2+. The main contents are listed as following:
     (1) Gold nanoparticles modified glassy carbon electrode was fabricated successfully and the particle size was in the range of 50 to 90 nm. Electron transfer kinetics between the redox couple and the modified electrode interface was improved. The redox reaction of the oxidation product of L-cys assembled monolayer (L-cysoxid) could be observed on gold nano-particles, which has no faradaic current on planar gold. The unique three-dimensional monolayer structure could decrease the ordered and compact property of two-dimensional monolayer. Thus, the electron transfer kinetics of [Fe(CN)6]3-/[Fe(CN)6]4- on the former electrode was 2.5 higher than that on the latter electrode. In addition, the amount of L-cys monolayer was found to increase with the increase of the particle size.
     (2) Excellent electrocatalytic activity for nitrite oxidation could be observed at Au/GCE. Compared with planar electrode, the response current of Au/GCE was 1.6 times as large as that of planar electrode, accompanied with the decrease of peak potential. The nitrite oxidation was controlled by the diffusion of nitrite to the Au/GCE electrode withα=0.3, and pH has no influence on the oxidation potential. The linear range of determination was 1.0×10-5– 5.0×10-3 mol/L with a regression coefficient of 0.9995. The sensitivity of modified electrode was 22.2μA/mmol·L-1. The accurate determination of nitrite in real wastewater was realized on Au/GCE with good long-term stability, anti-interfere ability and applicability.
     (3) Au/GCE exhibited different electrocatalytic activity to the oxidations of 15 kinds of phenolic compounds. Their peak currents were all increased as compared with GCE and planar gold electrode. The oxidation potential was determined by the activity of analyte. Trace phenolic compounds determination could be realized on modified electrode. The prepared electrode had a good current response to salicylic acid, with good linear relationship to its concentration. And the response sensitivity was 1.8 fold than that obtained on GCE. Furthermore, the multiple linear regression model was developed for quantitative relationship between the electrochemical oxidation potential at modified electrode and molecular structures of phenolic compounds.
     (4) The electrocatalytic activity of Au/GCE to the oxidation of AA was proved by the negative shift of oxidation potential with 100 mV. The oxidation peaks of UA and AA were divided on modified electrode with 170 mV separation, which only presented one fold peak on planar gold electrode. The pH presented prominence influence on separation and acidic solution could facilitate the simultaneous determination of UA and AA. And L-cysoxid/Au/GCE presented obviously electrocatalytic effect on AA oxidation. In 6.4 pH solution, 150 mV peak separation was observed on L-cysoxid/Au/GCE, which could not be realized on L-cysoxid/planar gold. Although the separation on L-cysoxid/Au/GCE was also influenced by pH, better separation and broader pH range were gained than that on Au/GCE. Response sensitivities of UA and AA on modified electrode were 10.065 and 18.101μA/mmol·L-1 respectively, in the concentration range of 2.0×10-6– 1.0×10-3 mol/L.
     (5) Cu2+ exhibited a good electrochemical response on L-cys/Au/GCE and the best current response was obtained at 7.0 pH. And the amount of assembled L-cys had obvious effect on current response. The modified electrode presented good anti-interfere ability, stability and reproducibility with a linear detection range of 1.0μg/L-500.0μg/L. Under potential deposition (UPD) effect could be avoided and better current response could be obtained on three-dimensional 3-mercaptopropionic (3-MPA) monolayer in Cu2+ determination. And pH of supporting electrolyte had influence on response. Good linear relationship was obtained between response current and Cu2+ concentration in the range of 0.1-80.0μg/L. and the response sensitivity was improved by 10 fold than that obtained on L-cys/Au/GCE which was processed at open-circuit pre-concentration. And the concentration of Cu2+ in actual sample was determined at modified electrode with good reproducibility.
引文
[1] Sagiv J. Organized monolayers by adsorption. 1. Formation and structure of oleophobic mixed monolayers on solid surfaces. J. Am. Chem. Soc., 1980, 102 (1): 92-98.
    [2] Bain C.D., Troughton E.B., Tao Y.T., et al. Formation of monolayer films by the spontaneous assembly of organic thiols from solution onto gold. J. Am. Chem. Soc., 1989, 111 (1): 321-335.
    [3] Ulman A. Formation and structure of self-assembled monolayers. Chem. Rev., 1996, 96 (4): 1533-1554.
    [4] Nuzzo R.G., Allara D.L. Adsorption of bifunctional organic disulfides on gold surfaces. J. Am. Chem. Soc., 1983, 105 (13): 4481-4483.
    [5] Nuzzo R.G., Dubois L.H., Allara D.L. Fundamental studies of microscopic wetting on organic surfaces. 1. Formation and structural characterization of self-consistent series of polyfunctional organic monolayers. J. Am. Chem. Soc., 1990, 112 (2): 558-569.
    [6] Finklea H.O., Ravenscroft M.S., Snider D.A. Electrolyte and temperature effects on long range electron transfer across self-assembled monolayers. Langmuir, 1993, 9 (1): 223-227.
    [7] Finklea H.O., Snider D.A., Fedyk J., et al. Characterization of octadecanethiol-coated gold electrodes as microarray electrodes by cyclic voltammetry and ac impedance spectroscopy. Langmuir, 1993, 9 (12): 3660-3667.
    [8] Bain C.D., Whitesides G.M. Formation of two-component surfaces by the spontaneous assembly of monolayers on gold from solutions containing mixtures of organic thiols. J. Am. Chem. Soc., 1988,110 (19): 6560-6561.
    [9] Allara D.L., Parikh A.N., Rondelez F. Evidence for a unique chain organization in long chain silane monolayers deposited on two widely different solid substrates. Langmuir, 1995, 11 (7): 2357-2360.
    [10] Razumas V., Amebrant T. Direct electrochemistry of microperoxidase-11 at gold electrodes modified by self-assembled monolayers of 4,4-dithiodipyridine and 1-octadecanethiol. J. Electroanal. Chem., 1997, 427 (1-2): 1-5.
    [11] Hou Z., Dante S., Abbott N.L., et al. Self-asembled monolayers on (111) textured electroless gold. Langmuir, 1999, 15 (8):3011-3014.
    [12] Wan L.J., Terashima M., Noda H., et al. Molecular orientation and ordered structure of benzenethiol adsorbed on gold (111). J. Phys.Chem. B, 2000, 104 (15): 3563-3569.
    [13] Bertilsson L., Liedberg B. Infrared study of thiol monolayer assemblies on gold: preparation, characterization, and functionalization of mixed monolayers. Langmuir, 1993, 9 (1): 141-149.
    [14] Dimilla P.A., Folkers J.P., Biebuyck H.A., et al. Wetting and Protein adsorption on self-assembled monolayers of alkanethiolates supported on transparent films of gold. J. Am. Chem. Soc., 1994,116 (5): 2225-2226.
    [15] Laibinis P.E., Whitesides G.M. Self-assembled monolayers of n-alkanethiolates on copper are barrier films that protect the metal against oxidation by air. J. Am. Chem. Soc., 1992, 114 (23): 9022-9028.
    [16] Hickman J.J., Laibinis P.E., Auerbach D.I., et al. Toward orthogonal self-assembly of redox active molecules on platinum and gold: selective reaction of disulfide with gold and isocyanide with platinum. Langmuir, 1992, 8 (2): 357-359.
    [17]王俊,曾百肇,周性尧.自组装膜技术在电分析化学中的应用.分析科学学报,2000, 16 (3):253-258.
    [18] Feng Z.Q., Imabayashi S., Kakiuchi T., et al. Electroreflectance spectroscopic study of the electron transfer rate of cytochrome c electrostatically immobilized on theω-carboxyl alkanethiol monolayer modified gold electrode. J. Electroanal. Chem., 1995, 394 (1-2): 149-154.
    [19] Tarlov M.J., Bowden E.F. Electron-transfer reaction of cytochrome c adsorbed on carboxylic acid terminated alkanethiol monolayer electrodes. J. Am. Chem. Soc., 1991, 113 (5): 1847-1849.
    [20] Song S.H., Clark R.A., Bowden E.F., et al. Characterization of cytochrome c/alkanethiolate structures prepared by self-assembly on gold. J. Phys. Chem., 1993, 97 (24): 6564-6572.
    [21] Clark R.A., Bowden E.F. Voltammetric peak broadening for cytochrome c/alkanethiolate monolayer structures: dispersion of formal potentials. Langmuir, 1997, 13 (3): 559-565.
    [22] Kasmi A.E., Wallace J.M., Bowden E.F., et al. Controlling interfacial electron-transfer kinetics of cytochrome c with mixed self-assembled monolayers. J. Am. Chem. Soc., 1998, 120 (1): 225-226.
    [23] Pantano P., Kuhr W.G. Dehydrogenase-modified carbon-fiber microelectrodes for the measurement of neurotransmitter dynamics. 2. Covalent modification utilizingavidin-biontin technology. Anal. Chem., 1993, 65 (5): 623-630.
    [24]顾凯,朱俊杰,陈洪渊.血红蛋白在L-半胱氨酸微银修饰电极上的电化学行为.分析化学,1999, 27 (10):1172-1174.
    [25] Millan K.M., Mikkelsen S.R. Sequence-selective biosensor for DNA based on electroactive hybridization indicators. Anal. Chem., 1993, 65 (17): 2317-2323.
    [26] Li J.H., Ding L., Wang E.K., et al. Interfacial characteristics of the self-assembly system of poly-L-lysine|3-mercaptopropionic acid|gold electrode. J. Electroanal. Chem., 1997, 431 (2): 227-230.
    [27] Yang Y.J., Khoo S.B. Fabrication of self-assembled monolayer of 8-mercaptoquinoline on polycrystalline gold electrode and its selective catalysis for the reduction of metal ions and the oxidation of biomolecules. Sens. Actuators B-Chem., 2004, 97 (2-3): 221-230.
    [28] Kalimuthu P., Suresh D., John S.A. Uric acid determination in the presence of ascorbic acid using self-assembled submonolayer of dimercaptothiadiazole-modified gold electrodes. Anal. Biochem., 2006, 357 (2): 188-193.
    [29] Malem F., Mandler D. Self-assembled monolayers in electroanalytical chemistry: application of omega-mercapto carboxylic acid monolayers for the electrochemical detection of dopamine in the presence of a high concentration of ascorbic acid. Anal. Chem., 1993, 65 (1):37-41.
    [30]贾莉,镇翼,张修华等.L-半胱氨酸自组装膜修饰电极对抗坏血酸的电催化氧化及其分析应用.湖北大学学报(自然科学版),2004, 26 (1):48-51.
    [31] Wang S.F., Du D., Zou Q.C. Electrochemical behavior of epinephrine at L-cysteine self-assembled monolayers modified gold electrode. Talanta, 2002, 57 (4): 687-692.
    [32]王升富,杜丹,蔡火操等.L-半胱氨酸自组装膜修饰电极对米吐尔的电催化氧化及其分析应用.分析化学,2001, 29 (11):1288-1291.
    [33] Wan Q.J., Yang N.J., Zhang H.L., et al. Voltammetric behavior of vitamin B2 on the gold electrode modified with a self-assembled monolayer of L-cysteine and its application for the determination of vitamin B2 using linear sweep stripping voltammetry. Talanta, 2001, 55 (3): 459-467.
    [34] Campuzano S., Serra B., Pedrero M., et al. Amperometric flow-injection determination of phenolic compounds at self-assembled monolayer-based tyrosinase biosensros. Anal. Chim. Acta 2003, 494 (1-2): 187-197.
    [35] Vianello F., Cambria A., Ragusa S., et al., A high sensitivity amperometric biosensor using a monomolecular layer of laccase as biorecognition element.Biosens. Bioelectron., 2004, 20 (2): 315-321.
    [36] SolnáR., Skládal P. Amperometric Flow-injection determination of phenolic compounds using a biosensor with immobilized laccase, peroxidase and tyrosinase. Electroanalysis, 2005, 17 (23): 2137-2146.
    [37] Coche-Guérente L., Desbrières J., Fatisson J., et al. Physicochemical characterization of the layer-by-layer self-assembly of polyphenol oxidase and chitosan on glassy carbon electrode. Electrochim. Acta, 2005, 50 (14): 2865-2877.
    [38] Henke C., Steinem C., Janshoff A., et al. Self-assembled monolayers of monofunctionalized cyclodextrins onto gold: a mass spectrometric characterization and impedance analysis of host-guest interaction. Anal. Chem., 1996, 68 (18): 3158-3165.
    [39] Weiss T., Schierbaum K.D., Gopel W., et al. Self-assembled monolayers of supramolecular compounds for chemical sensors. Sens. Actuators B-Chem., 1995, 26 (1-3): 203-207.
    [40] Collyer S.D., Davis F., Lucke A., et al. The electrochemistry of the ferri/ferrocyanide couple at a calix resorcinarenetetrathiol-modified gold electrode as a study of novel electrode modifying. J. Electroanal Chem., 2003, 549 (5): 119-127.
    [41] Rubinstein I., Steinberg S., Sagiv J., et al. Ionic recognition and selective response in self-assembling monolayer membranes on electrodes. Nature, 1988, 332 (6163): 426-429.
    [42] Turyan I., Mandler D. Self-assembled monolayers in electroanalytical chemistry: application of omega-mercaptocarboxylic acid monolayers for electrochemical determination of ultralow levels of cadmium (II). Anal. Chem., 1994, 66 (1): 58-63.
    [43] Turyan I., Mandler D. Selective determination of Cr (VI) by a self-assembled monolayer-based electrode. Anal. Chem., 1997, 69 (5): 894-897.
    [44] Yang W.R., Gooding J.J., Hibbert D.B. Characterisation of gold electrodes modified with self-assembled monolayers of L-cysteine for the adsorptive stripping analysis of copper. J. Electroanal. Chem., 2001, 516 (1-2): 10-16.
    [45] Dai X., Compton R.G. Determination of copper in the presence of various amounts of arsenic with L-cysteine modified gold electrodes. Electroanalysis 2005, 17 (20): 1835-1840.
    [46] Shen H., Mark J.E., Seliskar C.J., et al. Stripping voltammetry of copper and lead using gold electrodes modified with self-assemble monolayers. J. Solid State Electrochem. 1997, 1 (3): 241-247.
    [47] Willner I., Heleg-shabtai V., Blonder R., et al. Electrical wiring of glucose oxidase by reconstitution of FAD-modified monolayers assembled onto Au-electrodes. J. Am. Chem. Soc., 1996, 118 (42): 10321-10322.
    [48] Willner I., Riklin A. Electrical communication between electrodes and NAD (P)+-dependent enzymes using pyrroloquinolinequinone-enzyme electrodes in a self-assembled monolayer configuration: design of a new class of amperometric biosensors. Anal. Chem., 1994, 66 (9): 1535-1539.
    [49] Gooding J.J., Praig V. G., Hall E. A. H. Platinum-catalyzed enzyme electrodes immobilized on gold using self-assembled layers. Anal. Chem., 1998, 70 (11): 2396-2402.
    [50] Ozoemena K., Westbroek P., Nyokong T. Long-term stability of a gold electrode modified with a self-assemble monolayer of octabutylthiophthalocyaninato-cobalt (II) towards L-cysteine detection. Electrochem. Commun., 2001, 3 (9): 529-534.
    [51]张立德.纳米材料.北京:化学工业出版社,2000.1-40.
    [52]张立德,牟季美.纳米材料科学.沈阳:辽宁科学技术出版社,1994.20-23.
    [53] Leon R., Petroff P.M., Leonard D., et al. Spatially resolved visible luminescence of self-assembled semiconductor quantum dots. Science, 1995, 267 (5206): 1966-1968.
    [54]曹茂盛,曹传宝,徐甲强.纳米材料学.哈尔滨:哈尔滨工程大学出版社,2002.32-39.
    [55]张立德,牟季美.纳米材料和纳米结构.北京:科学出版社,2001.51-62.
    [56]邓姝皓,龚竹青,陈文汩.电沉积纳米晶体材料的研究现状与发展.电镀与涂饰,2001,20 (4):35-39.
    [57] Frens G.. Controlled nucleation for the regulation of particle size in monodisperse gold suspensions. Nat. Phys., 1973, 241 (105): 20-23.
    [58] Jana N. R., Gearheart L., Murphy C.J. Evidence for seed-mediated nucleation in the chemical reduction of gold salts to gold nanoparticles. Chem. Mater., 2001, 13 (7): 2313-2322.
    [59] Jana N.R., Gearheart L., Murphy C.J. Seed-mediated growth approach for shape-controlled synthesis of spheroidal and rod-like gold nanoparticles using a surfactant template. Adv. Mater., 2001, 13 (18): 1389-1393.
    [60] Busbee B.D., Obare S.O., Murphy C.J. An improved synthesis of high-aspect-ratio gold nanorods. Adv. Mater., 2003, 15 (5): 414-416.
    [61] Jana N.R., Gearheart L., Murphy C.J. Seeding growth for size control of 5-40 nmdiameter gold nanoparticles. Langmuir, 2001, 17 (22): 6782-6786.
    [62] Jana N.R., Gearheart L., Murphy C.J. Wet chemical synthesis of high aspect ratio cylindrical gold nanorods. J. Phys. Chem. B, 2001, 105 (19): 4065-4067.
    [63] Finot M.O., Braybrook G.D., McDermott M.T. Characterization of electrochemically deposited gold nanocrystals on glassy carbon electrodes. J. Electroanal. Chem., 1999, 466 (2): 234-241.
    [64] Zhang L., Jiang X.E., Wang E.K., et al. Attachment of gold nanoparticles to glassy carbon electrode and its application for the direct electrochemistry and electrocatalytic behavior of hemoglobin. Biosens. Bioelectron., 2005, 21 (2): 337-345.
    [65] Zhang J.D., Kambayashi M., Oyama M. A novel electrode surface fabricated by directly attaching gold nanospheres and naorods onto indium tin oxide substrate with a seed mediated growth process. Electrochem. Commun., 2004, 6 (7): 683-688.
    [66] Liu B.H., Cao Y., Chen D.D., et al. Amperometric biosensor based on a nanoporous ZrO2 matrix. Anal. Chim. Acta, 2003, 478 (1): 59-66.
    [67] Wei S.H., Zhao F.Q., Zeng B.Z. Electrochemical behavior and determination of uric acid at single-walled carbon nanotube modified gold electrodes. Microchim. Acta, 2005, 150 (3-4): 219-224.
    [68] Kumar S.S., Mathiyarasu J., Phani K.L. Exploration of synergism between a polymer matrix and gold nanoparticles for selective determination of dopamine. J. Electroanal. Chem., 2005, 578 (1): 95-103.
    [69] Zhang J.D., Kambayashi M., Oyama M. Seed mediated growth of gold nanoparticles on indium tin oxide electrodes: electrochemical characterization and evaluation. Electroanalysis, 2005, 17 (5-6): 408-416.
    [70] Tominaga M., Shimazoe T., Nagashima M., et al. Electrocatalytic oxidation of glucose at gold nanoparticle-modified carbon electrodes in alkaline and neutral solutions. Electrochem. Commun., 2005, 7 (2): 189-193.
    [71] Delvaux M., Walcarius A., Demoustier-Champagne S. Electrocatalytic H2O2 amperometric detection using gold nanotube electrode ensembles. Anal. Chim. Acta, 2004, 525 (2): 221-230.
    [72] Yang W.W., Bai Y., Li Y.C., et al. Amperometric nitrite sensor based on hemoglobin/colloidal gold nanoparticles immobilized on a glassy carbon electrode by a titania sol-gel film. Anal. Bioanal. Chem., 2005, 382 (1): 44-50.
    [73] Wang S.Q., Yin Y.M., Lin X.Q. Cooperative effect of Pt nanoparticles and Fe (III)in the electrocatalytic oxidation of nitrite. Electrochem. Commun., 2004, 6 (3): 259-262.
    [74] [74] Majid E., Hrapovic S., Luong J.H.T., et al. Electrochemical determination of arsenite using a gold nanoparticle modified glassy carbon electrode and flow analysis. Anal. Chem., 2006, 78 (3): 762-769.
    [75] Dai X., Compton R.G. Gold nanoparticle modified electrodes show a reduced interference by Cu (II) in the detection of As (III) using anodic stripping voltammetry. Electroanalysis, 2005, 17 (14): 1325-1330.
    [76] Li Y.F., Liu Z.M., Yu R.Q. A mediator-free phenol biosensor based on immobilizing tyrosinase to ZnO nanoparticles. Anal. Biochem., 2006, 349 (1): 33-40.
    [77] Zhou H., Liu L., Li G.X. Electrochemical investigation on the catalytic ability of tyrosinase with the effect of nano titanium dioxide. Electrochem. Commun., 2006, 8 (7): 1168-1172.
    [78] Sanz V.C., Mena M L., Pingarrón J.M., et al. Development of a tyrosinase biosensor based on gold nanoparticles-modified glassy carbon electrodes. Application to the measurement of a bioelectrochemical polyphenols index in wines. Anal. Chim. Acta, 2005, 528 (1): 1-8.
    [79] Liu Z.M., Liu J., Yu R.Q. A reagentless tyrosinase biosensor based on 1,6-hexanedithiol and nano-Au self-assembled monolayers. Electroanalysis, 2006, 18 (16): 1572-1577.
    [80] Liu S.F., Li X.H., Jiang L., et al. The influence of gold nanoparticle modified electrode on the structure of mercaptopropionic acid self-assembly monolayer. Electrochim. Acta, 2005, 51 (3): 427-431.
    [81] Green S.J., Stokes J.J., Murray R.W., et al. Three-dimensional monolayers: nanometer-sized electrodes of alkanethiolate-stabilized gold cluster molecules. J. Phys. Chem. B, 1997, 101 (14): 2663-2668.
    [82] Hostetler M.J., Green S.J., Murray R.W. Monolayers in three dimensions: synthesis and electrochemistry ofω-functionalized alkanethiolate-stabilized gold cluster compounds. J. Am. Chem. Soc. 1996, 118 (17): 4212-4213.
    [83] Terrill R.H., Postlethwaite T.A., Murray R.W. Monolayers in three dimensions: NMR, SAXS, thermal, and electron hopping studies of alkanethiol stabilized gold clusters. J. Am. Chem. Soc., 1995, 117 (50): 12537-12548.
    [84] Murphy C.J., Jana N.R. Controlling the aspect ratio of inorganic nanorods and nanowires. Adv. Mater., 2002, 14 (1): 80-82.
    [85] Chang G., Oyama M., Hirao K. In situ chemical reductive growth of platinumnanoparticles on indium tin oxide surfaces and their electrochemical application. J. Phys. Chem. B, 2006, 110 (4): 1860-1865.
    [86] Goyal R.N., Gupta V.K., Oyama M., et al. Differential pulse voltammetric determination of atenolol in pharmaceutical formulations and urine using nanogold modified indium tin oxide electrode. Electrochem. Commun., 2006, 8 (1): 65-70.
    [87] Ingram R.S., Murray R.W. Electroactive three-dimensional monolayers : anthraquinoneω-functionalized alkanethiolate-stabilized gold clusters. Langmuir, 1998, 14 (15): 4115-4121.
    [88] Pietron J.J., Murray R.W. Mediated electrocatalysis with polyanthraquinone-functionalized monolayer-protected clusters. J. Phys. Chem. B, 1999, 103 (21): 4440-4446.
    [89] Zhang J.D., Oyama M. Electrocatalytic activity of three-dimensional monolayer of 3-mercaptopropionic acid assembled on gold nnaoparticle arrays. Electrochem. Commun., 2007, 9 (3): 459-464.
    [90]唐点平,袁若,柴雅琴等.纳米金修饰玻碳电极固载抗体电位型白喉类毒素免疫传感器的研究.化学学报,2004,62 (20):2062-2066.
    [91] Sabatani E., Rubinstein I. Organized self-assembling monolayers on electrodes. 2. monolayer-based ultramicroelectrodes for the study of very rapid electrode kinetics. J.Phys.Chem., 1987, 91 (27): 6663-6669.
    [92]王广凤,李茂国,阚显文等.纳米银/半胱氨酸修饰金电极的制备及对苯二酚的测定.应用化学,2005,22 (2):168-171.
    [93] Zhang J.D., Oyama M. Gold nanoparticle arrays directly grown on nanostructured indium tin oxide electrodes: characterization and electroanalytical application. Anal. Chim. Acta, 2005, 540 (2): 299-306.
    [94] Fei S.D., Chen J.H., Yao S.Z., et al. Electrochemical behavior of L-cysteine and its detection at carbon nanotube electrode modified with platinum. Anal. Biochem., 2005, 339 (1): 29-35.
    [95]傅崇岗,苏昌华,单瑞峰.L-半胱氨酸自组装膜修饰金电极的电化学特性.物理化学学报,2004, 20 (2):207-210.
    [96]傅崇岗,苏昌华,单瑞峰.L-半胱氨酸自组装膜修饰金电极对抗坏血酸的电催化作用及其测定.分析化学,2004, 32 (10):1349-1352.
    [97] Greenway G.M., Haswell S.J., Petsul P.H. Characterisation of a micro-total analytical system for the determination of nitrite with spectrophotometric detection. Anal. Chim. Acta, 1999, 387 (1): 1-10.
    [98] Helaleh M.I.H., Korenaga T. Ion chromatographic method for simultaneous determination of nitrate and nitrite in human saliva. J.Chromatogr. B, 2000, 744 (2): 433-437.
    [99] Guidelli R., Pergolo F., Raspi G. Voltammetric behavior of nitrite ion on platinum in neutral and weakly acidic media. Anal. Chem., 1972, 44 (4): 745-755.
    [100] Silva S.M., Alves C.R., Machado S.A.S., et al. Electrochemical determination of nitrites in natural waters with ultramicroelectrodes. Electroanalysis, 1996, 8 (11): 1055-1059.
    [101] Chamsi A.Y., Fogg A.G. Oxidative flow injection amperometric determination of nitrite at an electrochemically pretreated glassy carbon electrode. Analyst, 1988, 113 (11): 1723-1727.
    [102] Wen Z. H., Kang T. F. Determination of nitrite using sensors based on nickel phthalocyanine polymer modified electrodes. Talanta, 2004, 62 (2): 351-355.
    [103] Caro C.A., Bedioui F., Zagal J.H. Electrocatalytic oxidation of nitrite on a vitreous carbon electrode modified with cobalt phthalocyanine. Electrochim. Acta, 2002, 47 (9): 1489-1494.
    [104] Abbaspour A., Mehrgardi M.A. Electrocatalytic activity of Ce (III)-EDTA complex toward the oxidation of nitrite ion. Talanta, 2005, 67 (3): 579-584.
    [105] Pournaghi-Azar M.H., Dastangoo H. Electrocatalytic oxidation of nitrite at an aluminum electrode modified by a chemically deposited palladium pentacyanonitrosylferrate film. J. Electroanal. Chem., 2004, 567 (2) 211-218.
    [106] Winnischofer H., Lima S.S., Araki K., et al. Electrocatalytic activity of a new nanostructured polymeric tetraruthenated porphyrin film for nitrite detection. Anal. Chim. Acta, 2003, 480 (1): 97-107.
    [107] Rocha J.R.C., Angnes L., Bertotti M., et al. Amperometric detection of nitrite and nitrate at tetraruthenated porphyrin-modified electrodes in a continuous-flow assembly. Anal. Chim. Acta, 2002, 452 (1): 23-28.
    [108] Cardoso W.S., Gushikem Y. Electrocatalytic oxidation of nitrite on a carbon paste electrode modified with Co (II) porphyrin adsorbed on SinO2/SnO2/Phosphate prepared by the sol-gel method. J. Electroanal. Chem., 2005, 583 (2): 300-306.
    [109] Agboola B.O., Ozoemena K.I., Nyokong T. Electrochemical properties of benzylmercapto and dodecylmercapto tetra substituted nickel phthalocyanine complexes: electrocatalytic oxidation of nitrite. Electrochim. Acta, 2006, 51 (28): 6470-6478.
    [110] Strehlitz B., Grundig B., Schumacher W., et al. A nitrite sensor based on a highlysensitive nitrite reductase mediator-coupled amperometric detection. Anal. Chem., 1996, 68 (5): 807-816.
    [111]水和废水监测分析方法.国家环保局《水和废水监测分析方法》编委会.北京:中国环境科学出版社,1989.260-263.
    [112] Harrison J. A., Khan Z. A. The oxidation of hydrazine on platinum in acid solution. J. Electroanal. Chem., 1970, 28 (1):131-138.
    [113] Ojani R., Rallf J.B., Zarei E. Electrocatalytic reduction of nitrite using ferricyanide: application for its simple and selective determination. Electrochim. Acta, 2006, 52 (3):753-759.
    [114] Liu S.Q., Ju H.X. Nitrite reduction and detection at a carbon paste electrode containing hemoglobin and colloidal gold. Analyst, 2003, 128 (12): 1420-1424.
    [115] Biagiotti V., Valentini F., Tamburri E., et al. Synthesis and characterization of polymeric films and nanotubule nets used to assemble selective sensors for nitrite detection in drinking water. Sens. Actuator B-Chem., 2007, 122 (1): 236-242.
    [116] Chen X.H, Ruan C.M., Kong J.L., et al. Amperometric determination of nitrite based on reaction with 3-mercaptopropanoic acid. Anal. Chim. Acta, 1999, 382 (1-2): 189-197.
    [117] Jiang L.Y., Wang R.X., Li X.M., et al. Electrochemical oxidation behavior of nitrite on a chitosan-carboxylated multiwall carbon nanotube modified electrode. Electrochem. Commun., 2005, 7 (6): 597-601.
    [118]魏培海,陈立仁,李关宾.酚类化合物在二氧化锡微粒修饰碳纤维电极上的氧化及检测.分析化学,2001, 29 (1):49-52.
    [119] Liu Z.M., Liu Y.L., Yang H.F., et al. A mediator-free tyrosinase biosensor based on ZnO sol-gel matrix. Electroanalysis, 2005, 17 (12):1065-1070.
    [120] Zhao Q., Guan L.H., Gu Z.N., et al. Determination of phenolic compounds based on the tyrosinase-single walled carbon nanotubes sensor. Electroanalysis, 2005, 17 (1): 85-88.
    [121] Wang J., Deo R.P., Musameh M. Stable and sensitive electrochemical detection of phenolic compounds at carbon nanotube modified glassy carbon electrodes. Electroanalysis, 2003, 15 (23-24): 1830-1834.
    [122] Lu W., Wallace G.G., Imisides M.D. Development of conducting polymer modified electrodes for the detection of phenol. Electroanalysis, 2002, 14 (5): 325-332.
    [123]张英,袁若,柴雅琴等.纳米金修饰玻碳电极对儿茶酚的催化氧化.分析试验室,2005, 24 (10):1-4.
    [124]王连生,韩朔睽.分子结构、性质与活性.北京:化学工业出版社,1997.1-18.
    [125]王连生,韩朔睽.有机物定量结构-活性相关.北京:中国环境科学出版社,1993.1-8.
    [126]朱永春,张小英,高宇.苯酚衍生物式电位的QSAR研究.计算机与应用化学,2005, 22 (9):771-774.
    [127]李玉侠,朱永春,张秀燕.苯甲醛衍生物的结构与其半波电位关系的研究.分子科学学报,2000, 16 (1):35-39.
    [128]孙伟,曾光明,魏万之等.氯代芳香族化合物结构-电化学还原电位定量关系的贝叶斯规整化BP神经网络模型.环境科学,2005, 26 (2): 21-27.
    [129]徐寿昌.有机化学.北京:高等教育出版社,1993.323-325.
    [130]王福昌,柴雅琴,袁若等.水杨醛肟铜络合物中性载体高选择性水杨酸根电极的研究.分析化学,2006, 34 (5):725-728.
    [131]李明齐,何晓英,蔡铎昌.碳纳米管修饰电极对对苯二酚和邻苯二酚的电催化研究.分析科学学报,2006, 22 (3):299-302.
    [132] Rodríguez I.N., Leyva J.A.M., Hidalgo de Cisneros J.L.H. Use of a carbon paste modified electrode for the determination of 2-nitrophenol in a flow system by differential pulse volatmmetry. Anal. Chim. Acta, 1997, 344 (3): 167-173.
    [133]王宗花,罗国安,肖素芳等.α-环糊精复合碳纳米管电极对异构体的电催化行为.高等学校化学学报,2003, 24 (5):811-813.
    [134]任健敏,许元妹,曾百肇.对硝基苯酚在多壁碳纳米管修饰玻碳电极上的电化学行为及分析测定.化学研究与应用,2006, 18 (7):860-862.
    [135] Serra B., Benito B., Pingarrón J.M., et al. Graphit-teflon-peroxidase composite electrochemical biosensors. A tool for the wide detection of phenolic compounds. Electroanalysis, 2001, 13 (8-9): 693-700.
    [136]李玉侠,朱永春,任群翔.灿烂甲酚兰衍生物的结构-式电位关系及式电位预测.计算机与应用化学,2001, 18 (1):87-89.
    [137] Bhargava A.K., Pundir C.S. Discrete analysis of serum uric with immobilized uricase and peroxidase. J. Biochem. Biophys. Methods, 1999, 39 (3): 125-136.
    [138] Ross M.A. Determination of ascorbic acid and uric acid in plasma by HPLC. J. Chromattogr. B, 1994, 657(1):197-200.
    [139] [139]孙延一.尿酸在多壁碳纳米管修饰电极上的伏安法测定.理化检验,2003,39 (7):381-383.
    [140]张雷,林祥欣.单分子层C-氨基丁酸共价玻碳修饰电极同时测定多巴胺、尿酸和抗坏血酸.高等学校化学学报,2003, 24 (4):519-594.
    [141] Renato C.M., Marcio A.A., Claudimir L.L., et al. Flow injection analysis-amperometric determination of ascorbic and uric acids in urine using arrays of gold microelectrodes modified by eletrodeposition of palladium. Anal.Chim. Acta, 2000, 404 (1): 151-157.
    [142] Raj C.R., Ohsaka T. Voltammetric detection of uric acid in the presence of ascorbic acid at a gold electrode modified with a self-assembled monolayer of heteroaromatic thiol. J. Electroanal. Chem., 2003, 540 (2): 69-77.
    [143] Wang J.X., Li M.X., Shi Z.J., et al. Investigation of the electrocatalytic behavior of single-wall carbon nanotube films on an Au electrode. Microchem. J. 2002, 73 (3): 325-333.
    [144] Xing X.K., Bae I.T., Shao M.J., et al. Electro-oxidation of L-ascorbic acid on platinum in acid solutions: an in-situ FTIRRAS study. J. Electroanal. Chem., 1993, 346 (1-2): 309-321.
    [145] John S.A. Simultaneous determination of uric acid and ascorbic acid using glassy carbon electrodes in acetate buffer solution. J. Electroanal. Chem., 2005, 579 (2): 249-256.
    [146] Zare H.R., Rajabzadeh N., Nasirizadeh N., et al. Voltammetric studies of an oracet blue modified glassy carbon electrode and its application for the simultaneous determination of dopamine, ascorbic acid and uric acid. J.Electroanal. Chem., 2006, 589 (1): 60-69.
    [147] Kalimuthu P., John S.A. Solvent dependent dimercaptothiadiazole monolayers on gold electrode for the simultaneous determination of uric acid and ascorbic acid. Electrochem. Commun., 2005, 7 (12): 1271-1276.
    [148] Shahrokhian S., Ghalkhani M., Simultaneous voltammetric detection of ascorbic acid and uric acid at a carbon-paste modified electrode incorporating thionine-nafion ion-pair as an electron mediator. Electrochim. Acta, 2006, 51 (13): 2599-2606.
    [149]李永芳,郭永芳.血清锌铜与妇科肿瘤关系的探讨.微量元素与健康研究,2001, 18 (2):27-28.
    [150] Queirolo F., Valenta P. Trace determination of cadmium, copper, lead and zinc in annual growth rings by differential pulse anodic stripping voltammetry. Anal. Bioanal. Chem., 1987, 328 (1-2): 93-98.
    [151] Cecilia F.B., Teresa F.A.M., Agustin C.G. Anodic stripping of heavy metals using ahanging mercury drop electrode in a flow system. Electroanalysis 1998, 10 (10): 701-706.
    [152] Arrigan D.W.M., Bihan L.L. A study of L-cysteine adsorption on gold via electrochemical desorption and copper (II) ion complexation. Analyst, 1999, 124 (11): 1645-1649.
    [153] Liu A.C., Chen D.C., Chen C.H., et al. Application of Cysteine monolayers for electrochemical determination of sub-ppb copper (II). Anal. Chem., 1999, 71 (8): 1549-1552.
    [154] Freire R.S., Kubota L.T. Application of self-assembled monolayer-based electrode for voltammetric determination of copper. Electrochim. Acta, 2004, 49 (22-23): 3795-3800.
    [155] Zeng B.Z., Ding X.G., Zhao F.Q. Voltammetric response of glutathione and 3-mercaptorpopionic acid self-assembled monolayer modified gold electrodes to Cu (II). Electroanalysis, 2002, 14 (10): 651-656.
    [156] Ralph T.R., Hitchman M.L., Millington J.P., et al. The electrochemistry of L-cystine and L-cysteine: Part 1: Thermodynamic and kinetic studies. J. Electroanal. Chem., 1994, 375 (1-2): 1-15.
    [157]李昌安,葛存旺,刘战辉等.L-半胱氨酸修饰金电极测定水中铜离子的研究.东南大学学报(自然科学版),2004,34 (1):78-81.
    [158]孙新枝.巯基乙酸修饰金电极的电化学行为及对铜离子的测定.化学研究,2006,17 (2):80-83.
    [159]杨春海,李国祥,胡卫兵.漆酚高分子树脂在电化学测定铜中的应用.化工科技,2003,11 (1):38-41.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700