用户名: 密码: 验证码:
一体化气动内循环好氧缺氧生物膜反应器脱氮性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
传统的生物脱氮工艺所包括的硝化和反硝化反应是在两个或多个独立的反应器中进行,或是在时间上造成交替缺氧和好氧环境的同一个反应器中进行,脱氮过程所需的硝化液的回流需要外加动力泵来实现。这样的工艺投资和运行费用较高,占地面积大。针对这些问题,本课题组设计制作了新型一体化气动内循环生物膜反应器,用于生活污水的脱氮和脱碳处理,硝化反应和反硝化反应分别在反应器不同分区内完成,曝气不但提供了硝化过程所需的溶解氧,而且还利用曝气作用实现了硝化液在反应器内的循环,节约了脱氮过程中所需的能耗。
     本论文首先研究了一体化气动内循环生物膜反应器不同分区结构对脱氮性能的影响,确定了反应器较优的结构形式为二区结构;在此基础上研究了运行温度、曝气量、进水COD/TN等运行条件对反应器脱氮性能的影响;并对反应器内实现短程硝化反硝化脱氮的可行性进行了研究;最后对本反应器的脱氮机理进行了特性分析。主要研究内容和研究结果如下。
     (1)论文首先研究比较了不同分区形式的反应器的脱氮效率。结果表明三区和二区结构形式的一体化生物膜反应器均可以在水平方向实现溶解氧的梯度分布,在单体反应器内同时实现了硝化和反硝化过程。在一定的运行条件下,由于硝化区容积的相对增加二区反应器比三区反应器的TN去除效率由所增加。二区反应器对模拟生活污水的TN去除负荷可达到0.080 kgTN/(m~3·d),有机物的去除负荷可达到0.53 kgCOD/(m~3·d)。荧光原位杂交实验表明,二区反应器的缓冲区内亚硝酸细菌丰度有所增加。以上实验说明二区结构反应器的脱氮性能优于三区结构反应器的脱氮性能。故此,本论文确定了反应器较优的结构形式为二区结构。
     (2)研究了进水COD/TN和曝气量对反应器硝化反硝化的联合影响。在进水COD/TN值(2.0)较小的情况下,反硝化是脱氮的限制步骤,TN去除负荷为0.052kgTN/(m~3·d)。当进水COD/TN值为3.5,通过调整曝气量,TN去除负荷可达到0.069kgTN/(m~3·d)。当进水COD/TN值为6.2时,TN去除负荷达到0.080 kgTN/(m~3·d)。在一定的进水COD/TN下,曝气量的增加一方面会使缺氧区中的溶解氧升高,不利于反硝化;另一方面也会促进硝化液的回流,有利于更多的NO_3~--N完成反硝化。曝气量由850L/h增大到1100 L/h时对反硝化的综合影响不大,正反两方面作用趋于平衡。但曝气量达到一定量(1400 L/h)之后会不利于反硝化反应的进行,进而不利于TN的脱除。
     (3)反应器缓冲区和缺氧区之间的控制板高度决定了两区之间反应液流通截面积,而反应液流通截面积直接影响反应器内液体的循环量和缺氧区内的溶解氧浓度。本论文研究了反应液流通截面积对脱氮效率的影响。结果表明,在一定的曝气量下,通过增大反应液流通截面积可以增加反应器内的液体循环量,提高脱氮效率。当曝气量为850 L/h,反应液流通截面积由150cm~2增大到300cm~2时,TN去除负荷由0.059提高至0.065kgTN/(m~3·d)。而当曝气量较高为1100 L/h时,流通截面积的增大使缺氧区中的溶解氧浓度增加,不利于反硝化,进而不利于TN的去除。
     (4)研究了运行温度和有机碳源对反应器脱氮性能的联合影响。结果表明,在一定的进水有机负荷下,随着运行温度的升高,NH_4~+-N和TN去除率都有所升高。在一定的运行温度下,随着进水有机负荷的增加,硝化率下降,反硝化率升高。运行温度为8℃,进水中不加有机碳源时,NH_4~+-N去除率可达到95%,去除负荷为0.086 kgNH_4~+-N/(m~3·d),TN去除率仅为10%左右。
     (5)对反应器能否以短程硝化反硝化原理脱氮进行了研究。结果表明运行温度为8℃,进水TN浓度为68-80 mg/L时,通过调整进水碱度反应器内可以实现短程硝化。亚硝酸盐积累率达到80%,NH_4~+-N去除率达到88%,NH_4~+-N去除负荷为0.075kgNH_4~+-N/(m~3·d)。硝酸菌属的荧光原位杂交实验表明在8℃下反应器实现短程硝化,很可能是硝酸细菌的活性被抑制了。运行温度为29℃时,进水TN浓度为114-146 mg/L时,通过调整进水碱度和曝气量,反应器可以以短程硝化反硝化的原理进行脱氮。好氧区和缓冲区中亚硝酸盐积累率分别为77%,79%。TN去除率达到72%,TN去除负荷为0.130 kgTN/(m~3·d)。荧光原位杂交实验表明在29℃下反应器内实现稳定的短程硝化反硝化是由于硝酸细菌的活性长时间受到游离氨的抑制,在污泥中所占的丰度下降所致。
     (6)通过测定反应器各区各态氮浓度及各区污泥的硝化及反硝化活性研究了本反应器的脱氮机理。硝化反应主要在好氧区内完成,反硝化反应主要在缺氧区内完成。不同分区的污泥都同时具有硝化活性和反硝化活性。本反应器的脱氮过程,一方面是基于不同分区内发生的硝化反应和反硝化反应以达到脱氮的目的;另一方面,由于反应器各区内液体混合形态不均匀以及各区溶解氧分布不均,在每一个分区内都可能同时发生硝化反应和反硝化反应。
For conventional nitrogen removal processes, nitrification and denitrification are carried out in separated tanks or in a single reactor where aerobic and anoxic conditions are formed sequentially. Such processes need power pump to realize the recirculation of nitrified wastewater that is needed in nitrogen removal. The investment and operation cost is high, and the land occupied is large. As to these problems, a novel incorporate airlift inner circular biofilm reactor is designed and fabricated which is applied as a single treatment unit for carbon and nitrogen removal of domestic wastewater. Nitrification and denitrification are accomplished respectively in different zones of the reactor. Aeration not only supplies dissolved oxygen needed in nitrification but also impulses the recirculation of nitrified wastewater, which economizes energy needed in nitrogen removal.
     This paper studied the influence of different configurations of the reactor on nitrogen removal firstly. According to the above results a preferable two zones configuration reactor was selected. Secondly the influence of operation temperature、aeration rate and influent COD/TN on nitrogen removal was studied. The feasibility of nitrogen removal via short-cut nitrification and denitrification principle in this reactor was studied. The nitrogen removal mechanism of the reactor was analysed lastly. The main content and results are as follows.
     (1) Nitrogen removal efficiencies of the reactor under different configuration forms were studied and compared firstly in this paper. The results demonstrate that DO distributing is different in level direction in the three zones reactor and in the two zones reactor that makes nitrification and denitrification carrying out in one reactor simultaneously. TN removal efficiency of the two zones reactor is higher than that of the three zones reactor at a certain operational conditions because of the increasing nitrifying zone volume. 0.080 kgTN/(m~3·d) of TN removal loading and 0.53 kgCOD/(m~3·d) of COD removal loading are attained in the two zones reactor treating simulated domestic wastewater. Fluorescence in situ hybridization analysis indicates that ammonia oxidizing bacteria percentage of buffering sludge increases which is the main reason for higher nitrifying efficiency of the two zones reactor. The above experiment results show that nitrogen removal performance of the two zones reactor is better than that of the three zones reactor. Therefore two zones configuration form is the preferable form of the reactor.
     (2) The influence of influent COD/TN and aeration rate on nitrogen removal was studied. Denitrification is the restrictive process and nitrogen removal loading is 0.052 kgTN/(m~3·d) under lower COD/TN (2.0). When the influent COD/TN is 3.5 0.069 kgTN/(m~3·d) removal loading is achieved through adjusting aeration rate. Under a higher influent COD/TN 6.2, TN removal loading is 0.080 kgTN/(m~3·d). Under a definite influent COD/TN the increasing aeration rate not only results in the increasing of DO concentration in anoxic zone that is adverse for denitrification but also accelerates the recirculation of nitrified wastewater that is favorable for more NO_3~--N to accomplish denitrification. When aeration rate increases from 850 L/h to1100 L/h, the total influence is not high and positive and negative effect keep balanced. When aeration rate increases to a definite quantity (1400 L/h), denitrification and nitrogen removal are both influenced adversely.
     (3) The baffle height between buffering zone and anoxic zone determines circulation area of nitrified wastewater. The circulation area influences the circulation quantity of nitrified wastewater and DO concentration of anoxic zone. So the influence of the circulation area between buffering zone and anoxic zone on nitrogen removal was researched. The circulation quantity of nitrified wastewater increases through increasing the circulation area under a certain aeration rate, which is favorable for nitrogen removal. But DO concentration of anoxic zone may increase which is disadvantage for denitrification and nitrogen removal. Under a definite aeration rate (850 L/h) when the circulation area increases from 150cm~2 to 300 cm~2, denitrification is accelerated, TN removal loading increases from 0.059 to 0.065kgTN/(m~3·d). But when the aeration rate is higher (1100 L/h) the increasing of the circulation area makes DO concentration of anoxic zone increasing that is adverse for denitrification and nitrogen removal.
     (4) The united influence of temperature and organic carbon on nitrogen removal performance of the reactor was researched. Under a definite influent organic loading NH_4~+-N and TN removal efficiencies increase with operational temperature increasing. Under a definite operational temperature nitrification efficiency decreases and denitrification efficiency increases with influent organic loading increasing. At a lower temperture (8℃), 95% NH_4~+-N removal efficiency and 0.086 kgNH_4~+-N/(m~3·d) removal loading are attained with no organic carbon in influent. But TN removal efficiency is low which was only 10% because of no organic carbon in influent used for denitrification.
     (5) Nitrogen removal via Short-cut nitrification denitrification in this reactor was studied. Short-cut nitrification is realized through adjusting influent alkalinity at lower temperature (8 ℃) when the influent TN is 68~80 mg/L in this reactor. 80% of nitrite accumulating rate is attained. The average NH_4~+-N removal efficiency is 88% and removal loading is 0.075 kgNH_4~+-N/(m~3·d). Fluorescence in situ hybridization of nitrite oxidizing bacteria indicates that the activity of nitrite oxidizing bacteria is restrained and the percentage of nitrite oxidizing bacteria does not decreased a lot when short-cut nitrification carrying out in the reactor. When the influent TN is 114-146 mg/L nitrogen removal via short-cut nitrification denitrification is realized through adjusting influent alkalinity and aeration rate at 29℃in this reactor. NO_2~--N/NO_x~--N of the aerobic and buffering zone are 77% and 79% respectively. TN removal efficiency is 72% and removal loading is 0.130 kgTN/(m~3·d). Fluorescence in situ hybridization analysis indicates that the reason of short-cut nitrification denitrification carrying out in the reactor at 29℃is the decreasing of nitrite oxidizing bacteria percentage resulted from the restrained activity of nitrite oxidizing bacteria by free ammonia for a long time.
     (6) The nitrogen removal mechanism of the reactor was studied through measuring various forms nitrogen concentrations and the nitrification and denitrification activities of sludge from different zones. Nitrification prevails in the aerobic zone of the reactor, which results in lower concentration of NH_4~+-N and COD and higher concentration of NO_3~--N in this zone. On the contrary, denitrification prevails in the anoxic zone, which results in higher concentration of NH_4~+-N and lower concentration of NO_3~--N in this zone. Sludges from different zones of the reactor have both the ability of nitrifying and that of denitrifying. The nitrification activity of sludge from aerobic zone is higher and the denitrification activity of sludge from anoxic zone is higher. Nitrogen removal process of the reactor is realized by the nitrification and denitrification that predominated in different zones of the reactor and simultaneous nitrification and denitrification that occur in each zone resulted from the disproportion of wastewater and DO.
引文
[1]郑兴灿,李亚新.污水除磷脱氮技术.北京:中国建筑工业出版社,1998.
    
    [2]付春平,钟成华,邓春光.水体富营养化成因分析.重庆建筑大学学报,2005,27(1):128-131.
    
    [3]蔡少炼.污染物对海洋生态环境的影响.中国水产,2005,2:22-24.
    
    [4]隋少峰,孔凡玲,罗启芳.饮用水源水藻类繁殖的危害及处理.中国卫生工程学,2005,4(1):46-49.
    
    [5]况琪军,马沛明,胡征宇等.湖泊富营养化的藻类生物学评价与治理研究进展.安全与环境学报,2005,5(2):87-91.
    
    [6]娄金生,谢水波,何少华等.生物脱氮除磷原理与应用.国防科技大学出版社,2002.
    
    [7]孙锦宜.含氮废水处理技术与应用.北京:化学工业出版社,2003.
    
    [8]徐亚同,史家棵,张明.污染控制微生物工程.北京:化学工业出版社,2002.
    
    [9]张自杰,林荣枕,金儒霖.排水工程(下册).北京:中国建筑工业出版社,2000.
    
    [10] Verstraete W, Philips S. Nitrification-denitrification processes and technologies in new contexts. Environmental Pollution, 1998,37(9): 135-142.
    
    [11]周健,罗固源,刘国涛等.碳氮比、污泥浓度及水温对城市污水生物脱氮的综合影响.中国给水排水,1998,14(3):52-54.
    
    [12]高廷耀,顾国维.水污染控制工程(下册).北京:高等教育出版社,1999.
    
    [13]Leslie Grady C P,Daigger Glen T,Henry C L.废水生物处理.北京:化学工业出版社,2003.
    
    [14]华光辉,张波.城市污水生物除磷脱氮工艺中的矛盾关系及对策.给水排水,2000,26(12):1-4.
    
    [15]王凯军,贾立敏.城市污水生物处理新技术开发与应用.北京:化学工业出版社,2002.
    
    [16]朱明权,周冰莲.SBR工艺的设计.给水排水,1998,24(4):6-11.
    
    [17]冯叶成,王建龙,钱易.生物脱氮新工艺研究进展.微生物学通报,2001,28(4):88-91.
    
    [18]王建龙.生物脱氮新工艺及其技术原理.中国给水排水,2000,16(2):25-28.
    
    [19]周少奇,方汉平.低COD/N-NH_4比废水的同时硝化反硝化生物处理策略.环境污染与防治,000,22(1):18-21.
    
    [20] Hanaki K, Wantawin C, Ohgaki S. Nitrification at low levels of dissolved oxygen with and withoutorganic loading in a suspended-growth reactor. Water Research, 1990,24(3): 297-302.
    
    [21] Ingo S, Olav S, Markus S. New concepts of microbial treatment processes for the nitrogen removal inwastewater. FEMS Microbiology Reviews, 2003,27: 481-492.
    
    [22] Villaverde S, Polanco F D Z, Garcia P A. Nitrifying biofilm acclimation to free ammonia insubmerged biofilters. Water Research, 2000,34(2): 602-610.
    
    [23] Vanbenthum W A J, Derissen B P, Van Loosdrecht M C M et al. Nitrogen removal using nitrifyingbiofilm growth and denitrifying suspended growth in a biofilm airlift suspension reactor coupled with achemostat. Water Research, 1998,32(7): 2009-2018.
    
    [24]王志盈,袁林江,彭党聪等.内循环生物流化床硝化过程的选择性研究.中国给水排水,2000,16(4):1-4.
    
    [25]袁林江,彭党聪,王志盈.短程硝化.反硝化生物脱氮.中国给水排水,2000,16(2):29-31.
    
    [26]唐光临,孙国新,徐楚韶.亚硝化反硝化生物脱氮.工业水处理,2001,21(11):11-13.
    
    [27]孙英杰,张隽超,胡跃城.亚硝酸型硝化的控制途径.中国给水排水,2002,18(6):29-31.
    
    [28] Yoo H, Ahhn M K, Lee H et al. Nitrogen removal from synthetic wastewater by simultaneous nitrification and denitrification via nitrite in an intermittently-aerated reactor. Water Research, 1999, 33(1): 145-154.
    
    [29]马军,邱立平.曝气生物滤池中的亚硝酸盐积累及其影响因子.环境科学,2003,24(1):84-90.
    
    [30] Cecen F, Gonene I E. Nitrogen removal characteristics of nitrification-denitrification of chemicalprocessing wastewater. Water Science and Technology, 1994,29(10): 409-416.
    
    [31] Hellinga C, Schellen A A J C, Mulder J W et al. The SHARON process: an innovative method fornitrogen removal from ammonium-rich wastewater. Wat.Sci.Tech., 1998,37(9):135-142.
    
    [32] Kim W, Inge D B, Willy V. Oxygen-limited autotrophic nitrification-denitrification (OLAND) in arotating biological contactor treating high-salinity wastewater. Water Research, 2005,39:4512-4520.
    
    [33] Mosquera-Corral A, Gonzalez F, Campos J L et al. Partial nitrification in a SHARON reactor in thepresence of salts and organic carbon compounds. Process Biochemistry, 2005,40: 3109-3118.
    
    [34] Van Kempen R, Mulder J. W., Uijterlinde C.A et al. Overview: Full scale Experience of the SHARONProcess for Treatment of Rejection Water of Digested Sludge Dewatering. Wat. Sci. Tech., 2001, 44(1):145-152.
    
    [35] Kuai L, Verstraete W. Ammonium removal by the oxygen limited autotrophic nitrificationdenitrification (OLAND) system. Appl. Environ. Microbiol., 1998,64(11):4500-4506.
    
    [36] Robertson L.A., Van Niel E. W. J. Simultaneous nitrification and denitrification in aerobic chemostatcultures of Thiosphaera abtotropha Appl Enuir Microbiol., 1988,54(11):2812- 2818.
    
    [37] Rittmann B E, Langeland W E. Simultaneous denitrification with nitrification in single-channeloxidation ditches. JWPCF, 1995,57(4): 300-308.
    
    [38]高廷耀,周增炎,朱晓君.生物脱氮工艺中的同步硝化反硝化现象.给水排水,1998,24(12):6-9.
    
    [39]吕锡武,李锋,稻森悠平等.氨氮废水处理过程中的好氧反硝化.给水排水,2000,26(4):17-20.
    
    [40] Robertson L A, Kuenen J G, Kleijntjens R. Aerobic denitrification and heterotrophic nitrification by thiosphaera pantotropha. Antonie Van Leeuwenhoek, 1985,51(4): 445.
    
    [41]吕锡武.同时硝化和反硝化的理论和实践.环境化学,2002,21(6):564-570.
    
    [42] Pochana K, Keller J, PaulLant. Model development for simultaneous nitrification and denitrification.Water Science and Technology, 1999,39(1): 235-243.
    
    [43] Menoud P, Wong C H, Robinson H A et al. Simutaneous nitrification and denitrification usingSIPORAX packing. Water Science and Technology, 1999,40(4): 153-160.
    
    [44] Mike O'Neill, Nigel J H. Achieving simultaneous nitrification and denitrification of wastewaters atreduced cost. Water Science and Technology, 1995,32(9): 303-312.
    
    [45]刘军,潘登,王斌等.SBR工艺中DO和C/N对同步硝化反硝化的影响.北京工商大学学报(自然科学版),2003,21(2):7-10.
    
    [46] Byong H J, Mari Y, Yasunori T et al. Effect of C/N values on microbial simultaneous removal of carbonaceous and nitrogenous substances in wastewater by single continuous-flow fluidized-bed bioreactor containing porous carrier particles. Biochemical Engineering Journal, 2000,5:29-37.
    
    [47]Daigger G T,Littleton H X.Orbal氧化沟同时硝化/反硝化及生物除磷的机理研究.中国给水排水,1999,15(3):1-7.
    
    [48] Gupta S K, Raja S. Simultaneous nitrification-denitrification in a rotating biological contactor.Envir.Tech., 1994,15:145-153.
    
    [49] Watanabe Y, Okabe S, Hirata K et al. Simultaneous removal of organic materials and nitrogen bymicro-aerobic biofilms. Wat. Sci. Tech., 1995,31(1): 195-203.
    
    [50] Collivignarelli C, Bertanza G. Simultaneous nitrification-denitrification process in activated sludgeplants: performance and applicability. Water Science and Technology, 1999,40(4): 187-194.
    
    [51] Bertanza G. Simultaneousitrification-denitrification process in extended aeration plants: pilot and realscale experiences. Water Science and Technology, 1997,35(6): 53-61.
    
    [52]朱晓君,周增炎.低氧活性污泥法脱氮除磷工艺生产性研究.中国给水排水,1997,13:12-16.
    
    [53] Minder A A A, Vandegraff A A. Anaerobic ammonium oridation discovered in adenitrificationfluidized bed reactor. FEMS Microbiol Ecol., 1995,16(3): 177-183.
    
    [54] Vande G A A, Debruijn P, Robertson L A et al. Metabolic pathway of anaerobic ammonium oxidationon the basis of'5N studies in a fluidized bed reactor. Microbiology, 1997,143:2415-2421.
    
    [55] Strous M, Van Gerven E, Zheng P et al. Ammonium removal from concentrated waste streams withthe anaerobic ammonium oxidation (anammox) process in different reactor configurations. Wat.Res, 1997,31(8): 1955-1962.
    
    [56]郑平,冯孝善,Jetten M S M等.ANAMMOX流化床反应器性能的研究.环境科学学报,1998,18(4):367-372.
    
    [57] Van Dongen U, Jetten M S M. The SHARON-ANAMMOX process for treatment ammonium richwastewater. Water Sci. Technol., 2001,44(1): 153-160.
    
    [58] Christian F, Boehler M, Philipp H et al. Biological treatment of ammonium-rich wastewater by partialnitritation and subsequent anaerobic ammonium oxidation (anammox) in a pilot land. Journal ofBiotechnology, 2002,99(3): 295-306.
    
    [59] Third K A, Olav S A, Kuenen J G et al. The CANON system (Completely AutotrophicNitrogen-removal Over Nitrite) under ammonium limitation: interaction and competition between threegroups of bacteria. Systematic and Applied Microbiology, 2001,24(4): 588-596.
    
    [60] Kuai L P, Verstraete W. Ammonium removal by the oxygen-limited autotrophicnitrification-denitrification system. Appl. and Environ. Microbiol., 1998, 64(11): 4500-4506.
    
    [61]周少奇.氨厌氧氧化的微生物反应机理.华南理工大学学报,2000,29(11):16-19.
    
    [62] Robertson L A, Dalsgaard T, Revsbech N P et al. confirmation of aerobic denitrification' in batchcultures using gas chromato graphy and 15N mass spectrometry. YEMS Microb. Ecq., 1995,18:113-120.
    
    [63] Robertson L A, Van Neil E W J, Torremson R A M et al. Simultaneous nitrification and denitrificationin aerobic chemostat cultures of Thiosphaera pantotroph. Appl. Environ., 1988,11(54):2812-2818.
    
    [64] Gupta A B, Gupta S K. Simultaneous carbon and nitrogen removal from high strength domesticwastewater in an aerobic RBC biofilm. Water Research, 2001,35(7): 1714-1722.
    
    [65] Patureau D, Bernet N, Bouchez T et al. Biological nitrogen removal in a single aerobic reactor byassociation of a nitrifying ecosystem to an aerobic denitrifier, Microvirgula aerodenitrificans. Journal ofMolecular Catalysis, 1998, B5:435-439.
    
    [66] Patureau D, Bernet N, Molletta R. Combing nitrification and denitrification in a single aerated reactor using the aerobic denitrifier Comamonas sp. Strain SGLY2. Water Research, 1997,31(6): 1363-1370.
    
    [67] Patureau D, Bernet N, Dabert P et al. Molecular and modeling studies of an aerobic denitrifier: Microvirgula aerodenitrificans. Use of its properties in an integrated nitrogen removal plant. Water Science and Technology, 1998,38 (1): 167-175.
    
    [68]夏世斌,刘俊新.立体循环一体化氧化沟处理城市污水研究.中国给水排水,2002,18(6):1-4.
    
    [69] Ro(?) M, Vrtov(?)ek J. Wastewater treatment and nutrient removal in the combined reactor. Water Science and Technology, 1998,38(1): 87-95.
    
    [70] Fermandez-Polanco F, Real F J. Behavior of an anaerobic/aerobic pilot scale fluidized bed for simultaneous removal of carbon and nitrogen. Water Science and Technology, 1994,29(10): 339-346.
    
    [71]向仁军.一体化生物除磷脱氮工艺装置.中国给水排水,2000,16(4):14-16.
    
    [72] Hauo T, Matsumoto M, Kuribayashi K et al. Biological nitrogen removals in a bubble column with adraft tube. Chemical Engineering Science, 1992,47(13): 3737-3744.
    
    [73] Tujiwara T, Somiya I. Effect of draft tube diameter on nitrogen removal from domestic sewage in adraft tube type reactor. Water Science and Technology, 1998,38(1): 319-326.
    
    [74] Van Loosdrecht M C M, Van Benthum W A J, Heijnen J J. Integration of nitrification anddenitrification in biofilm airlift suspension reactors. Water Science and Technology, 2000,41(4-5): 97-103.
    
    [75]彭永臻,高守有.分子生物学技术在污水处理微生物检测中的应用.环境科学学报,2005,9:1143-1144.
    
    [76] Alfones J M S, Stefanie J W H. Understanding and advancing wastewater treatment. Environmentalbiotechnology, 1997,8: 328-334.
    
    [77] Amann R, Lemmer H, Wagner M. Monitoring the community structure of wastewater treatment plants:a comparison of old and new techniques. FEMS Microbiology Ecology, 1998,25: 205-215.
    
    [78] Hiorns W D, Hastings R C, Head I M et al. Amplification of 16S ribosomal RNA genes of autotrophicammonia - oxidizing bacteria demonstrates the ubiquity of Nit rosospi ras in the environment. Microbiol.,1995,141: 2793-2800.
    
    [79] Voytek M A, Ward B B. Detection of ammonium-oxidizing bacteria of the beta -subclass of the classproteobacteria in aquatic samples with the PCR. Appl. Environ. Microbiol., 1995,61(4): 1444-1450.
    
    [80] McCaig A E, Phillips C J, Stephen J R et al. Nitrogen cycling and community structure ofproteobacterial β2 subgroup ammonia-oxidizing bacteria within polluted marine fish farm sediments. Appl.Environ. Microbiol., 1999,65:213-220.
    
    [81] Hastings R C, Saunders J R, Hall G H et al. Application of molecular biological techniques to aseasonal study of ammonia oxidation in a eutrophic freshwater lake. Appl. Environ. Microbiol., 1998,64:3674-3682.
    
    [82] Bartosch S, Wolgast I, Spieck E et al. Identification of nitrite-oxidizing bacteria with monoclonalantibodies recognizing the nitrite oxidoreductase. Appl. Environ. Microbiol., 1999,65:4126-4133.
    
    [83]王淳本.实用生物化学与分子生物学实验技术.湖北:科学技术出版社,2002.
    
    [84]齐义鹏.基因及其操作原理.武汉:武汉大学出版社,1998.
    
    [85]布坎南,吉本斯.伯杰细菌鉴定手册.北京:北京:科学出版社,1984.
    
    [86] Amamm R I, Binder B J, Olson R J et al. Combination of 16S rDNA-targeted ologomucleotide probeswith flow cytometry for analyzing mixed microbial populations. Applied and Environmental Microbiology,1990,56:1919-1925.
    
    [87] Manz W, Amann R, Ludwig W et al. Phylogenetic oligodeoxynucleotide probes for the majorsubclasses of proteobacteria: problems and solutions. System Applied Microbiology, 1992,15:593-600.
    
    [88] Roller C, Wagnr M, Amma R I et al. In situ probing of gram-positive bacteria with high DNA G+Ccontent using 23S rRNA-targeted oligonucleotides. Microbiology, 1994,140:2849-2858.
    
    [89] Mobarry B K, Wagner M. Phylogenetic probes for analyzing abundance and spatial organization ofnitrifying bacteria. Applied and Environmental Microbiology, 1996,62: 2156-2162.
    
    [90] Wagner M, Rath G, Amamm R et al. In situ identification of ammonia-oxidizing bacteria. SystemApplied Microbiology, 1995,18:251-264.
    
    [91] Wagner M, Rath G, Koops H P et al. In situ analysis of nitrifying bacteria in sewage treatment plants.Water Science and Technology, 1996,34:237-244.
    
    [92] Daims H, Nielsen P, Nielsen J L et al. Novel Nitrospira-like bacteria as dominant nitrite-oxidizers inbiofilms from wastewater treatment plants: diversity and in situ physiology. Water Science and Technology,2000,41:85-90.
    
    [93] Schramm A, Dirk D B, Wagner M et al. Identification and activities in situ of Nitrosospira andNitrospira spp. as dominant populations in a nitrifying fluidized bed reactor. Applied and EnvironmentalMicrobiology, 1998,64(9): 3480-3485.
    
    [94] Schramm A, Dirk D B, Hanvanden H et al. In situ structure/fuction studies in wastewater treatmentsystems. Water Science and Technology, 1998,37(4-5): 413-416.
    
    [95] Daims H, Nielsen J L, Nielsen P H et al. In situ characterization of Nitrospira like nitrite oxidizingbacteria active in wastewater treatment plants. Applied and Environmental Microbiology, 2001, 67:5273-5284.
    
    [96] Satoshi T, Tatsuo N, Tatsuhiko H et al. Characterization of nitrifying granules produced in an aerobicupflow fluidized bed reactor. Water Research, 2003,37: 4965-4973.
    
    [97] Wagner M, Noiguera D R., Juretschko S et al. Combing fluorescent in situ hybridization (FISH) withcultivation and mathematical modeling to study function of ammonia-oxiding bacteria in activated sludge.Water Science and Technology, 1998,37(4-5): 441-449.
    
    [98] Gieseke A, Purkhold U, Wagner M et al. Community structure and activity dynamics of nitrifyingbacteria in a phosphate-removing biofilm. Applied and Environmental Microbiology, 2001, 67(3):1351-1362.
    
    [99] Kloep F, Roske I, Thomas R. Performance and microbial structure of a nitrifying fluidized-bed reactor.Water Research, 2000,34(1): 311-319.
    
    [100] Schramm A, Larsen L H, Revsbech N P et al. Structure and function of a nitrifying biofilm asdetermined by microelectrodes and fluorescent oligonucleotide probes. Water Science and Technology,1997,36(1): 263-270.
    
    [101] Nubuo A, Akiyoshi O, Izarul M et al. Behaviors of nitrifiers in a novel biofilm reactor employinghanging sponge-cubes as attachment site. Water Science and Technology, 1999,39(7): 23-31
    
    [102]郭海燕.曝气动力循环一体化同时硝化反硝化生物膜反应器及其特性研究:(博士学位论文).大连:大连理工大学,2005.
    
    [103]国家环保总局《水和废水监测分析方法》编委会.水和废水监测分析方法.北京:中国环境科学出版社,1998.
    
    [104]赵斌,何绍江.微生物学实验.北京:科学出版社,2002.
    
    [105]郭爱莲,李振海,黄淑菊.硝化细菌的分离研究.西北大学学报,1996,26(1):83-86.
    
    [106] Randalle E H, Rudolf I A, David A S. Dual staining of natural bacteriaoplankton with4',6-diamidino-2-phenylindole and fluorescent oligonucleotide probes targeting kindom-level 16S rRNAsequences. Applied and Environmental Microbiology, 1992,58(7): 2158-2163.
    
    [107] Werner M, Ulrich S, Per E et al. In situ identification of bacteria in drinking water and adjoiningbiofilms by hybridization with 16S and 23S rRNA directed fluorescent oligonucleotide probes. Applied andEnvironmental Microbiology, 1993,59(7): 2293-2298.
    
    [108] Poschen L, Klauth P, Groeneweg J et al. A filtration, incubation and staining reactor including a newprotocol for FISH. Journal of Microbiological Methods, 2002,50: 97-100.
    
    [109] Van Loosdrecht M C M, Tijhuis L, Wijdieks J et al. Population distribution in aerobic biofilms onsmall suspended particles. Water Sci. Technol., 1998,31:163-171.
    
    [110] Okabe S, Hiratia K, Ozava Y et al. Spatial distributions of nitrifiers and heterotrophs inmixed-population biofilm. Biotechnol. Bioeng., 1996,50:24-35.
    
    [111]陈坚.环境生物技术.北京:中国轻工业出版社,1999.
    
    [112]刘秀红,王淑莹,高大文等.短程硝化的实现、维持与过程控制的研究现状.环境污染治理技术与设备,2004,5(12):7-10.
    
    [113]涂保华,张洁,张雁秋.影响短程硝化反硝化的因素.工业安全与环保,2004,1:12-13.
    
    [114] Hellinga C. The Sharon process: An innovative method for nitrogen removal from ammonium-richwastewater. Wat. Sci. Tech., 1998,37(9):135-142.
    
    [115] Balmelle B. Study of factors controlling nitrite build-up in biological processes of water nitrification.Wat. Sci. Tech., 1992,26(5-6): 1017-1025.
    
    [116] Cecen F, Gonene I E. Nitrogen removal characteristics of nitrification-denitrification of chemicalprocessing wastewater. Water Science and Technology, 1994,29(10-11): 409-416.
    
    [117] Hananki K, Wantawin C, Ohgaki S. Nitrificayion at low levels of dissolved oxygen with and withoutorganic loading in a suspended-growth reactor. Water Research, 1990,24(3): 297-302.
    
    [118]徐冬梅.亚硝酸型硝化的实验研究.给水排水,1999,25(7):35-38.
    
    [119]涂保华,张洁.影响短程硝化反硝化的因素.工业安全与环保,2004,30(1):12-14.
    
    [120]王志盈,刘超翔,彭党聪等.高氨浓度下生物流化床内亚硝化过程的选择特性研究.西安建筑科技大学学报,2000,32(1):1-7.
    
    [121]施永生.亚硝酸型生物脱氮技术.给水排水,2000,26(11):21-23.
    
    [122] Collivignarelli C, Bertanza G. Simultaneous nitrification denitrification processes in activated sludge plants: performance and applicability. Water Sci. Technol., 1994,40(4): 187-194.
    
    [123] Wyffels S, Stijn W H, Boeckx P et al. Modeling and simulation of oxygen-limited partial nitritation in a membrane assisted bioreactor (MBR). Biotechnology and Bioengineering, 2004,86(5): 531-542.
    
    [124]左剑恶.厌氧氨氧化工艺在UASB反应器中的启动运行研究.上海环境科学,2003,22(10):665-669.
    
    [125]胡宝兰,郑平,冯孝善.新型生物脱氮技术的工艺研究.应用与环境生物学报,1999,5(增):68-73.
    
    [126]李军,杨秀山,彭永臻.微生物与水处理工程.北京:化学工艺出版社,2002.
    
    [127] Yasuzo S, Takahiro M, Fujio T. Simutaneous removal of organic and nitrogen compounds inintermittently aerated activated sludge process using magnetic separation. Water Research, 1997, 31:2113-2116.
    
    [128] Del Pozo R, Diez V. Organic matter removal in combined anaerobic-aerobic fixed-biofilmbioreactors. Water Research, 2003,37:3561-3568.
    
    [129] Hibiya K, Terada A, Tsuneda S et al. Simultaneous nitrification and denitrification by controllingvertical and horizontal microenvironment in a membrane aerated biofilm reactor. Journal of Biotechnology,2003,100:23-32.
    
    [130]吴成强,王国栋,李红岩等.反硝化污泥床和好氧生物膜一体化生物反应器.中国环境科学,2003,23(6):640-643.
    
    [131]曹国民,赵庆祥,龚剑丽等.固定化微生物好氧条件下同时硝化和反硝化.环境工程,2000,18(5):17-19.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700