用户名: 密码: 验证码:
翻管变形机理及翻管成形极限的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
翻管成形工艺是利用简单模具成形其他方法难以成形的双壁管状复杂零件,这是一种特种管的成形技术。这种双壁管零件适用于汽车冲撞、飞船软着陆、核装置的碰撞的保护吸能元件等的制造。
     由于翻管成形方式较多,成形条件苛刻,翻管变形过程机理复杂,多种失稳的变形趋势制约着翻管成形工艺的可能性。因此,将此工艺方法推广应用到工业成形制造领域,就必须全面深入地研究翻管变形机理、翻管工艺参数条件及成形极限等关键问题。本文即是针对这些问题,通过有限元数值模拟结合理论分析和工艺实验的方法,所进行的系统深入的研究,取得了如下主要新进展。
     (1)采用轴对称旋转壳体的薄壳理论对内翻及外翻变形过程进行了力学分析。在不考虑材料加工硬化的情况下,分别求解了稳态内翻及外翻成形问题的应力、应变以及翻管工艺力。研究结果表明:翻卷半径对翻管工艺力的影响比较大,存在最佳翻卷圆角半径,使翻管工艺力最小,翻管过程最稳定。在翻管变形初期,多种变形模式依次转化,而稳定翻管时,成形力非常稳定,且达到其最大载荷。
     (2)研究翻管轴对称失稳变形,提出临界失稳力与后屈曲过程的平均失稳力存在着简单的线性比例关系,建立了翻管临界失稳力的计算公式。并引入翻管系数和成形极限图的方法,简单直观地预测翻管成形范围。研究表明:对于φ42X1 3A21铝合金圆管,稳定外翻的外翻管系数为1.18~1.42,对应的翻卷半径约为2~6mm,内翻管系数为0.82~0.53,对应的翻卷半径约为2~4mm。
     (3)研究翻管成形过程的数值模拟方法,建立了轴对称翻管问题的有限元分析模型,并用华中科技大学自主开发的板料成形分析软件FASTAMP和商用板料成形分析软件DYNAFORM5.2作为平台,对3A21铝合金管的内翻及外翻变形过程进行了模拟分析,并与实验结果比较,揭示了翻管成形的变形机理。数值模拟的结果与实验结果基本一致。研究结果表明:①翻管过程是一复杂的变形过程,在翻管变形区,并不是一个等半径的半圆。模具圆角半径越小,初始峰载越大;模具圆角半径增大到一定值后,没有初始峰载出现。②对于φ42×1mm的铝合金管,理想的翻管模具圆角半径为3mm。在同样变形程度下,圆角模外翻的工艺成形力比锥模外翻的大;内翻工艺力比外翻的要大。③外翻过程中,待成形区的管壁先受轴压变厚,从变形区开始受拉而变薄,但总体上外翻变形的管壁厚度基本保持不变。而内翻变形区的管壁有明显的增厚变形,对于3A21铝合金管,采用模具圆角半径为3mm时,在新形成的内层管上,管壁厚度最大增至原始管壁厚度的1.38倍。
     (4)采用试验研究方法,研究了无材料加工硬化的3A21铝合金圆管的内翻及外翻管成形方法,探讨了成形工艺参数及管坯几何性能参数对翻管变形的影响规律,并对理论分析及数值模拟的结果进行了实验验证。实验结果表明:按理论及数值模拟确定的圆角模和锥模,3A21铝合金管均能稳定外翻或内翻制得翻转管。选用材料加工硬化严重、抗失稳能力较差因而难以轴压翻管的1Cr18Ni9Ti不锈钢圆管,研究了其翻管成形方法,开发了无模拉伸翻管新方法和装置。实验研究表明:φ40×1mm的1Cr18Ni9Ti不锈钢圆管在轴压下冷态外翻非常困难;采用圆筒模拉伸翻管方法,可以冷翻出外翻管,但容易出现管壁拉断现象;应用无模拉伸翻管可以冷翻出外翻管,且成形力更低,不会出现管壁拉断,因此成形过程更可靠。
Tube inversion is a special metal forming process in which a tube, when subjected to axial compression, will undergo external inversion or internal inversion to form double-walled tubular components that are difficult to produce by any other manufacturing process. These components are often used as impacting energy absorbers in transport vehicles like aircrafts and automobiles.
     However, transient behaviour was neglected in free inversion, and there were some buckling failures. Because the deformation mechanism is not sufficiently well understood, as a result, tube inversion cannot get an industrial application well. In this dissertation, a systematical and theoretical investigation on tube inversion has been carried out by using FE simulation combined with theoretical analysis and experiment. The new achievements are as follows:
     (1) The forming process was investigated by mechanical analysis on the basis of the membrane theory of axis symmetric shell. The characteristics of loads and deformation during transient and steady forming process were obtained. The research showed that the effects of inverting radius was crucial to the feasility of tube inversion and forming load, there was a favorable inverting radius to get the minimum inverting load. At the beginning of the process, there were the change of deformation modes, which was mainly determined by the circumferential deformation.
     (2) The axial symmetry buckling distortions during tube inversion process were investigated, there was a simple linearly proportional relation between the critical buckling load and the average buckling load of the back fluctuation process, and the calculation formula of the critical buckling load of tube inversion was established. Besides, introducing the coefficient of tube inversion and the method of forming limit diagram, the forming scopes were predicted intuitively and expediently. The results showed that the coefficient of external inversion at stabilized external inversion should be 1.18-1.42 , whose opposite fillet radius should be 2~6mm for 3A21 aluminum alloy tube with a diameter of 42mm and a thickness of 1mm, and the coefficient of internal inversion should be 0.82~0.53 , whose opposite fillet radius should be 2~4mm.
     (3) The simulations on external inversion and internal inversion of 3A21aluminum alloy tube were thoroughly studied by using self-developed FASTAMP software and commercial Dynaform5.2 software, the mechanism of tube inversion was opened out. The research of the numerical simulation indicated the following facts: 1) The result of numerical simulation was consistent with experiment one. In the deforming area the radiuses of the bending edge were not always the same. The smaller the radius of fillet die was, the larger the load-peak was. On the other hand, when the radius of fillet die became larger, the load-peak didn't occur. 2) In the simulation R3 was the optimal radius of fillet die, which extend towards both sides. In the same deforming degree, the inverting load of 3A21 aluminum alloy tube on fillet die was larger than the one on conical die with the same mode, and the one with internal inversion was larger than the one with external inversion. 3) After external inversion, the thickness of the new wall was nearly no change, while it turned to be thicker obviously afer internal inversion .To 3A21 aluminum alloy tube, the thickness of new wall was as 1.38 times as the original one.
     (4) Experiments on tube inversion of 3A21 aluminum alloy tube and 1Cr18Ni9Ti stainless steel tube were carried out, and the effects of processing parameters and tube geometry size on inversion were also investigated. The results showed that the steady inversion of 3A21 aluminum alloy tube can be acquired with a suitable fillet die or conical die under axial compression, on the other side, it was impossible for 1Cr18Ni9Ti stainless steel tube with a diameter of 40mm and a thickness of 1mm at room temperature , only if employing a strectching inversion method.
引文
[1]路甬祥.世界科技发展的新趋势及其影响.“科学与中国”报告, 2004.12
    [2]苑世剑.轻量化构件液力成形技术进展.见:第九届全国塑性工程学术年会论文集.山西太原, 2005.7. 24-29. 14~23
    [3]杨合,鲜飞军.先进塑性成形加工技术发展中的几个重要基础问题.见:张立斌,陆辛,海锦涛.中国机械工程学会第三届全国青年学术会论文集.北京:机械工业出版社, 1998. 41~44
    [4]黄早文,郭芷荣.翻管工艺应用及展望.锻压技术, 1986, 3: 54~57
    [5]ПОПОВО.В.,МОЗГОВВ.А..ВьIВОРОТТРУБКУЗНЕЧНО-ШТАМПОВОЧНОЕПРОИЗВОЛСТВО, 1969, 10: 24~25
    [6] Engel H.E.. Napfe und Rohre Stulpdrucken und stulpziehdrucken. Bandre Bleche Rohre, 1986, 9: 184~186
    [7] Tomesani L.. Analysis of a tension-driven outside-in tube inversion. Journal of Materials Processing Technology, 1997, 64: 379~386
    [8]谈惠君.塑性各向异性理论与数值参数技术的研究及在翻管力学分析中的应用: [博士学位论文]。南京航空航天大学图书馆, 1993.
    [9] Reid S.R.. Plastic deformation mechanisms in axially compressed metal tubes used as impact energy absorbers. Int. J. Mech. Sci., 1993, 35(12): 1035~1052
    [10]ГорбуновM.H..ВьΙвоРотиразлачатруб.МашиностроитЕль, 1958,2: 20~23
    [11] Guist L.R., Marble D.P.. Prediction of the inversion load of a circular tube. NASA TND- 3622, 1966
    [12] Al-Hassani S.T.S., Johnson W., Lowe W.T.. Characterisation of inversion tubes under axial loading. J. Mech. Engng. Sci., 1972, 14: 370~376
    [13] Al-Hassani S.T.S.. Tube inversion: A Process for Obtaining Gross Expansions inthe Diameter of Thin-Wall Tubes. The 15th Int. Mach. Tool. Des. and Res. Conf., Birmininghan1974. 571~576
    [14] Reddy T.Y.. Tube inversion---an experiment in plasticity. Int. J. Mech. Engng. Edu., 1989, 17: 277~291
    [15] Kanoo Ichinose, Taiji Masuda. Inside-out inversion process of Aluminum tube under axial loading by conical die.轻金属, 1979, 29(11): 483~490(in Japanese)
    [16] Kitazawa K., Kobayashi M., Yamashita S.. Experiment on maximum bending radius of tube end curling. Journal of the JSTP, 1987, 29(333): 1043~1048(in Japanese)
    [17] Kitazawa K., Kobayashi M., Yamashita S.. Elementary energy analysis of tube end curling. Journal of the JSTP, 1988, 29(331): 845~850(in Japanese)
    [18] Kitazawa K.. Shapes and sizes of inverted tubes. Journal of the JSTP, 1993, 34(390): 817~822(in Japanese)
    [19] Kitazawa K., Kobayashi M.. Inward curling of curling tubes by conical dies. Journal of the JSTP, 1987, 28(316): 481~487(in Japanese)
    [20] Kitazawa K.. Criteria for outward curling of tubes. Journal of Engineering for Industry Trans. ASME, 1993, 115: 466~471
    [21] Engel H.E.. Stülpdrücken von Rohrenden Liefert doppelwandige Hohiteile. B?nder Bleche Rohre 1984, 10: 253~254
    [22]黄早文,胡国安,郭芷荣,涂方正.翻管工艺的研究.华中理工大学学报, 1991, 19: 89~94
    [23]杨合,林兆荣.薄壁管卷边成形的数值模拟.航空学报, 1993, 14(1): 90~91
    [24]谈惠君,黄早文,郭芷荣.薄壁圆管外翻问题的研究.锻压技术, 1992, 3: 27~30
    [25] Daw-Kwei-Leu. The curling characteristics of static inside-out inversion of metal tubes. Int. J. Machine Tools and Manufacture, 2000, 40(2): 65~80
    [26]夏巨谌,李志刚.模具设计大典.(第2卷).北京:机械工业出版社, 2002 .421~450
    [27] Johnson W.. Impact Strength of Materials. London: Edward Arnold, 1972
    [28] Kanoo Ichinose, Taiji Masuda. Steady inverting process for Aluminum tubes on a cylindrical torus-ended die. Journal of the JSTP, 1985, 26(288): 25~31(in Japanese)
    [29] Kitazawa K., Kobayashi M., Maruno H.. Fitness of circular tube end to tool-envolope-surface in flaring and nosing by orbitally rotary forming. Journal of the JSTP, 1988, 29(330): 767~774(in Japanese)
    [30] Kanoo Ichinose, Taiji Masuda. Fluid-pressurized inverting of thin wall circular tube. Journal of the JSTP, 1989, 30(339): 547~554(in Japanese)
    [31]黄早文,俞彦勤.拉伸翻管模.锻压技术, 1995,6: 12~15
    [32] Reid S.R., Harrigan J.J.. Transient effects in the quasi-static and dynamic internal inversion and nosing of metal tubes. Int. J. Mech. Sci., 1998,40(2/3): 263~280
    [33] Harrigan J.J., Reid S.R., Peng C.. Inertia effects in impact energy absorbing materials and structures. International Journal of Impact Engineering, 1999, 22: 955~979
    [34] Pedro A. Rosa, Jorge M.C. Rodrigues, Paulo A.F.Martins. Internal inversion of thin-walled tubes using a die: experimental and theoretical investigation. Int. J. of Machine Tools & Manufacture, 2004, 44: 775~784
    [35] Searle J.A., Brabin E.J.. The invertube. Bull. Mot. Ind. Res. Ass.,1970, 2: 1~12
    [36] Ezra A.A., Fay R.J.. An assessment of energy absorbing devices for prospective use in aircraft impact situations- Dynamic response of structures. In: Herrmann G., Perrone N., editors. Proceedings of a symposium held at Stanford University. Califoria, June 28-29, 1971. 225~246
    [37] Desjardins S.P. etal. Crashworthy armored crewseat for the UH-60A Black Hawk. The 35~(th) Annual National Forum of the American Helicoptor Society, WashingtonD.C., May, 1979. 1~11
    [38] Kim B. J., Sohn S. M., Moon Y. H.. Evaluation of the crash energy absorption of hydroformed bumper stays. In: proceedings of the third international conference on advanced forming and die manufacturing technology. Pusan, Korea September 4-6, 2006. 125~130
    [39]ГорбуновM.H.,МОЗГОВВ.А..ОПРЕДЕЛИЕГРАНИЦМЕЖДУОБПАСТАМИОБЖИМАИВь?ВОРОТА.КУЗНЕЧНО-ШТАМПОВОЧНОЕПРОИЗВОЛСТВО, 1975, 2: 16~18
    [40]黄早文,胡国安,郭芷荣.翻管变形模式的转化条件.华中理工大学学报, 1993, 21(4): 118~123
    [41] Reddy T.Y.. Guist and Marble revisited---on the natural knuckle radius in tube inversion. Int. J. Mech. Sci., 1992, 34: 761~768
    [42] Schmoeckel D, Skiadas A., Mazilu P.. Analytical description and FE-simulation of the tube inversion pressing. Annals of the CIRP, 1989, 38: 275~278
    [43] Sekhon G.S., Gupta N.K., Gupta P.K.. An analysis of external inversion of round tubes. Journal of Materials Processing Technology, 2003, 133: 243~251
    [44] Pedro A.Rosa, Jorge M.C. Rodrigues, Paulo A.F.Martins. External inversion of thin-walled tubes using a die: experimental and theoretical investigation. Int. J. of Machine Tools & Manufacture, 2003, 43: 787~796
    [45] Pedro A.Rosa, Rui M.O. Baptista, Jorge M.C. Rodrigues, Paulo A.F.Martins. An investigation on the external inversion of thin-walled tubes using a die. International Journal of Plasticity, 2004, 20: 1931~1946
    [46]黄早文,俞彦勤.轴压翻管力及其影响因素的分析.中国机械工程,1996, 7 (1): 75~77
    [47]黄早文,俞彦勤,胡国安.翻管失稳机理分析.华中理工大学学报, 1995, 23: 49~53
    [48] Huang Zaowen, Yu Yanqin, Li Shangjian, Ma Xiang. Study on the mathematicalmodel for tube inversion process. Chinese Journal of Mechanical Engineering, 1997, 10(1): 66~71
    [49]邓达.管材翻转变形过程研究: [硕士学位论文]。华中工学院图书馆, 1988
    [50]罗云华.武装直升机抗坠毁座椅翻转管吸能器的研制: [硕士学位论文]。华中理工大学图书馆, 1990
    [51]罗云华,张海鸥,黄早文.翻转管吸能特性及翻管成形工艺的研究.锻压机械, 2000, 35(5): 6~8
    [52]罗云华,黄早文,张祥林.轴压下金属圆管内翻工艺的实验研究.塑性工程学报(增刊), 2005, 12: 81~84
    [53]罗云华,张祥林,黄早文.管材向内翻卷变形的力学分析.华中科技大学学报, 2005, 33(12): 16~18
    [54] Luo Yunhua, Huang Zaowen, Zhang Xianglin. FEM analysis of external inversion and energy absorbing characteristics of inverted tubes. In: proceedings of the third international conference on advanced forming and die manufacturing technology. Pusan, Korea, September 4-6, 2006. 121~125
    [55] Luo Yunhua, Huang Zaowen, Zhang Xianglin. FE analysis of internal inversion of aluminium alloy tube. CADDM, 2006, 16(2): 38~43
    [56] Tan H.J., Chan K.C.. Numberical analysis of inside-out tube inversion process. Journal of Materials Processing Technology, 1997, 66(2): 130~136
    [57] Yang H., Li S.. Process optimization of the inverting forming of thin-walled tubes with radiused dies. Journal of Materials Processing Technology, 1995, 52: 489~491
    [58] Yang H., Sun Z.C., Jin Y.J.. FEM analysis of mechanism of free deformation under dieless constraint in axial compressive forming process of tube. Journal of Materials Processing Technology, 2001, 115: 367~370
    [59] Sun Z.C., Yang H.. Development of a finite element simulation system for the tube axial compressive precision forming process. Int. J. of Machine Tools &Manufacture, 2002, 42: 15~19
    [60]孙志超.无模约束自由变形规律与管轴压精密成形过程的研究: [博士学位论文]。西北工业大学图书馆, 2003
    [61]孙志超,杨合,李明奇.管轴压精密成形过程有限元模拟研究.机械工程学报, 2001, 37(9): 34~37
    [62]孙志超,杨合.条件参数对拉深翻管成形力的影响规律.机械工程学报, 2002, 38 (10): 75~77
    [63]孙志超,杨合.管轴压成形失稳起皱力学过程的研究.机械工程学报, 2003, 39 (6): 110~113
    [64]李尚健.金属塑性成形过程模拟.北京:机械工业出版社,1999. 120~152
    [65]王瑁成.有限单元法.北京:清华大学出版社,2003. 378~436
    [66]肖景容,李尚健.塑性成形模拟理论.武汉:华中理工大学出版社, 1994
    [67]梁清香,张根全.有限元与MARC实现.北京:机械工业出版社, 2003. 234~272
    [68]孟凡中.弹塑性有限变形理论和有限元方法.北京:清华大学出版社,1985
    [69]钟志华,李光耀.薄板冲压成形过程的计算机仿真和应用.北京:北京理工大学出版社, 1998
    [70]张晓静,周贤宾,李东升.板料成形数值模拟研究进展.塑性工程学报(增刊), 2005, 12: 1~10
    [71]柳玉起,李志刚,杜亭等.钣金零件设计与制造的辅助快速分析软件FASTAMP.塑性工程学报(增刊), 2005, 12: 204~208
    [72] Liu yuqi, Li zhigang, Yan Yakun. Fast accurate prediction of blank shape in sheet metal stamping forming. ACTA MECHANICA SOLIDA SINICA, 2004, 17: 36~42
    [73]陈文亮.板料成形CAE分析教程.北京:机械工业出版社,2005. 40~61
    [74]胡平,王成国,庄茁. KMAS软件系统与冲压模具虚拟制造技术.虚拟工程与科学(中国科协青年科学家论坛)文集.北京:气象出版社,2001.5. 1~12
    [75]丁永祥.薄壁管挤压缩径成形过程的模拟分析: [博士学位论文]。华中理工大学图书馆, 1994
    [76]胡秀丽.长颈法兰类件成形的有限元模拟与实验研究: [博士学位论文]。哈尔滨工业大学图书馆, 1999
    [77]郭正华.铝合金板温成形过程模拟及摩擦特性的研究:[博士学位论文]。华中科技大学图书馆, 2004
    [78]张振华.板壳理论.武汉:华中理工大学出版社,1993. 135~167
    [79]斯德洛日夫M.B.,波波夫E.A..金属压力加工原理.哈尔滨工业大学锻压教研室译.北京:机械工业出版社, 1988. 272~292
    [80]汪大年.金属塑性成形原理.北京:机械工业出版社, 1986
    [81]吴诗惇.冲压工艺学.西安:西北工业大学出版社,1987. 151~163
    [82]王祖堂,关廷栋,肖景容等.金属塑性成形理论.北京:机械工业出版社, 1989
    [83] Andrews K.R.F. etal. Classification of the axial collapse of cylindrical tubes under quasi-static loading. Int. J. Mech. Sci., 1983, 25(9-10): 687~696
    [84] Mamalis A.G., etal. The quasi-static crumpling of thin-walled circular cylinders and frusta under axial compression. Int. J. Mech. Sci., 1983, 25(9-10): 264~279
    [85] Gupta N.K., Husain Abbas. Mathematical modeling of axial crushing of cylindrical tubes. Thin-Walled Structures, 2000, 38: 355~375
    [86] Gupta N.K., Sekhon G.S., Gupta P.K.. A study of fold forming in axisymmetric axial collapse of round tubes. International Journal of Impact Engineering, 2002, 27: 87~117
    [87] Wierzbicki T., Bhat S.U.. A moving hinge solution for axisymmetric crushing of tubes. Int. J. Mech. Sci., 1986, 28: 135~151
    [88] Abramowicz W., Jones N. Dynamic axial crushing of circular tubes. International Journal of Impact Engineering, 1984, 2(3): 263~281
    [89] Pugsley A.G. etal. The large-scale crumpling of thin cylindrical columns.Quart. Journal Mech. and Applied Math., 1960, 13(1): 16~19
    [90] Reddy T.Y., Reid S.R.. Axial splitting of circular metal tubes. Int. J. Mech. Sci., 1986, 28: 111~131
    [91]梁炳文,胡世光.弹塑性失稳理论.北京:国防工业出版社, 1983
    [92] Gupta N.K.. Some aspects of axial collapse of cylindrical thin-walled tubes. Thin-Walled Structures, 1998, 32: 111~126
    [93]韩强.弹塑性系统的动态屈曲和分叉.北京:科学出版社,2000
    [94] Alexander J.M.. An approximate analysis of the collapse of thin cylindrical shells under axial loading. Quart. Journal Mech. And Applied Math., 1960, 13(1): 10~15
    [95]杜星文,宋宏伟.圆柱壳冲击动力学及耐撞性设计.北京:科学出版社,2004
    [96]肖景容,姜奎华.冲压工艺学.北京:机械工业出版社,1991. 158~164
    [97] Keeler S.P.. Plastic instability and frature in sheet strtched over rigid punches. ASM Trans., 1964, 56: 25~48,
    [98] Goodwin G.M.. Application of strain analysis to sheet metal forming in the press shop. SAE paper No.680093, 1968
    [99] Carl J. R.. Computer-generated forming limit diagrams. Metalforming, 1991, 8: 43~46
    [100]王同海.管材塑性加工技术.北京:机械工业出版社, 1998. 177~191
    [101]陈先保,李素平.薄壁管缩口的变形及活动芯模缩口成形法.锻压技术, 1987, 6: 3~7
    [102]第一汽车制造厂长春汽车材料研究所编写组.机械工程材料手册(有色金属材料)(第四版),北京:机械工业出版社, 1991. 100~143
    [103]王健安.金属学与热处理(下册).北京:机械工业出版社, 1980. 105~187

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700