用户名: 密码: 验证码:
高炉热风炉陶瓷燃烧器的研究与应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
高炉热风炉是高炉炼铁中高炉加热鼓风的重要设备,是现代高炉不可缺少的重要组成部分。高风温是高炉提高产量、降低能耗、提高生铁质量和降低生铁成本的有效措施之一。热风炉陶瓷燃烧器又是热风炉的关键设备,热风炉陶瓷燃烧器设计的优劣,直接关系到热风炉设计的质量和热风炉的使用效果。
     本文针对太原钢铁公司3#高炉热风炉陶瓷燃烧器在生产中出现的问题,通过理论计算与分析的方法确定了陶瓷燃烧器设计参数,并在此基础上运用相似理论建立模型的试验研究的方法开发了一种带中心扰流柱的热风炉陶瓷燃烧器,这种燃烧器运用于太原钢铁公司3#、4#高炉热风炉,新余钢铁公司7#、8#高炉热风炉、武钢集团鄂城钢铁有限公司1080 m~3高炉热风炉。带中心扰流柱的热风炉陶瓷燃烧器,采用空气二次加入,煤气环道中央设置中心绕流柱,煤气入口设置煤气导流板等措施增强煤气与空气的混合效果,通过合理分配空气通道和煤气通道的阻力,使瓷燃烧器的阻力只有传统套筒式陶瓷燃烧器25%,增加陶瓷燃烧器的燃烧能力和燃烧器的负荷调节范围。
     本文还针对顶燃式热风炉在运用中存在的问题,以柳钢6#高炉的球式热风炉为研究对象,采用模型试验的研究方法开发了用于顶燃式热风炉的多火孔无焰陶瓷燃烧器。多火孔无焰陶瓷燃烧器采用一对空气和煤气管道与热风炉相连,减少了拱顶开孔,结构稳定;具有独立的煤气和助燃空气环道以及多火孔结构;环道中设有导流砖,使各喷火孔喷出的气量均匀,保证燃烧在空气过剩系数较小(1.05)的情况下,使煤气能完全燃烧,从而提高燃烧温度,实现无焰燃烧,消除燃烧脉动;工作时阻损小,调节范围大,工作稳定可靠;燃烧器立式安装于热风炉顶部,有利于改善拱顶初始气流分布。生产实践证明,可提高热风温度50~150℃,节约高炉煤气约15%,经济效益显著。
     本文还从理论研究的基础出发,建立了顶燃式热风炉三维模型,并通过数值计算,对冷态和热态条件下的气体流动和燃烧过程进行了模拟。分析了热风炉内部流场和燃烧器的燃烧特性。论文首先建立与原形相似比为1:6的三维模型,选择适合模拟顶燃式热风炉内气体流动的标准κ—ε湍流模型,采用SIMPLE算法对压力和速度进行耦合,在给定速度入口的边界条件下,分析了热风炉内气体的流场、燃烧室出口和燃烧器喷口出口处的气流均匀性。然后对基于概率密度的PDF燃烧模型进行了介绍,采用这一模型及P1辐射模型,对顶燃式热风炉燃烧室的燃烧情况进行了模拟。受计算机计算能力限制,选择1/7的热风炉三维模型进行计算,切割面定义为周期性边界条件。在给定空气和煤气入口速度及出口压力,计算得到了热风炉燃烧室的速度分布、温度分布、各组分的浓度分布等。模拟计算结果与实际运行经验在定性上是一致的,可以用数值模拟的方法对热风炉的燃烧情况进行定性对比。
     最后,论文对课题进行了总结,并对热风炉技术的未来发展进行了展望。高风温将是热风炉技术发展不断追求的目标,但不应超过1450℃。采用耐高温的炉子下部支柱和炉箅子,提高离开热风炉的烟气温度至600~650℃,然后利用烟气采用高温热管换热器预热空气和煤气,追求尽量高的煤气预热温度应是未来的主要发展方向。顶燃式热风炉将代替内燃式和外燃式热风炉成为未来发展的方向。高炉热风炉的设计寿命以15~20年为宜。数值模拟技术是一种节约成本,参数结构调整方便的很实用的一种技术,作为试验研究的一种补充是有益的,但还有待发展,未来热风炉技术研究最可能模式是数值模拟技术开发和实验室模型验证的结合。
Hot blast stove is a key facility in blast furnace ironmaking. Higher temperature blast is an ultimate target for the blast furnace ironmaking. The Ceramic burner is yet an important key for the hot blast stove. It is determined that the quality of the stove when we design and use it.
     A ceramic burner with a pole for the hot blast stove was studied in this article. The characters of pressure drop, homogeneousness of flows at burner ports, the distribution of flows in the chambers were studied through cold model experiments based on Similarity Theory. This new type of ceramic burner enhanced mixture of gas and air through two stages mixture of gas and air, placing a pole in the center of the gas channel and placing a ban in the inlet of gas and reduced the pressure drop of the burner through distributing the pressure drop in gas channel and air channel. It just has 1/4 times pressure drop and more combustion capability when compared with the tube-in-tube ceramic burner. This ceramic burner was applied successfully in the hot blast stove of No.3 and No.4 Blast furnace in Taiyuan Iron & Steel Corp. Ltd., the hot blast stove of No.7 and No.8 Blast furnace in Xinyu Iron & Steel Corp. Ltd. and the hot blast stove of 1080 Blast furnace in E'cheng Iron & Steel Corp. Ltd.
     A Multi-burner-port Annular Flameless Ceramic Burner (MAFCB) of shaftless stove was yet studied in this article. The characters of pressure drop, homogeneousness of flows at burner ports, the distribution of flows in the chambers and joint were studied by cold model experiments based on Similarity Theory. This new type ceramic burner just has one inlet of gas and air respectively when jointed with the body of shaftless stove and there are not flames when it burns. These will make the doom of the shaftless stove steadily and protect the regenerative burned out. This type of ceramic burner was successfully applied in the shaftless stove filled with refractory balls of 6th blast furnace at Liuzhou Iron & Steel Corporation Ltd. and it get a higher and steadiness of hot blast temperature at 1200℃when just combusted BFG and the thermal efficiency of shaftless stove was up to 78.95%.
     Mathematic simulation is another method used to develop the combustions and furnaces. This was used to develop the mult-burner-port annular flameless ceramic burner of shaft stove. In this paper, a three-dimensional model of shaftless stove which the geometric similarity ratio is one sixth to the prototype is presented. Based on the governing equation and k-εturbulence model which suits to the gas flow in the shaftless stove, the three-dimensional model is solved by FLUENT commercial software with SIMPLE algorithm. The flow fields of hot-blast stove are obtained. The numerical results also show the homogeneous characters of the combustion chamber outlet and the nozzle outlet, and the drift current is under control in the regenerator when flow control bricks are used in the gas loop. In addition, the current simulation methods of combustion are analyzed. Based on the probability density function combustion model and P1 radiation model which suit to the gas combustion in the ceramic burner, the combustion process is simulated. The velocity distribution, temperature distribution and component distribution of the gas are obtained. By adjusting some parameters of the model, the numerical results can reflect the reality combustion process rightly.
     At last, the paper summarizes the subject, and some ideas are given for the coming investigation of the hot blast stove. Higher temperature blast is an ultimate target for the blast furnace ironmaking and it will be researched, but it will not exceed 1450℃. The gas and air will be preheated to about 500℃through improve the exhaust temperature to about 550℃, based on using high temperature stand and grid. Shaftless stove is a trend when designed the hot blast stove. Mathematic simulation will be used to develop the ceramic burner and the hot blast stove.
引文
[1]项钟庸,郭庆第.蓄热式热风炉.冶金工业出版社,1988
    [2]Anil K.Biswas.Principles of Blast Furnace Ironmaking.Cootha Publishing House,1981
    [3]J.G.Peacey,W.G.Davenport.The Iron Blast Furnace.Pergamon Press,1979
    [4]Seshadri Seetharaman.Fundamentals of Metallurgy.Woodhead Publishing Limited and CRC Press LLC,2005
    [5]中国冶金设备总公司.现代大型高炉设备制造技术.冶金工业出版社,1996
    [6]Tom Cellissen,Edwin van den Haak.Heat Recovery for Hot Blast Stoves.AISE Steel Technology,2005(3):178-184
    [7]谢茂春,潘春山.热风炉操作.冶金工业出版社,1958.7,16-22
    [8]S.Smith,L.M.Bryce.Hot-Blast Stove and System.Proceedings of the British Ceramic Society,1980,29:65-86
    [9]张万仲,游开铸,张家乐.高温内燃式热风炉.炼铁,1984.4,1-10
    [10]段润心,段中坚.热风炉多孔中空的陶瓷燃烧器.中国专利,90106015.1
    [11]戴方钦,王立,董焰等.热风炉高效能陶瓷燃烧器的特点及应用.炼铁,2003.8,22(4),52-53
    [12]周善平,谭岩,戴方钦,董焰.高效能陶瓷燃烧器在萍钢350高炉上的应用.炼铁,2005.4,24(2),18-20
    [13]李文忠,邢桂菊,张万忠.热风炉自身预热陶瓷燃烧器模型试验研究.炼铁,1996.8,15(4),46-47
    [14]张胤,贺友多.钝体式陶瓷燃烧器.中国专利,00204427.7
    [15]张胤,贺友多,李士琦.高炉热风炉钝体式陶瓷燃烧器燃烧过程研究.钢铁,2005.1,40(1):69-72
    [16]张胤,贺友多,李士琦等.预热对陶瓷燃烧器燃烧过程的影响.燃烧科学与技术,2001.3,7(3):267-270
    [17]胡格温斯.格罗波公司.热风炉及其建造方法.中国专利,93102074.3
    [18]胡格温斯.格罗波公司.用于热风炉燃烧室的陶瓷气体燃烧器.中国专利,88107570
    [19]胡格温斯.格罗波公司.用于高炉之热风炉的陶瓷燃烧器及其操作方法.中国专利,93102661
    [20]胡格温斯.格罗波公司.热风炉用的陶瓷燃烧器.中国专利,88106333.9
    [21]J.Van Laar,J.E.Van Stein Callenfels,C.S.M.Stolwijk,H.L.Toxopeus.Selection and Design of Blast Furnace Stove system.Iron and Steel Engineer,1988.10,29-34
    [22]Egnolf Van Stein Callenfels,Ruud Boonacker,Ron Stonkman.优化长寿热风炉.冶金设备,2000.8,4:1-5
    [23]F.T.Niemeijer.21世纪热风炉.钢铁,2005.7,40(7):84-86
    [24]文经国.霍戈文热风炉技术的应用.炼铁,2002.2,21(1):31-35
    [25]文经国.武钢高温内燃式热风炉技术的特征.炼铁,2001.9,20(Suppl):53-56
    [26]赵昌武,傅连春,汪勇.武钢内燃式高温热风炉新技术.钢铁,2001.7,36(7):4-9
    [27]顾德章.武钢5号高炉的设计特点.炼铁,2001.9,20(Suppl):11-14
    [28]熊良勇,汪勇,李怀远.武钢2号高炉大修采用的新技术及冶炼效果.炼铁,2001.4,20(2):33-35
    [29]周强.武钢新建3200m3高炉采用的新技术.炼铁,2004.8,23(4):1-6
    [30]李占国,安文,张文来等.唐钢2560m~3高炉炉热风炉设计.钢铁,2001.4,36(4):8-12
    [31]汤清华.鞍钢3200m~3高炉采用的新技术.炼铁,2003.6,22(3):1-3
    [32]唐心智.鞍钢新1号高炉高温长寿型内燃式热风炉.冶金能源,2003.9,22(5):32-35
    [33]王明强,王彦丰.荷兰DC公司高风温内燃式热风炉技术在本钢的应用分析.钢铁,2007.8,42(8):86-88
    [34]杜春松,陈映明.本钢3号高炉热风炉的设计特点.炼铁,2007.4,26(2):16-19
    [35]金明,蔡善咏.高炉内燃式热风炉的设计与使用.梅山科技,2005,炼铁增刊:4-6
    [36]吴秋廷,袁熙志,蒋钧,陈凤联.攀钢1号高炉热风炉的设计与生产实践.炼铁,2005.6,24(3):34-35
    [37]Akira Hasegawa.Large Blast Furnace Facilities in Nippon Steel Corporation.Proceedings Ironmaking Conference,1977,36:137-155
    [38]周传典.高炉炼铁生产技术手册.冶金工业出版社,北京,2002.8,484-488
    [39]孙永芳,唐兴智,李震.马琴式外燃式热风炉高温长寿研究.钢铁,2006.1,41(1):28-31
    [40]孟凡双.鞍钢6号高炉热风炉长寿探析.工业炉,2005.9,27(5):18-20
    [41]吴建洲,徐少兵.宝钢4高炉设计采用的新技术及其特点.宝钢技术,2006,(5):35-39
    [42]程琳,伍积明.太钢4350m~3高炉热风炉的设计.炼铁,2006.4,25(2):6-9
    [43]A.E.Lyubin,A.L.Kreindel,V.F.Safronkov,S.D.Tyulenev.Steelwork for ahot-blast stove with an external combustion chamber.Steel in USSR,1976,(2),112-113
    [44]S.V.Gubert,A.E.Sukhorukov,S.D.Samoilovich,F.Ya.Ol'GinskⅡ.Designing new blast furnace 5000m~3 and 5500m~3 in volume.Steel in the USSR,1976,(1):9-17.
    [45]张树勋主编.钢铁厂设计原理(上册).冶金工业出版社,1994,154-161
    [46]黄晋,林起礽.首钢大型顶燃式热风炉设计.首钢科技.1999.4,189-196
    [47]林起礽,陈炳林,倪苹,魏恩发.首钢2号高炉顶燃式热风炉改造设计.炼铁,1999.3,24-29
    [48]张福明.我国大型顶燃式热风炉技术进步.炼铁,2002.10,21(5):5-9
    [49]倪苹,魏恩发,刘彦波.邯钢4号高炉顶燃式热风炉的设计.炼铁,1999:12,18(6):35-36
    [50]首钢总公司.顶燃式热风炉组合式燃烧口装置.中国,实用新型专利,03249055.0,2004:1-7
    [51]赵民革,胡雄光,荣俊生等.首钢顶燃式热风炉燃烧口破损调查及对策.钢铁,2001.1,36(1):10-13
    [52]谢丽萍.石钢420 m~3高炉顶燃式热风炉的应用实践.河北冶金,2006.6,24-26
    [53]陈培荣.三钢高风温长寿热风炉的设计技巧.炼铁,2003.2,22(1):20-22。
    [54]张世德.具有热风炉通道的顶燃式热风炉.中国,发明专利,85101619
    [55]窦庆和,周殿华,刘俊萍.ZSD热风炉在安钢300m3高炉上的应用.炼铁,1994,(4):28-30
    [56]张伟,周春林.一种热风炉用燃烧器.中国,专利,99242277.9
    [57]周春林,张伟,白延明.顶燃式热风炉燃烧器的通风冷却装置及其控制方法.中国,发明专利,99109447.6
    [58]苏凌均.热风炉改造及相关问题分析.辽宁科技学院学报,2005.6,7(2):19-20。
    [59]赵建,王新田,徐书刚.旋流顶燃式热风炉的应用.冶金能源,2004.11,23(6):29-30
    [60]李明,王瑞华,李俊杰.热风炉改造与应用.山西冶金,2001,(3):7-8
    [61]刘德华,邵景文,张家乐.顶燃式热风炉的多火孔环形燃烧器.中国专利,85100733
    [62]刘德华,林家生,王纬.第二代顶燃式热风炉的研制与实践.钢铁,1998.8,33(8):6-8
    [63]蔡漳平,高悬成,赵树治等.助燃空气自预热顶燃式热风炉.中国,实用新型专利,01269171.2
    [64]Lakov Kalugin.High-temperature shaftless hot air stoves with long service life for blast furnaces.AISTECH Iron & Steel Technology conference proceedings,2007,1,405-411
    [65]李春路,唐纪学,刘文杰.“卡鲁金”顶燃式热风炉在莱钢3~#750m~3高炉的应用.山东冶金.2005.4,27(2):12-13
    [66]黄东生,王荣恩.莱钢3号高炉热风炉设计.炼铁,2003.8,22(4):32-34
    [67]张相国,于国华,马平胜.莱钢1000m~3高炉采用新技术.山东冶金,2006.8,28(4):8-10
    [68]刘德楼,董龙果,刘继安等.济钢1750m~3高炉技术特点.炼铁,2005.8,24(4):13-16
    [69]陈冠军,王连尉,胡熊光.首秦卡卢金热风炉技术研究进展.冶金能源,2007.1,26(1):31-33.
    [70]贺真,张胤,陈义胜.顶燃式热风炉在高炉生产中作用的分析.包头钢铁学院学报,2004.12,23(4):293-296,310
    [71]姚朝胜,黄东生.顶燃式热风炉的现状与发展.高风温长寿热风炉研讨论文集,2005,38-41
    [72]张仁贵.我国热风炉热效率的现状及分析.钢铁,1993.12,28(11):73-77
    [73]刘德华,邵景文,马恩样等.顶燃式热风炉的气流分布.化工冶金,1981,(4):60-65
    [74]郦秀萍,张仁贵,杜学强.顶燃式热风炉烟气分布的研究.钢铁,2002.4,37(4):57-59
    [75]钱凯,胡雄光,韩庆.顶燃式热风炉冷风、烟气匹配技术.金属学报,2000.4,36(4):425-428
    [76]M.Tanabe,Y.Yoshinari,T.Ariyama.Combustion control system for hot stove.NKK 技报,1998,(162):6-10
    [77]Il Seop Choi,Byeong Hyeon Park,Seung Gap Choi.Design of Optimal Combustion Controller for Temperature Control in Hot Blast Stoves.Intelligent systems and control,2000:357-361
    [78]张雷,汪光阳,王志英等.热风炉燃烧系统研究现状.天津冶金,2002,(5):11-13
    [79]梁中渝,朱光俊,崔轩辉等.热风炉节能燃烧的分析.冶金能源,2002.7,21(4):39-41
    [80]陈义胜等.热风炉蓄热室内气流分布的计算机模拟研究.钢铁,2000.8,35(8):10-12
    [81]王莉,张胤,贺友多.阻流板对陶瓷燃烧器及燃烧室内流动过程的影响.包头钢铁学院学报,2000.3,19(1):19-23
    [82]黄有猷.攀钢4#高炉热风炉合理燃烧制度.钢铁钒钛,1994,(4):50-55
    [83]胡廷显.石球热风炉试验报告.钢铁,1959,(1):19-22.
    [84]胡廷显.石球热风炉试验与研究.钢铁,1960,(3):125-130
    [85]袁熙志.我国球式热风炉技术的发展及应注意的问题.钢铁,2002.10,37(10):65-69
    [86]钟树周.球式热风炉在300m~3级高炉的使用特点.冶金丛刊,2003.8,146(4):24-26
    [87]张清江,赵合安,熊艳丽.球式热风炉在中型高炉上的应用.炼铁,2005.12,24(6):37-39
    [88]唐志宏.柳钢1号高炉球式热风炉的特点及应用.2001.12,20(6):43-44
    [89]藤树满,卢向党.柳钢1号高炉球式热风炉的设计特点.山东冶金,2001.2,23(1):11-12,14
    [90]王成立,顾林娜.球式热风炉球床结构的热工讨论.冶金丛刊,2003.2,142(1):3-7
    [91]朱光俊,梁中渝,石朝贵等.球式热风炉球床阻力损失模型研究.炼铁,2000.2,19(1):51-52
    [92]Fred T.Schick,Helmut Palz.Ceramic burners for hot blast stoves.Iron and steel engineer,1974,3:41-44
    [93]王志仁,张家乐,张万仲.高温内燃式热风炉燃烧室的研究.炼铁,1983,(3):10-16
    [94]H.Hofmann.卢森堡1962年炼铁论文集.1962,161-162
    [95]Helmut Palz,Arthur Heuer.Design and construction of hot blast stove plants for high blast temperature and high blast pressures.Iron making Proceedings,1973,165-176
    [96]The new development about the combustion method of hot blast stove.Furance &Steel Plant.1970.3:171-178
    [97]W.R.Hodgson.雷德卡厂热风炉燃烧的改进.国外钢铁,1989,(2):1-13
    [98]张家乐,张志良,刘孝湘.陶瓷燃烧器预混和模型试验.鞍钢技术,1979,(5)
    [99]邱玉田,王在木.套简式陶瓷燃烧器在本钢—铁厂的应用及试验.鞍钢技术,1971增刊
    [100]贺有多.新型栅格式陶瓷燃烧器.中国专利,97250073.1
    [101]贺有多,张胤,李士琦等.对热风炉用陶瓷燃烧器的评价.包头钢铁学院学报,18(2):83-86
    [102]张胤等.新型栅格式陶瓷燃烧器燃烧过程数学模型研究.包头钢铁学院学报,2001,20(2):100-103
    [103]袁熙志,罗巍.顶燃式热风炉燃烧器的设计探讨.四川冶金,1990,(3):25-28
    [104]邱玉田.套筒式陶瓷燃烧器在本钢一铁厂的应用及试验.鞍钢技术.1981(增刊):65-73
    [105]岳增文.顶燃式热风炉用陶瓷燃烧器.耐火材料,1989,(2):42-43
    [106]袁熙志.顶燃式热风炉细流交叉混合燃烧器的设计.炼铁,1990,(6):29-32
    [107]中科院化冶所.顶燃式热风炉的多火孔环形燃烧器.中国,发明专利,85100733,1988.1-6
    [108]成兰柏.张家乐.ACL顶燃式热风炉工业性试验.钢铁,1988,23(10):5-10
    [109]河南拓普炼铁技术联合开发公司.环形多孔短焰陶瓷燃烧器.中国,实用新型专利,02201942.1,2002,1-6
    [110]武汉宏图高炉热风炉高新技术研究所.大功率无焰陶瓷燃烧器.中国,发明专利,00114572X,2003,1-9
    [111]郭保善,邢占峰,郭金良.DS顶燃式热风炉的特点及应用.河北冶金,2005,(3):31-32
    [112]郑州豫兴耐材有限公司.高速均混陶瓷燃烧器.中国,发明专利,200510018053.7,2006,1-8
    [113]赵治国.热风炉用栅格式燃烧器燃烧场的试验研究与数值模拟.鞍山科技大学硕士论文,2004
    [114]牛珏.套筒式燃烧器燃烧室内冷态流场的数值模拟及试验研究.鞍山科技大学硕士论文,2003
    [115]张胤.高炉热风陶瓷燃烧器燃烧过程模拟及新型陶瓷燃烧器的开发研究.北京科技大学博士论文,2001
    [116]Kazuo Sano,Takao Miyazaki,Shozo Seto,Yoji Suguro,Shintaro Sudo,Akira Maki.Optimization of Combustion Technique for Blast Furnace Hot Stove.Nippon Kokan Technical Report,Oversea No.32,1981.
    [117]张胤,贺友多等.套筒式陶瓷燃烧器内燃烧过程数学模型.金属学报,2000,36(6):667-672
    [118]张胤,贺有多等.阻流板对陶瓷燃烧器燃烧过程的影响.钢铁研究学报,2001,13(4):6-10
    [119]雍玉梅,李国忠等.套筒式燃烧器燃烧室内气体燃烧场的仿真.冶金能源,2002,21(3):49-51
    [120]荀柏秋,曲哲等.三维紊流燃烧室流场的数值计算.热能动力工程,2001,16(1):80-82
    [121]张炳哲,张欣欣等.卡卢金热风炉气体燃烧与流动数值模拟.工业炉,2005,27(6):1-3
    [122]胡日君,程素森.考贝式热风炉拱顶空间烟气分布的数值模拟.北京科技大学学报,2006,28(4):338-342
    [123]陈义胜,贺有多等.热风炉冷风分布的计算机模拟研究.包头钢铁学院学报,1999,18(1):16-20
    [124]莫乃榕.工程流体力学.第一版,武汉,华中科技大学出版社,2001
    [125]颜大椿.实验流体力学.第一版,北京,高等教育出版社,1992
    [126]戴方钦,董焰,李少华.鄂钢1080m3高炉热风炉设计研究.炼铁,2007.4,26(2):31-33
    [127]刘国民,黄日清,杨剑.柳钢球式热风炉的推广应用.广西节能,2003,(2):16-18
    [128]陆寿先,黄庆周,章炳炎等.柳钢750m~3高炉球式热风炉应用实践.炼铁,2004,(12):34-35
    [129]唐志宏.柳钢1号高炉球式热风炉的特点及应用.炼铁,2001,(12):43-44
    [130]蔡简元,卢向党.球式热风炉的现状与发展.高风温长寿热风炉研讨论文集.2005,42-50
    [131]张福利,蔡简元,卢向党.高效节能高风温大型球式热风炉的开发应用与热平衡测定.炼铁,2005,(4):1-6
    [132]张福利,蔡简元,卢向党.大型球式热风炉的开发与应用.钢铁,2005.2,40(2):6-10
    [133]刘顺隆,郑群.计算流体力学.第一版,哈尔滨,哈尔滨工程大学出版社,1998
    [134]陈矛章.粘性流体动力学基础.第一版,高等教育出版社,1993
    [135]FLUENT Inc.FLUENT 6.0 Documentation.FLUENT Inc.2001
    [136]陶文铨.数值传热学.第一版,西安交通大学出版社,1988
    [137]B.E.Launder and D.B.Spalding.Lectures in Mathematical Models of Turbulence.Academic Press,London,England,1972
    [138]陶文铨.计算传热学的近代进展.第一版,北京,科学出版社,2000
    [139]Patankar S V..Numerical Heat Transfer and Fluid Flow.New York:Hemisphere Publishing Corporation,Taylor &Francis Group,1980
    [140]S.V.Patankar.Numerical Heat Transfer and Fluid Flow.Hemisphere,Washington,1980
    [141]Dawes W N.The Simulation of Three-Dimensional Viscous Flow in Turbo-machinery Geometries Using a Solution Adaptive Unstructured Mesh Methodology.Journal of Turbo-machinery,1992,114(4):528-537
    [142]Tsung F L,Loellbach J H.Development of an Unsteady Unstructured Navier Stockes Solver for Stator-Rotor Interaction.AIAA-96-2668
    [143]Athavale M M,Tiang Y,Przekwas A J.Application of an Unstructured Grid Solution Methodology to Turbomachinery Flows.AIAA-95-00174
    [144]刘学强,伍贻兆.三维复杂外形非结构网格的生成及应用.南京航空航天大学学报,2000,32(5):534-538
    [145]韩振学,方韧,刘志坚.非结构化多重网格流场数值计算.航空动力学报,1998,13(2):149-152
    [146]Libby P A,Williams F A.Fundamental aspects and review.In:Libby P A,Williams F A,ed.Turbulent Reacting Flows.Academic Press,1993,1-62
    [147]Givi P.Model free simulations of turbulent reactive flows.Progress in Energy and Combustion Science,1989,15:1-107
    [148]Jaberi F A,James S.A dynamic similarity model for large eddy simulation of turbulent combustion.Physics of Fluids,1998,10(7):1175-1177
    [149]Colucci P J,Jaberi F A,Givi P.Filtered density function for large eddy simulation of turbulent reacting flows.Physics of Fluids,1998,10(2):499-515
    [150]张会强,陈兴隆,周力行等.湍流燃烧数值模拟研究的综述.力学进展,1999,29(4):567-575
    [151]Pope S B,Cheng W K.The stochastic flamelet model of turbulent premixed combustion.In:22nd Symposium(Int) on Combustion,1988.781-789
    [152]Chen J Y,Kollmann W.Chemical models for PDF modeling of hydrogen-air non-premixed turbulent flames.Combustion and Flame,1990,79:75-99
    [153]Pop S B.New developments in PDF modeling of non-reactive and reactive turbulent flows.In:Proceedings of the Second International Symposium on Turbulent,Heat and Mass Transfer,Delft,The Netherlands,June,1997,35-45
    [154]Magnussen B F,Hjertager B H.On mathematical modeling of turbulent combustion with special emphasis on soot formation and combustion.In:16th Symposium (International) on Combustion,1976,719-729
    [155]C.Biegus,W.Bleck,U.J.Brand,etc.Design criteria for grid systems in hot blast stoves.Metallurgical Plant and Technology International,1998,22(2):48-53.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700